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1. Introduction

As is well known, soliton theory is being applied to mathematics, physics, biology, astrophysics and other potential field,
and considerable progress has been made in the study of soliton theory [1-17]. The diversity and complexity of soliton
theory enables investigators to do research from different views, such as Hamiltonian structure, conservation laws, self-
consistent sources and various solutions of soliton equations. Conservation law plays an important role in mathematical
physics, such as it describes the conservation of fundamental physical quantities, provides a method to study quantitative
and qualitative properties of equations and their solutions, verifies complete integrability of nonlinear partial differential
equations and is used to test numerical integrators. Generally, the infinitely many conservation laws or conserved quantities
for both continuous system and discrete system can be obtained from the scattering problem [18,19], from the formal
solutions of eigenfunctions [20], from the Backlund transformation [18], from the couple of Ricatti equations [18], from
the quasi-diffierential operator based on the Sato theory [21], from the trace identity [22] or from Lax pair [23].

The trace identity [24] provides a powerful tool for constructing Hamiltonian structures of soliton equations. It is based
on the killing form on a semisimple Lie algebra. Various integrable equation hierarchies, such as AKNS hierarchy, BPT hier-
archy, TB hierarchy and Jaulent-Miodek hierarchy, along with their Hamiltonian structures are obtained [24-38]. Recently,
Ma and Chen [39] developed this method to nonsemisimple Lie algebras and proposed the variational identity — a general-
ized trace identity. In Ref. [40], Ma further gave the supertrace identity on Lie superalgebras and its application to super-
AKNS hierarchy and super-Dirac hierarchy to get their super Hamiltonian structures. Then, super C-KdV hierarchy [41]
and super Boussinesq hierarchy [42] and super NLS-mKdV hierarchy [43] hierarchies as well as their super Hamiltonian
structures are presented. The binary nonlinearization of the super-AKNS system [44] and an implicit symmetry constraint,
the Bargmann symmetry constraint [45] and binary nonlinearization of the super-Dirac systems are obtained by He et al.
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Very recently, a super-CKdV equation hierarchy [46] with self-consistent sources is presented. Soliton equations with self-
consistent sources can provide variety of dynamics of physical models due to the nonconstant velocities of solitary waves
resulting from sources. They are usually used to describe interactions between different solitary waves. Therefore such sys-
tems have attracted considerable attention in recent research of soliton theory [47].

Our letter would like to derive a super integrable equation hierarchy with self-consistent sources and give the conserva-
tion laws of the super integrable equation hierarchy.

The paper is organized as follows. In Section 2, we give a brief introduction about supertrace identity and super integrable
equation hierarchy with self-consistent sources. In Section 3, we give a specific super integrable equation hierarchy with
self-consistent sources. In Section 4, the conservation laws for the super integrable equation hierarchy are obtained. Finally,-
some conclusions are given in Section 5.

2. The supertrace identity and super integrable equation hierarchy with self-consistent sources

We consider the following loop superalgebras [48] {5 =e(n)|i=1,..., 5}.

0o 2o 0o 210 om0 0
eem)=[41" 0 0, ee(m=|-2" 0 0|, esm)=(0 -2" 0
0 0 O 0 0 O 0 0 O )
0 0 A 0 0 O
esn)=[0 0 0|, esm=]0 0 2",
0o -2" 0 o0 0
along with the communicative operation
[e1(m),ex(n)] = —2es(m+n), [e1(m),es(n)] = —2e;(M +n), [e1(m), es(n)] = es(m+n), [e1(m),es(n)] = es(m +n),
lea(m). es(n)] = ~2e1(m + ), [ea(m). ea(n)] = —es(m +n), [ez(m). es(n)] = <m+n> le3(m). ea(m)] = ea(m +n),
[es(m),es(n)] = —es(m+n), [ea(m),ea(n)], = —(er(M+n) +ex(m+n)), [ea( ()], =es(m+n),
les(m),es(n)], =e;(m+n)—ex(m+n).

(2)
where G; = {e1(n),e;(n),es(n)} are even and G, = {e4(n),es(n)} are odd, [--] and [-,-]. denote the commutator and the
anticommutator.

Considering an auxiliary linear spectral problem

$1 b1
by | =UWA)| ¢ |,
b3/ ¢3
¢ H ®)
¢y | =VW,2)| ¢ |.
$3/, b3

where U(u,A) =e1(1) + Zleujem (0), {e;1(n),1 <j<4}C (~;, u=(uy,.. ‘,u4)T is a vector function, u; = uy(x,t), ¢; = ¢{x,t),

¢ix and ¢;; denote the partial derivatives with respect to x and t, 2 is a spectral parameter.
From the spectral problem (3), the compatibility condition gives to the zero curvature equation

U —Vy+[U,V]=0, 4=0. (4)
Solve zero curvature Eq. (4), we could get
u
=K<U7Ux7---7w>7 (5)

which is called super-evolution equation.
Considering the supertrace identity

o [ .y O
@ / Str(adyadau/g;v)dx =i El'str(adyadau/g;v). (6)

With the help of supertrace identity (6), if we could get a super Hamiltonian operator J and a super Hamiltonian function
H such that

6Hn+1 n:1727'-'7 (7)

ur =K(u) =J Su
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where

oHy 0Ho1 R 5 B
W_L Su =-..=L W, g— (5_111’”'7E7 n-‘l,2,.... (8)

Then Eq. (5) is posses a super-Hamiltonian equation. Thus, we called Eq. (5) has a super-Hamiltonian structure.
According to the Eq. (3), we consider a new auxiliary linear problem which is constructed with the help of loop superal-
gebra (1)

¢1j 4’1; 5 ¢1j
by | =UWL)| by | =2 we()| ¢y |, j=1,...,N,
i=1
5/ ¢35/ $3 9)
o o . &
by | =vawi| b | = | S| 6n | =1
¢3j tn b3 " ¢3
Based on the result in [49], we show that the following equation
SHy & ok
WJF;%@*O, (10)
where o; are constants. Eq. (10) determines a finite-dimensional invariant set for the flows (8).
For (9), it is known that
5/1j_1 '8U(U7Aj) _1 o .
7i_§5tr<5"j(57ui _§Str(%e¢]), i=1,...5 (11)

where Str denotes the supertrace of a matrix and

P1jbaj *‘Pfj P13
¥ = d)%j =i Doy | j=1...N. (12)
brjb3i —dij¢y O

From the Eqgs. (10) and (11), a kind of super Hamiltonian integrable equation hierarchy with self-consistent sources is pre-
sented as follows

N s,
wy — ot Hzﬂ, n=12... (13)

3. A super integrable equation hierarchy with self-consistent sources

Considering the following spectral problem based on loop superalgebra (1)

o,=Up, ¢, =Vo, (14)
where
U A+Uu; u3 c a+b d
U= A—1U —Uy us |, V= a-b —C e |, (15)
Uy —Us3 0 e —d 0

and

a= Z ani ™, b= Z bt ™, c= Z A", d= Z dn ™, e= Z emi ™. (16)

m=0 m=0 m=0 m=0 m=0

It must be pointed out that u3 and uy4 are fermi variables, in other words, usuy = —uqus,u? = u2 = 0.
Starting from the stationary zero curvature equation

Vi =1[V,U], (17)
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we have

(my = 2Usby — 2U1Cy — Usdyy + Ugep,

bux = 2Ux0y — 2Cmpq — Usdy — Ugeyy,

Cmx = 2ulam - 2bm+l + u4dm + Uz,

Apx = €my1 — Ugly — Usby — UsCry + Undi + Ur e,

emxy = Ami1 — U3y + Usby + UsChy — Uy dy — Uz

C():d() :E'():bo:O, ap = Mg, C1 = UMy, d] = U3My,

e = UMy, by =uymy, a=my, ¢ =um — %lemoa dy = usmy + UMy,
€2 = UsMy + Us Mg, by =uymy — %szmm a; = —%Uﬁmo + %u%mo + UgUzmp.

Note
n

+

=V = "(amei(n — m) + bpey(n — m) + cpes(n — m) + dpes(n — m) + eges(n —m)) = "V - V",

m=0

A direct calculation reads

- (vg"; + vg"g) + [vg"% U] = 2C111€5(0) + 2Dy 1€5(0) — ey 1€4(0) — dy,1e5(0).
Substituting it into the zero curvature equation

U=V [uv] <o,

we get a super integrable equation hierarchy

uq 0 -2 0 0 7bn+1
U 20 0 0| cu
U = - = JP,., = JLP,,
t Us 0 O 1 O _en+1 ] n+1 ] n
Us / 0 0 0 1 dn+1
where
2u10 ', —lo+2u 0y —lustud'us —lus+uid 'y
[— %6 — 2u28’1u2 —2U2871U1 %U4 — UZ671 Uy — %Ug, — U2871U3
Us 4+ 2us0 'y 2u40 Uy — s U40U4 — Uy U MUz +uy — 9

Us — 2”3871 U, —Uyg— 2U3871U1 —0—Uy — U3{971 Uy u; — U3{971 us
When we take n = 2, the hierarchy (22) can be reduced to the super equations:

1 2
Uy, = UMy — 5 UM + 3My — UpUdMy — 2UxU4Us My + UsliaxMg + Ugliz, Mg,
Ung, = UpdMy — JUpMo — UM + U UZMg — 2U4 UsU3 MY — UsllgyiMo — UslizcMg,

Usp, = UsMg 4 UsxMy — $ULUSMG — S U4UE Mg — S U4l Mg — L UstigMy — Uiz Mo — UgUz, Mo,
Usg, = UsMo + Usety — Jusudmo — LusuZmo + Jusuomo + Juslineimo + Uy Uao + UpUiscmg.

According to supertrace identity on Lie superalgebras, a direct calculation reads

Str(adyady,) = 6a, Str(advadﬁ> = —6b, Str(advad%> = 6, Str(advad%> = —6e, Str(advad%) = 6d.

Substituting the above formulae into the supertrace identity yields
8 ' 50 T
2 — v _ )
U (/ (6a)dx> ) 82) (—6b, 6¢, —6e, 6d)

Comparing the coefficient of 27" ~ ! yields

(./,(Ga"“> = (y — n)(—6b,, 6¢,, —6e,,6d,)".

0
ou
Therefore, we conclude that

_5Hn _ Qny2
Pn+1*5u> Hn*_/n+1dx-

This super integrable equation hierarchy (22) has the following super bi-Hamiltonian structure

2295

(18)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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oH, oH,_
=JPyy =] =M 5';1, n =0, (29)
where
-0+ 4112(97] Uy 4UZ87] Uy —Ug + ZUZ871 Uy us + 2U287] us
1 -1 -1 —1
M ZJL _ 4u,0 ui] J+ 41_,1118 Uq us + %fl]a Uy 7114:]% 2140 Uus (30)
—Uyg — 2U40 Uy —2U40 Up + U3 —Ug0 Uy + Uy —Ug0 U3 — Uy + 0

Us — 21.13071 u; —Uy — ZU387] U —-0—1Uy— l13(971 Uy u; — U387] us

Next, we will construct the super integrable equation hierarchy with self-consistent sources. Considering the linear
system

&1 b1 1 b1
by | =U| &y |, by | =V by |- (31)
3/ o3 3/, ¢

From Eq. (31), we set

oH, K 6
S i 32
su 4 ou’ (32)
Jj=1
and obtain the following %
Str(lP, ’TU]>
< '111,'11/] >+ < 'Pz,q/2>
. oU
iﬁ*i Str<lPJ "u2> B 2< lP],lPZ > (33)
moou o Str('I’j (flg) —2< ¥, ¥ > ’
st 2< lP], '{/3 >
5tr<‘l’j E)
where W1 = (... ¢w1)", (i=1,2,3).
According to (13), the super integrable equation hierarchy with self-consistent sources is proposed
15} —bn+1 <Y,V >+< ¥, ¥ >
u; Cni1 2 < lp], lpz >
U = = + . 34
! us J —€ni1 ] -2< Wz, ¥ > ( )
Us/ ¢ dni1 2<¥y,¥3>
For n = 2, we obtain the super integrable equation with self-consistent sources
N
Uyp, = UrxMy — UMy + U3Mg — UpUS Mg — 2UUpU4ls My + UsligxMo + Ugliz Ty — 4 gDy,
=1
N 2 N 2
Ung, = UgdMy — JUpMo — UM + U1 UM — 2U4 UsUs Mg — UsllayiMo — UslizcMg + 2> Oy +23 Dy,
j=1 j=1
(35)

N
Use, = UgeMo + UsxITly — 3U4USMo — 5 UgUfMg — 5 UslizyI Mo — 3UslixiTlo — UsxliaMo — Uy UseMo, 237 0o Dy,
j=1

N
Usg, = UsxIMo + UseMy — Jusudmo — Jusu2mg + Lusuoamo + L uattnmo + tyaxmo + Upizmg 2y @y;Ds;.
j=1

4. Conservation laws for the super integrable equation hierarchy
In the following, we will construct conservation laws of the super integrable equation hierarchy. Introducing two

variables

v,
F=g, C=w (36)

From Egs. (9) and (15), we have
Fy= 4 — 1ty — 2usF + usG — usFG — (A +up)F*, Gy = g — usF — G — (/. + u1)FG — u3 G2 (37)



Y.-H. Wang, Y. Chen/Commun Nonlinear Sci Numer Simulat 17 (2012) 2292-2298 2297
Expanding F and G in the power of /!
F=>fii?, G=> gi. (38)
j=0 =0
Substituting Eq. (38) into Eq. (37) and comparing the coefficients of the same power of 4, we obtain

1
fo=1, g,=0, fi=-u1—uy, & =us—us, fzZE(U%+U§+U1x+U2x)+U1u27
85 = Ujlis + Upllz + Usy — Uy, (39)

and the recursion formulas for f, and g, are given

n n n
fo=1, foa=3 <_fn‘x + 2upfp 4+ usg, —us Y figy i — 1 Y fifasi — Zfifnﬂ—i)s n=0,1,2,...,
i=0 i=0 i=1

(40)
n n n
8o = Ov 8ni1 = —8nx — u3fn — U8, —Us .Z(:)gign—i — U Z(:)fign—i - X;ﬁgn+l—iv n= O’ 1~, 27 cee
i=l i=l i=
It is easy to calculate that
3] 0
a(uz+(i+u1)F+uaG):—X(c+(a+b)F+dG), (41)
which is derived from
9 (/)l.x _ 0 (/)l,t
gy by @
where
a=/2my+img + (=3ud +3ud +usus)mo, b= Auymo — Jusmo + uymy, (43)
€ =JUpmg — ugemo +usmy,  d = Ausmg + Ugemo + usmy.
In order to obtain the conservation laws for super integrable hierarchy, we difine
0=1U; + (A+u;)F+u3G,0=c+ (a+b)F +dG. (44)

Then the Eq. (41) can be rewritten as o, = 0, which is just the formal definition of conservation laws. We expand ¢ and 0
as series in powers of 4 with the coefficients, which are called conserved densities and fluxes respectively

c=i+Y 07, 0=moi®+mii+> 67, (45)
j=0 j=0

where mg, m; are constants of integration.
With the help of Egs. (41), (43), (45), the recursion relation for ¢, and 0, are given

On=fon +Wifa+usg,, n=0,12,...,
On = mo[(— 313 +3u2 + ugus — I )fy + Urfast + favz + Usy + Usgoiq | + My (Unfy + fror +Usg,), n=0,1,2,...,

(46)
where f, and g, can be calculated from Eq. (40).
The first two conserved densities and fluxes are read
g9 =0,
0o = Mo (Usls — UglUs — UpUs + Usy) + MyUs,
o1 =33 —u?) + 1 (Uix + uz) + Usuls, (47)

01 = mo(— U3 — Urlalis + Uglox + 313 — JU3 Uy — Upllals + JU UF — Juatly + JUsUsy — 3Uglse — J UL — S U2
+lususy + Jusug) +my (=32 + 103 + L, + Juog + usuy).

The infinitely many conservation laws of Eq. (22) can be easily obtained into Eqs. (36)-(47), respectively.

5. Conclusions

Finding the integrable couplings of integrable systems is always an important part in soliton theory. With the help of
proper Lie superalgebra and supertrace identity, we can derive some significative super integrable equation hierarchies as
well as their Hamiltonian structures and bi-Hamiltonian structures. Based on these super integrable equation hierarchies,
the integrable couplings of the self-consistent sources can be obtained. In our work, a super integrable equation hierarchy
with self-consistent sources is obtained based on this idea. The conservation laws of the super integrable equation hierarchy
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are also obtained. It is important to note that the coupling terms of super integrable hierarchies involve fermi variables. In
other words, the parameters in the coupling terms are fermi variables which is different from the ordinary one.
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