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By means of the generalized direct method, we investigate the (2+1)-dimensional dispersive long
wave equations. A relationship is constructed between the new solutions and the old ones and we
obtain the full symmetry group of the (2+1)-dimensional dispersive long wave equations, which in-
cludes the Lie point symmetry group S and the discrete groups D. Some new forms of solutions are
obtained by selecting the form of the arbitrary functions, based on their relationship. We also find an
infinite number of conservation laws of the (2+1)-dimensional dispersive long wave equations.
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1. Introduction

Symmetry structure and the conservation law struc-
ture are two basic aspects in mathematical physics.
Symmetry group techniques provide one method to ob-
tain solutions of partial differential equations [1 – 4].
Since Sophus Lie set up the theory of Lie point sym-
metry group, a standard method had been widely used
to find Lie point symmetry algebras and groups for al-
most all the known integrable systems [1]. Recently,
a simple direct method presented by Clarkson and
Kruskal [2, 3] was used to find all the possible simi-
larity reductions of a nonlinear system without using
any group theory. Lou and Ma [4] modified their direct
method to find the generalized Lie and non-Lie sym-
metry groups for the well-known nonlinear equation.
The expressions of the exact finite transformations of
the Lie groups are much simpler than those obtained
via the standard approaches. Symmetries are infinitesi-
mal transformations of the fields under which all so-
lutions are mapped into solutions. If the symmetry
of the differential equation is obtained, we will know
the transformation structure of the equation. In some
cases, conservation laws express conservation of phys-
ical quantities. Conservation laws can be used in many
ways, such as to prove existence and uniqueness theo-
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rems, to derive shock conditions, and to check that nu-
merical methods are not producing spurious results (at
least qualitatively) [5]. Because of the importance of
the relationship between symmetries and conservation
laws [6], this paper studies the conservation laws using
the direct method [7]. Kara and Mahomed [6] have re-
cently established a close connection between conser-
vation laws of a differential equation and the Lie point
symmetries of the differential equation via the Lie-
Bäcklund operators. Using them, we can connect the
obtained conservation laws with the given symmetries.

In this paper, using the generalized direct method,
we investigate the (2+1)-dimensional dispersive long
wave (DLW) equations

uyt + vxx +
1
2
(u2)xy = 0,

vt +(uv + u + uxy)x = 0,
(1)

which were first obtained by Boiti et al. [8]. Equa-
tions (1) have been studied by many authors (see
e. g. [9 – 15]). Lou [9] gave a set of generalized sym-
metries by a simple constructible formula. In [10 – 13],
Tang et al. obtained a lot of localized coherent or
excitation structures such as the solitofs, dromions,
lumps, breathers, instantons, ring solitons, peakons,
compactons, localized chaotic, fractal patterns, and
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so on by means of the variable separation approach
and defined a general type of localized excitations,
folded solitary waves, and foldons. Zhang [14] ob-
tained multisoliton-like solutions by the Bäcklund
transformation. Authors of [15] obtained some exact
solutions expressed by the Jacobi elliptic functions
by using the F-expansion method and modified F-
expansion method. While [16] considered the symme-
try groups of the simpler formula of (1) by a method
to directly find finite symmetry transformation groups
and then symmetries of Lax integrable nonlinear phys-
ical systems.

This paper is arranged as follows: In section 2 we
get a relationship between the new solutions and the
old ones of the (2+1)-dimensional DLW equations by
using the generalized direct method. Taking a special
case, the symmetry of the DLW equations is obtained.
In section 3, some new solutions are given by using
the obtained relationship. Section 4 gives the infinite
number of conservation laws of the (2+1)-dimensional
DLW equations. Finally, some conclusions and discus-
sions are given in section 5.

2. Symmetry Group of the Dispersive Long
Wave Equations

Suppose that the solution of (1) has the following
form by using the generalized direct method [4]:

u(x,y, t) = α + βU(ξ ,η ,τ),
v(x,y, t) = φ + θV(ξ ,η ,τ),

(2)

where α = α(x,y,t), β = β (x,y,t), φ = φ(x,y,t), θ =
θ (x,y, t), ξ = ξ (x,y,t), η = η(x,y,t), and τ = τ(x,y, t)
are functions of x, y, and t to be determined by re-
quiring U(ξ ,η ,τ) and V (ξ ,η ,τ) to satisfy the dis-
persive long wave equations as u(x,y,t) and v(x,y, t)
under the transformation {u,x,y,t}→ {U,ξ ,η ,τ} and
{v,x,y, t}→ {V,ξ ,η ,τ}.

Restrict U and V to satisfy the same equations as (1),
i. e.

Uητ +Vξ ξ +
1
2
(U2)ξ η = 0,

Vτ +(UV +U +Uξ η)ξ = 0.

(3)

Substituting (2) with (3) into (1) and let the coefficients
of U , V and their derivatives be zero, we obtain some
equations to be solved. By solving these equations, we
have

ξ = δ1
√

δ2τt x + ξ0, α = −1
2

τtt

τt
x− δ1ξ0t√

δ2τt
,

β = δ1δ2
√

δ2τt , φ = −1 + δ1
√

δ2τt ηy,

θ = δ1
√

δ2τtηy, (4)
where η ≡ η(y), τ ≡ τ(t), and ξ0 ≡ ξ0(t) are arbitrary
functions, while δ1 and δ2 are determined by

δ1 = ±1, δ2 = ±1.

From the symmetry theorem we know that the Lie
point symmetry group S of the DLW equations corre-
sponds to δ1 = δ2 = 1. For the dispersive long wave
equations, the full symmetry group G is the product of
the usual Lie point symmetry group S and the discrete
group D

G = D⊗S, D≡ {I,R1,R2,R2
1},

where I is the identity transformation and

R1 : u(x,y, t) →−iu(ix,y, t) ,

v(x,y, t) → iv(ix,y, t) ,

R2 : u(x,y, t) → iu(−ix,y, t) ,
v(x,y, t) →−iv(−ix,y, t) .

If we set
η(y) = y + ε f (y), τ = t + εg(t), ξ0(t) = εh(t),
δ1 = 1, δ2 = 1,

with an infinitesimal parameter ε , where f (y), g(t),
and h(t) are arbitrary functions, then (2) can be written
as

u = U + εσ(U),
v = V + εσ(V).

Further we obtain the symmetry

σ(U) =
(

1
2

gtx + h(t)
)

Ux + f (y)Uy + g(t)Ut

+
1
2

gtU − 1
2

gttx−ht,

σ(V ) =
(

1
2

gtx + h(t)
)

Vx + f (y)Vy

+ g(t)Vt +
(

fy +
1
2

gt

)
V + fy +

1
2

gt .

(5)

The equivalent vector expression of the above symme-
try is

V =
(

1
2

gtx + h(t)
)

∂
∂x

+ f (y)
∂
∂y

+ g(t)
∂
∂t

−
(

1
2

gtU − 1
2

gttx−ht

)
∂

∂U

−
[(

fy +
1
2

gt

)
V + fy +

1
2

gt

]
∂

∂V
,

(6)

which was also obtained in [9].
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Fig. 1. Plot of v(x,y,t) with η(y) = sin(y), τ(t) = t, δ1 =
1, δ2 = 1, k = 1, l = 1, p = 1 at the time t = 0: Oscillated
dromions solution.

3. Solutions of the Dispersive Long Wave
Equations

In this section, we will use (2) to get the new solu-
tions of the DLW equations from the given one. In [15]
the authors gave the solution of the DLW equations as
follows:

u(x,y, t) = − p
k
±2k tanh(kx + ly + pt),

v(x,y, t) = 2klsech2(kx + ly + pt)−1.
(7)

Then, from (2) we can get the solution of the DLW
equations:

u(x,y, t) = −1
2

τtt

τt
x− δ1ξ0t√

δ2τt
+ δ1δ2

√
δ2τt

·
[
− p

k
±2k tanh

(
k(δ1

√
δ2τt x + ξ0)+ lη + pτ

)]
,

v(x,y, t) = −1 + δ1
√

δ2τtηy + δ1
√

δ2τt ηy

·
[

2klsech2
(

k(δ1
√

δ2τt x + ξ0)+ lη + pτ
)
−1

]
.

(8)

From our following figures analysis, we can see that
some new types of localized excitations, like oscillated
dromions, multi-dromions, breathers solutions, multi-
string soliton solutions or amplitude soliton solutions
are found by selecting appropriate functions as η(y)
and τ(t). This is because the solution (8) includes all
the group invariant solutions corresponding to the so-
lution (7).

Figures 1 – 6 exhibits plots of v(x,y,t) for different
examples. The solutions discussed in this paper can
not be obtained by ��� (MLVSA) and their shapes
do not change with time. However, you can see some

Fig. 2 Plot of v(x,y,t) with η(y) = tanh(y−3)+ tanh(y+3),
τ(t) = t, δ1 = 1, δ2 = 1, k = 1, l = 1, p = 1 at the time t = 0:
Two-dromions solution.

Fig. 3. Plot of v(x,y,t) with η(y) = exp(−y2)sin(y2), τ(t) =
t, δ1 = 1, δ2 = 1, k = 1, l = 1, p = 1 at the time t = 0 and
η(y) = tanh(y−3)+ tanh(−y−3), τ(t) = t, δ1 = 1, δ2 = 1,
k = 1, l = 1, p = 1 at the time t = 0: Breathers solutions.

interaction behaviours between the localized excita-
tions in other papers, e. g. [10, 11, 13].

4. Conservation Laws of the Dispersive Long
Wave Equations

Now we construct the following conservation laws
of (1):

DtT + DxX + DyY = 0, (9)

Administrator
在文本上注释
Here, it should be "the multi-linear variable separation approach" 
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Fig. 4. Plot of v(x,y,t) with η(y) = tanh(y− 6)+ tanh(y)+
tanh(y+6), τ(t) = t, δ1 = 1, δ2 = 1, k = 1, l = 1, p = 1 at the
time t = 0 and η(y) = tanh(−y+6)+tanh(y)+tanh(−y−6),
τ(t) = t, δ1 = 1, δ2 = 1, k = 1, l = 1, p = 1 at the time t = 0:
Three-dromions solution.

where X = X(x,y,t,u,v,ux,uy,ut ,vx,vy,vt ,uxx,uxy,uxt ,
uyy,uyt ,utt), Y =Y (x,y,t,u,v,ux,uy,ut ,vx,vy,vt ,uxx,uxy,
uxt ,uyy,uyt ,utt), and T = T (x,y,t,u,v,ux,uy,ut ,vx,vy,
vt ,uxx,uxy,uxt ,uyy,uyt ,utt ). By using the method
presented in [7] (the process is listed in Appendix), we
can have

X = [ f1(ux,uy)+ f2(uy)ut + f3(uy)x](uxyuyt −uxtuyy)

+ f4(y)uxy+[c1u + f11(v)]uyvtuyt − [ f2(uy)ux+ f3(uy)t

− f5(uy,ut)](uyyutt −u2
yt)+

[
c1v−

∫
f8(t)dt

]
u2

t uyy

+c5utvtuyt − ( ḟ8(t)y2 + 2 ḟ9(t)y + f10(t))u2
yuyy

+(c1u + f11(v))utvtuyy −2( f8(t)y + f9(t))uyutuyy

+
[ f12(uy)v

uy
− f23(y,t)− f24(u)− f25(u,uy)

+c3x− c4

]
utuyy − (c1u + f11(v))utvyuyt +

[ f12(uy)u
uy

+ f13(v)+ f14(v,uy)
]
vtuyy −

[∫
f23t(y,t)+ f27t(y, t)dy

− f6(y)x + f29(t)
]
uyuyy +

[
f7(y)x−

∫
f28t(y,t)dy

Fig. 5. Plot of v(x,y,t) with η(y) = am( y
100 ,0.0001), τ(t) =

t, δ1 = 1, δ2 = 1, k = 1, l = 1, p = 1 at the time t = 0: Multi-
string soliton solutions.

Fig. 6. Plot of v(x,y,t) with η(y) = sn( y
10 ,0.9), τ(t) = t, δ1 =

1, δ2 = 1, k = 1, l = 1, p = 1 at the time t = 0: Amplitude
soliton solutions.

− f26(t)
]
uyy −

[ f12(uy)u
uy

+ f13(v)+ f14(v,uy)
]
vyuyt

−
[
c2uy +

∫
f30y(x,y)dx−

∫
f23y(y, t)dt − f31(y)

+ f32(x,y, t)
]
utuyt +( f8(t)y + f9(t))u2

yuyt +
[

f24(u)

+ f25(u,uy)−
∫

f33y(x,y)dx− ḟ6(y)xt + f27(y, t)+ c3x

+c4

]
uyuyt − f12(uy)uytv +

[∫
f34(x)− f54y(x,y)dx

− ḟ7(y)xt + f28(y, t)− f39(x,y, t)− f40(y, t)
]
uyt −

[
c1v

−
∫

f8(t)dt +
1
2

c2

]
u2

yutt − (c1u + f11(v))uyvyutt

−c5utvyutt − f37(x,y)u2
t utt +

[∫
f23y(y, t)dt

−
∫

f30y(x,y)dx + f31(y)
]
uyutt +

[∫
f32y(x,y, t)dt

− f38(x,y)
]
ututt +

[∫
f39y(x,y, t)+ f40y(y, t)dt
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− f41(x,y)
]
utt +[ ḟ42(t)x + f43(y)]uuy +[ ḟ42(t)x

+ f43(y)]vx − [ ḟ42(t)x + f43(y)]vy +[ f44(x,t)u

+ f45(x, t)]uy − [ f46(x,y)+ f47(y)]vvt +[ f42(t)+ ḟ43(y)t

− f48(x,y)+ f49(x)− f50(y)]vt + f4(y)uv + f4(y)u

+ f51(y, t)−
∫

f52t(x,y,t)+ f53y(x,y,t)dx,

Y = −[ f1(ux,uy)+ f2(uy)ut + f3(uy)x](uxxuyt −uxtuxy)

+2( f8(t)y + f9(t))uyutuxy +[ f2(uy)ux + f3(uy)t

− f5(uy,ut)](uxyutt −uxtuyt)−
[
c1v−

∫
f8(t)dt

]
u2

t uxy

+( ḟ8(t)y2 + 2 ḟ9(t)y + f10(t))u2
yuxy +

[
f63(x)ux − c1v

+c2 + 2
∫

f8(t)dt
]
uyutuxt − (c1u + f11(v))utvtuxy

+
[

f23(y, t)− f12(uy)v
uy

− c3x + c4 + f24(u)

+ f25(u,uy)
]
utuxy +

[
− f6(y)x +

∫
f23t(y,t)

+ f27t(y, t)dy + f29(t)
]
uyuxy +[ f8(t)y + f9(t)]u2

yuxt

−
[ f12(uy)u

uy
+ f13(v)+ f14(v,uy)

]
vtuxy +

[
f7(y)x

+
∫

f28t(y, t)dy+ f26(t)
]
uxy+[ f32(x,y,t)+ f58(x)]utuxt

−c5utvtuxt − [c1u + f11(v)]uyvtuxt + f23(y,t)uyuxt

+
1
2

f56(x)u2
t uxt +[ f61(x)+ f62(x,ut)]uxuxt +[ f39(x,y, t)

+ f40(y, t)]uxt +[c1v + c2]uxutuyt +[c1u + f11(v)]utvxuyt

+
[ f12(uy)u

uy
+ f13(v)+ f14(v,uy)

]
vxuyt +

1
2

f63(x)u2
xutuyt

+[ f30(x,y)+ c3t]utuyt +
[ f12(uy)v

uy
+ c3x− c4 − f24(u)

− f25(u,uy)
]
uxuyt +[ f6(y)t + f33(x,y)]uyuyt +[ f54(x,y)

+ f7(y)t]uyt +
[1

2
f63(x)uy +

1
2

f62ut (x,ut)
]
u2

xutt

+[c1v + c2]uxuyutt + f56(x)uxututt + f58(x)uxutt +[c1u

+ f11(v)]uyvxutt + c5utvxutt +[ f30(x,y)+ c3t]uyutt

+
[∫

f38x(x,y)dy−
∫

f32x(x,y,t)dt + f65(x)
]
ututt

+
[∫

f37x(x,y)dy + f64(x)
]
u2

t utt +
[

f34(x)t

−
∫

f39x(x,y, t)dt +
∫

f41x(x,y)dy + f66(x)
]
utt

−[ f44(x, t)u + f45(x,t)]ux +
[∫

f46x(x,y)dy

− f69(x)
]
vvt +( ḟ42(t)x + f43(y))vx +

[
f49(x)+ f42(t)

+
∫

f44x(x, t)dt
]
uut +

[
f67(x)v +

∫
f45x(x, t)dt

+ ḟ42(t)x + f68(x)
]
ut +

[
f67(x)u +

∫
f48x(x,y)

− ḟ49(x)dy− f49(x)− f42(t)− f70(x)
]
vt + f53(x,y, t),

T = [ f1(ux,uy)+ f2(uy)ut + f3(uy)x](uxxuyy −u2
xy)

+[c1u + f11(v)]vyutuxy − [ f2(uy)ux + f3(uy)t

− f5(uy,ut)](uxyuyt −uyyuxt)+
[
c1v−2

∫
f8(t)dt

− f63(x)ux

]
uyutuxy −

[∫
f23y(y, t)dt −

∫
f30y(x,y)dx

+ f31(y)+ f58(x)
]
utuxy + 2( f8(t)y + f9(t))u2

yuxy

+
[ f12(uy)u

uy
+ f13(v)+ f14(v,uy)

]
vyuxy +[ f60(x,y, t,u)

− f61(x)− f62(x,ut)]uxuxy +
[

ḟ6(y)xt − f23(y, t)

− f24(u)− f25(u,uy)− f27(y, t)+
∫

f33y(x,y)dx− c3x

−c4

]
uyuxy − f60(x,y, t,u)uxuxy +

[
ḟ7(y)xt − f28(y, t)

−
∫

f34(x)− f54y(x,y)dx + f12(uy)v
]
uxy

−1
2

f56(x)u2
t uxy +

[
c1v−

∫
f8(t)dt +

1
2

c2

]
u2

yuxt

+[c1u + f11(v)]uyvyuxt + f37(x,y)u2
t uxt

+
[∫

f30y(x,y)dx−
∫

f23y(y, t)dt − f31(y)
]
uyuxt

−
[∫

f32y(x,y, t)dt − f38(x,y)
]
utuxt +

[
f41(x,y)

−
∫

f39y(x,y, t)+ f40y(y, t)dt
]
uxt −

[ f12(uy)u
uy

+ f13(v)

+ f14(v,uy)
]
vxuyy + c5vyutuxt − [c1u + f11(v)]utvxuyy

−1
2

f63(x)u2
xutuyy − [c1v + f16(x,y, t,u)]uxutuyy

+[ f16(x,y, t,u)− c2]uxutuyy −
[ f12(uy)v

uy
− f24(u)

− f25(u,uy)+ c3x− c4

]
uxuyy − [ f6(y)t + f33(x,y)]uyuyy

−[c3t + f30(x,y)]utuyy − [ f54(x,y)+ f7(y)t]uyy

−1
2

f63(x)u2
xuyuyt − 1

2
f62ut (x,ut)u2

xuyt

−(c1v + c2)uxuyuyt − f56(x)uxutuyt − f58(x)uxuyt

−[c1u + f11(v)]uyvxuyt − c5utvxuyt −
[∫

f37x(x,y)dy
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+ f64(x)
]
u2

t uyt − f67(x)vuy − [ f30(x,y)+ c3t]uyuyt

−
[∫

f38x(x,y)dy−
∫

f32x(x,y,t)dt + f65(x)
]
utuyt

−
[

f34(x)t −
∫

f39x(x,y,t)dt +
∫

f41x(x,y)dy

+ f66(x)
]
uyt +[ f46(x,y)+ f47(y)]vvx −

[
f49(x)

+ f42(t)+
∫

f44x(x,t)dt
]
uuy +

[
f43(y)−

∫
f45x(x, t)dt

− f68(x)
]
uy +[ f48(x,y)− f49(x)− f42(t)− ḟ43(y)t

+ f50(y)]vx −
[∫

f46x(x,y)dy− f69(x)
]
vvy

+
[
− f67(x)u−

∫
f48x(x,y)− ḟ49(x)dy+ f49(x)

+ f42(t)+ f70(x)
]
vy + f4(y)v + f52(x,y,t), (10)

where fi (i = 1,2, . . . ,70) are arbitrary functions and ci
(i = 1,2, . . . ,5) are arbitrary constants, and we have

DtT + DxX + DyY =
( f42t(t)x + f43(y))(uyt + vxx + uuxy + uxuy)
+ f4(y)(vt + ux + uxv + uvx + uxxy) = 0.

It shows that the vector (T,X ,Y ) is a conser-
vation vector of the DLW equations. By (1.8)
in [7], Vh = h(t) ∂

∂x
+ ht

∂
∂U

is associated with (10)
if c1 = c2 = c3 = c5 = 0, f2(uy) = f3(uy) =
f5(uy,ut) = f6(y) = f7(y) = f8(t) = f9(t) = f11(v) =
f12(uy) = f23(y,t) = f30(x,y) = f31(y) = f32(x,y, t) =
f33(x,y) = f34(x) = f37(x,y) = f38(x,y) = f41(x,y) =
f44(x, t) = f54(x,y) = f56(x) = f58(x) = f63(x) =
f64(x) = f65(x) = f66(x) = f67(x) = f68(x) = f69(x) =
f70(x) = 0 and f25(u,uy) = − f24(u)− c4, f39(x,y, t) =
− f40(y, t), f42(t) = −a1, f45(x,t) = f45(t), f46(x,y) =
f46(y), f48(x,y) = f48(y), f49(x) = a1, f52(x,y, t) =
f4(y), f62(x,ut) = − f61(x), f53(x,y,t) = f53(t), where
a1 is an arbitrary constant. Giving the associated vec-
tor of the symmetry of (1), we can connect it with (10)
by (1.8) in [7].

5. Conclusion

In summary, the relationship is set up between the
new solutions and the old ones of the DLW equations,
and the symmetry of the DLW equations is obtained
by means of the generalized direct method. Both the
Lie point symmetry groups and the non-Lie symmetry

groups are obtained without using any group theory.
The Lie symmetry groups obtained via traditional Lie
approaches are only special cases. Based on a given
solution, one can construct another new one with the
help of the obtained relationship by selecting the form
of the arbitrary functions. As results, rich solutions of
the DLW equations are constructed which contain os-
cillated dromions, multi-dromions, breathers solutions,
multi-string soliton solutions, and amplitude soliton
solutions. To illustrate the properties of obtained solu-
tions, some figures are given. At last, conservation laws
of the (2+1)-dimensional DLW equations are given by
using the direct method.
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Appendix: Process for finding T , X and Y

If u and v is a solution of (1), the conserved form (9)
along u and v with the help of (1) separates by the high-
est derivative terms in u and v as

uttt : Tutt = 0, uytt : Tuyt +Yutt = 0,

uyyt : Tuyy +Yuyt = 0, uyyy : Yuyy = 0,

uxtt : Tuxt + Xutt = 0, uxyt : Tuxy + Xuyt +Yuxt = 0,

uxyy : Yuxy + Xuyy = 0, uxxt : Tuxx + Xuxt = 0,

uxxx : Xuxx = 0, vtt : Tvt = 0,

vyt : Tvy +Yvt = 0, vyy : Yvy = 0,

vxt : Tvx + Xvt = 0, vxy : Yvx + Xvy = 0,

vxx : −Tuy −Yut + Xvx = 0,

where we substitute uyt = −vxx − uuxy − uxuy into (9).
Solving the above equations and substituting the solu-
tions with uxxy = −vt −ux −uxv−uvx into (9), we can
get another equation. Separating the equation by the
lower derivative terms, one get other equations. Solv-
ing all the equations, we can get the form of T , X ,
and Y .
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