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a b s t r a c t

A study of high-order soliton matrices for Sasa–Satsuma equation in the framework
of the Riemann–Hilbert problem approach is presented. Through a standard
dressing procedure, soliton matrices for simple zeros and elementary high-order
zeros in the Riemann–Hilbert problem for Sasa–Satsuma equation are constructed,
respectively. It is noted that pairs of zeros are simultaneously tackled in the
situation of the high-order zeros, which is different from other NLS-type equation.
Furthermore, the generalized Darboux transformation for Sasa–Satsuma equation
is also presented. Moreover, collision dynamics along with the asymptotic behavior
for the two-solitons are analyzed, and long time asymptotic estimations for the
high-order one-soliton are concretely calculated. In this case, two double-humped
solitons with nearly equal velocities and amplitudes can be observed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

It is known to us all that several important nonlinear partial differential equations (PDEs) in mathematical
physics are integrable with rich mathematical structures and extensive physics applications. In particular, it
is always possible to find explicit solutions to these equations, such as they often have multi-soliton solutions.
Among these integral PDEs, the nonlinear Schrödinger (NLS) equation:

iqT + 1
2qXX + |q|2q = 0, (1)

has been considered as the most important mathematical model. Eq. (1) has various applications in a wide
range of physical systems such as water waves [1,2], nonlinear optics [3,4], solid-state physics and plasma
physics [5]. This equation can be used to model optical solitons in fibers. However, several phenomena
observed in the experiment cannot be explained by NLS equation, as the short soliton pulses get shorter,
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some additional effects become important. In order to explain such phenomena, Kodama and Hasegawa [6,7]
proposed a high-order NLS equation

iqT + 1
2qXX + |q|2q + iε

[
β1qXXX + β2|q|2qX + β3q(|q|2)X

]
= 0, ε = ±1. (2)

This equation has clear and important physical significance. It was proposed [6,7] to describe the
propagation of femtosecond pulses in optical fibers, or to model the propagation and interaction of the
ultrashort pulses in the sub-picosecond or femtosecond regime. In this equation, u represents the slowly
varying envelope of the electric field, while X and T are the normalized distance along the direction of
the propagation and retarded time, respectively. β1, β2 and β3 are the real parameters with respect to the
third-order dispersion, self-steepening and stimulated Raman scattering, respectively.

In general, the integral PDEs can be analyzed by means of inverse scattering transformation (IST) method.
However, Eq. (2) is not completely integrable unless certain restrictions are imposed on β1, β2 and β3. Until
now, we have the following four integrable cases:

The Kaup–Newell [8] derivative NLS equation(β1 : β2 : β3 = 0 : 1 : 1),
The derivative NLS equation-type II [9](β1 : β2 : β3 = 0 : 1 : 0),
The Hirota [10] NLS equation(β1 : β2 : β3 = 1 : 6 : 0),
The Sasa–Satsuma [11] NLS equation(β1 : β2 : β3 = 1 : 6 : 3).

In particular, Ref. ¡ce:cross-refs refid=”b8 b9 b10 b11”¿[11]¡/ce:cross-refs¿ considers the following
equation:

iqT + 1
2qXX + |q|2q + iε

[
qXXX + 6|q|2qX + 3q(|q|2)X

]
= 0, (3)

with the variable transformations having been introduced:

u(x, t) = q(X,T ) exp
{

−i
6ε

(
X − T

18ε

)}
, t = T, x = X − T

12ε .

Then Eq. (3) can be reduced to a complex modified KdV-type equation:

ut + ε
{
uxxx + 6|u|2ux + 3u(|u|2)x

}
= 0. (4)

Eq. (4) is generally known as the Sasa–Satsuma (S–S) equation. Two interesting features about this
equation are that its solitons are embedded inside the continuous spectrum of the equation [12], and their
shapes can be double humped for a wide range of soliton parameters [11]. The initial value problem for the
local Sasa–Satsuma equation has been solved earlier using inverse scattering transform. The inverse problem
is solved via the Gel’fand–Levitan–Marchenko (GLM) equation and the N-soliton solution is constructed [11].
The squared eigenfunctions for S–S equation were calculated [12], and the initial–boundary value (IBV)
problem for S–S equation on the half line was also investigated via the unified transform method [13]. Besides,
the Hirota’s bilinear approach [14] and the Darboux transformation [15] were also imposed separately on
this equation to obtain several types of soliton solutions. Moreover, rogue wave solutions for this equation
were also investigated [16–19].

The inverse scattering method is a powerful tool to solve the initial value problem for nonlinear integrable
PDEs, and it is the poles of the reflection coefficient, or the zeros of the Riemann–Hilbert problem (RHP),
that give rise to the soliton solutions. For the KdV equation, because the Lax pair is self-adjoint operator, the
discrete spectrum only produce simple poles. However, for the focusing NLS equation, the Lax operator is no
longer self adjoint, thus it can produce multiple poles, which leads to the high-order soliton solution. Being
an important kind of exact solution of the NLS-type equation, the high-order soliton has wide applications, it
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can describe a weak bound state of solitons and may appear in the study of train propagation of solitons with
nearly equal velocities and amplitudes but having a particular chirp [20]. Soliton matrices corresponding
to arbitrary number of high-order zeros for the RHP with arbitrary matrix dimension were derived for
integrable nonlinear equations [21,22]. The high-order soliton formula of Landau–Lifshitz (L–L) equation was
constructed through the generalized Darboux transformation combined with inverse scattering method [23].

In this article, we study general soliton matrices for S–S equation via the RHP approach, which
corresponds to simple zeros and high-order zeros of RHP. N-soliton solution for S–S equation was already
given via different approaches [11,24]. The major procedures of the RHP approach are inherited from the idea
proposed in [21]. Owing to the symmetry properties of Jost solution and scattering data, the corresponding
zeros in the RHP for S–S equation appear in pairs. In the case of simple zeros, we construct the soliton
matrices for S–S equation via the RHP formulation along with dressing procedure [25–28]. Besides, we give
the form of DT for S–S equation via a rigorous proof. The properties for one-soliton are studied while the
collision dynamics for two-solitons are further analyzed. In the case of the elementary high-order zeros, the
high-order soliton matrices for S–S equation are derived and the asymptotic estimations for the high-order
one-soliton solution are calculated. An interesting novel phenomenon for this solution is the observation of
two double-humped solitons with nearly equal velocities and amplitudes, which indicates more sophisticated
structures and more physical importance for this equation.

This paper is organized as follows. In Section 2, the inverse scattering theory is established for the
3 × 3 spectral problem, and the corresponding matrix Riemann–Hilbert problem is formulated. In Section
3, the N-soliton formula for S–S equation is derived by considering the simple zeros in the RHP. Then the
Darboux transformation is naturally constructed with a proof on its vitality. In Section 4, the high-order
soliton matrices and the generalized Darboux transformation is constructed and the explicit high-order
N-soliton formula is obtained, which corresponds to the elementary high-order zeros in the RHP. The final
section contains some remarks and discussions on the nonlocal deformation of local S–S equation.

2. Inverse scattering theory for Sasa–Satsuma equation

In this section, we consider the scattering and inverse scattering problem for Sasa–Satsuma equation.
Here, we consider the focusing case and take ε = 1 in Eq. (4).

2.1. Scattering theory of the spectral problem

Considering the following Sasa–Satsuma equation

ut + uxxx + 6|u|2ux + 3u(|u|2)x = 0, (x, t ∈ R) (5)

which is the compatibility condition of the following spectral problem [11] :

Φx = UΦ, Φt = V Φ, (6)

with 3 × 3 matrices U and V in the forms of:

U = −ikσ3 +Q,

V = −4iεk3σ3 + V1,

where Q and V1 are matrix functions, σ3 = diag(1, 1,−1),

Q =

⎛⎝ 0 0 u
0 0 u

−u −u 0

⎞⎠ (7)
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is the matrix of potential u = u(x, t), the overline “ ” stands complex conjugation, k is the spectral
parameter, and V1 has the form:

V1 = k2V
(2)

1 + k1V
(1)

1 + V
(0)

1 ,

V
(2)

1 = 4Q,V (1)
1 = 2iσ3(Qx −Q2),

V
(0)

1 = −4|u|2Q−Qxx + [Qx, Q].

The scattering problem is the spatial part of system (6), i.e.

(−∂x +Q)Ψ = ikσ3Ψ . (8)

Supposing u(x) = u(x, 0) decays to zero sufficiently fast when |x| → ∞.
More precisely, u(x, t) belong to the weighted Sobolev space H1

1 (R):

H1
1 (R) =

{
f(x) | f, fx, xf ∈ L2(R)

}
,

so that the direct problem can be well-posed.
Introducing a new matrix function:

J(x, t) = ΨE−1
1 , E1 = e−ikσ3x−4ik3σ3t, (9)

E1 is a solution of spectral equation (6) at x → ±∞, then spectral problem (6) becomes:

Jx = −ik[σ3, J ] +QJ, (10a)
Jt = −4ik3[σ3, J ] + V1J, (10b)

where [ , ] is the common commutator. Introducing the matrix Jost solutions J±(x, k) of Eq. (10a) with the
asymptotic boundary condition:

J±(x, k) → I, when x → ±∞. (11)

Here, I is the 3 × 3 unit matrix, it is noted that Jost solutions with condition (11) solve the following
Volterra type integral equations:

J±(x, k) = I +
∫ x

±∞
dye−ikσ3(x−y)Q(y)J±(y, k)eikσ3(x−y). (12)

Let J [k]
± be the kth columns of matrices J±, then J± can be divided into J± = (J [1]

± , J
[2]
± , J

[3]
± ). The

properties of the Jost solution J±(x, k) can be summarized as the following:

Properties 1. Supposing Q ∈ L1(R), then solution
(
J

[1]
− , J

[2]
− , J

[3]
+

)
is analytic in C+ = {k|Imk > 0},

while
(
J

[1]
+ , J

[2]
+ , J

[3]
−

)
is analytic in C− = {k|Imk < 0}. And they are all continuous on the real line.

Proof. From the integral equation (12), we have

J
[1]
− (x; k) =

⎛⎝ 1
0
0

⎞⎠ +
∫ x

±∞

⎛⎝ 1 0 0
0 1 0
0 0 e2ik(x−y)

⎞⎠Q(y)J [1]
− (y; k)dy. (13)

Making an estimation from equation (13),

|J [1]
− (x; k)| ≤ 1 +

∫ x

−∞
|Q(y) ∥ J [1]

− (y; k)|dy. (14)
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Introducing the following series:

J
[1]
− (x; k) = g0 +

+∞∑
n=1

gn(x; k), (15)

where,

g0 =

⎛⎝ 1
0
0

⎞⎠ , gk+1 =
∫ x

±∞

⎛⎝ 1 0 0
0 1 0
0 0 e2ik(x−y)

⎞⎠Q(y)gk(y; k)dy,

it can be seen that
|g1(x; k)| ≤

∫ x

−∞
|Q(y)|dy,

then it follows that
|gn(x; k)| ≤ 1

n!

(∫ x

−∞
|Q(y)|dy

)n

.

Hence we have the estimation

|J [1]
− (x; k)| ≤

+∞∑
n=0

1
n!

(∫ x

−∞
|Q(y)|dy

)n

= exp
(∫ x

−∞
|Q(y)|dy

)
.

The above estimate implies that series (15) converges uniformly in C+, so that solution J
[1]
− is analytical

in the upper half plane and can be continuously extended to the real line. Besides, the uniqueness of the
solution can be proved by inequality (14) with the Gronwall inequality. Same results can be also obtained
for solution J

[1]
+ , J

[2]
± , J

[3]
± . This completes the proof. □

Being the solutions of spectral problem (2), matrix function J−E and J+E are linearly interconnected
by the 3 × 3 scattering matrix S(k):

J−(x, k)E = J+(x, k)ES(k), for k ∈ R, (16)

where, E = −ikxσ3, and S(k) = (sij)3×3. It is noted that s11(k), s12(k), s21(k) and s22(k) can be analytical
continuation to upper half plane C+, and s33(k) allows analytical extension to C−. Other elements in S(k)
may not be well defined for k ∈ C− ∪ C+.

In fact, the symmetry properties for the Jost solution and scattering matrix have already been given
in [12], so we just revisited them again and listed these results in the following:

Firstly, the Jost solutions satisfy the involution property:

J†
±(x, k) = J−1

± (x, k). (17)

Secondly, the Jost solution has another important symmetry:

J±(x, k) = σJ±(x,−k)σ, σ =

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ . (18)

Next, it is naturally obtained from relation (16) that the scattering matrix S(k) obeys the same symmetric
properties

S†(k) = S−1(k), S(−k) = σS(k)σ. (19)

Some relations can be obtained from (19), which will play an important role in our later analysis.
In order to construct the Riemann–Hilbert problem, we define the matrix function

Φ+(x, k) =
(
J

[1]
− , J

[2]
− , J

[3]
+

)
. (20)
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It can be shown from integral equation (12) that the large-k asymptotic behavior is

Φ+(x, k) → I, as k → ∞ in C+, (21)

By the involution property, we can define the analytic counterpart of function Φ+(x, k) in C−. Let (J−1
± )[k]

be the kth row of J−1
± :

J−1
± =

⎛⎝ (J−1
± )[1]

(J−1
± )[2]

(J−1
± )[3]

⎞⎠ .

then we define

Φ−1
− (x, k) ≜ Φ†

+(x, k) =

⎛⎝ (J−1
− )[1]

(J−1
− )[2]

(J−1
+ )[3]

⎞⎠ , (22)

which is analytic in C−, and the large-k asymptotic behavior for this function is

Φ−1
− (x, k) → I, as k → ∞ in C−. (23)

2.2. Matrix Riemann-Hilbert problem

In this section, we construct the Riemann–Hilbert problem, it is noted that function Φ+(x, k) can be
expressed in terms of the Jost functions and elements of the scattering matrix on the line:

Φ+(x, k) = J+ES+E
−1, where S+ =

⎛⎝ s11 s12 0
s21 s22 0
s31 s32 1

⎞⎠ , k ∈ R. (24)

Similarly, by relation (16) we have:

Φ+(x, k) = J−ES−E
−1, where S− =

⎛⎝ 1 0 r13
0 1 r23
0 0 r33

⎞⎠ , k ∈ R. (25)

Furthermore, by the involution property, when k is on the real axis:

Φ−1
− (x, k) = Φ†

+(x, k) = ES†
−E

−1J−1
− (x, k); (26)

or, we can directly obtain from relation J−1
+ = ESE−1J−1

− that:

Φ−1
− (x, k) = E

⎛⎝ 1 0 0
0 1 0
s13 s23 s33

⎞⎠E−1J−1
− (x, k).

Combining (24) with (26) we have:

Φ−1
− Φ+(x, k) = G = EG0(k)E−1, Imk = 0,

where,

G0(k) ≡ S†
+S+ =

⎛⎝ 1 0 s31
0 1 s32
s31 s32 1

⎞⎠ , k ∈ R,

Thus, we formulated a local matrix RH problem on the real line. Here, the “local” RH problem involves the
determination of a function analytic in given sectors of the complex plane, from the knowledge of the jumps
of this function across the boundaries of the given sectors. On the contrary, in the case of a “non-local” RH
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problem, a function “loses” its analyticity only on certain contours, or, in the case of the ∂̄ problem, the
function loses its analyticity in a certain two-dimensional domain of the complex plane [29].

Firstly, we consider the regular Riemann–Hilbert problem, i.e.: detΦ−1
− (x, k) = r33(k) = s33(k) ̸= 0

and detΦ+(x, k) = r33(k) ̸= 0. By the Plemelj–Sokhotski Formula, the unique solution Φ+(x, k) of the RH
problem can be expressed in terms of its boundary values on the contour Γ with the help of Cauchy-type
integrals:

Φ(x, k) = I + 1
2πi

∫
Γ

Φ−(x, ξ)Ĝ(ξ)
ξ − k

dξ, k ∈ C+ ∪ C−,

where, Ĝ(ξ) = G(ξ) − I , and Φ−(x, k) solves the integral equation:

Φ−(x, k) = I + lim
k̃→k−

1
2πi

∫
Γ

Φ−(x, k′)Ĝ(k′)
k′ − k̃

dk′, k ∈ R,

and k̃ → k− means the limit taken in C−.
Next, we consider the Riemann–Hilbert problem with finite simple zeros. From the symmetry condition

of S(k), we can suppose finite number of zeros for r33(k) are
{
kj , −kj ∈ C+,

}N

j=1, and zeros for s33(k) are{
−kj , kj ∈ C−,

}N

j=1. In this situation, both ker(Φ+(kj)) and ker(Φ−1
− (kj)) are spanned by one-dimensional

column vector |vj⟩ and row vector ⟨vj |, respectively. In other words, the geometric multiplicity for these two
matrices is one.

Now we construct a matrix function which could remove all the zeros of this RH problem. For this purpose,
we introduce the rational matrix function:

Tj =
(
I + kj − kj

k + kj
P−j∗

) (
I + kj − kj

k − kj

Pj

)
, (27)

and its inverse matrix:
T−1

j =
(
I + kj − kj

k − kj
Pj

) (
I + kj − kj

k + kj

P−j∗

)
, (28)

where Pj and P−j∗ are both rank one projectors:

Pj = |vj⟩⟨vj |
⟨vj |vj⟩

, |vi⟩ ∈ Ker
(
Φ+T

−1
1 · · ·T−1

i−1(ki)
)
, ⟨vj | = |vj⟩†,

P−j∗ = |v−j∗⟩⟨v−j∗ |
⟨v−j∗ |v−j∗⟩

, |v−j∗⟩ ∈ Ker
(
Φ+T

−1
1 · · ·T−1

i−1χ
−1
i (−ki)

)
, ⟨v−j∗ | = |v−j∗⟩†.

Therefore, if one is introducing the matrix function:

Γ = TNTN−1 · · ·T1,

then Γ (x, k) cancels all the zeros of Φ±, and the analytic solutions can be represented as:

Φ+ = ϕ+Γ , Φ−1
− = Γ−1ϕ−1

− .

Here, ϕ+ and ϕ−1
− are meromorphic 3 × 3 matrix functions in C+ and C−, respectively, with finite number

of poles and specified residues. Therefore, all the zeros of Riemann–Hilbert problem have been eliminated
and we can formulate a regular RH problem:

ϕ−1
− (x, k)ϕ+(x, k) = Γ (x, k)EG0(k)E−1Γ−1(x, k), (29)

with boundary condition:

ϕ±(x, k) = Φ±(x, k)Γ−1(x, k) −→ I, as k → ∞. (30)
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2.3. The inverse problem

In this section, we attempt to recover the revelent potential function u(x, t), u(x, t) from the Jost solutions.
In fact, this inverse problem can be solved by expanding the related Jost function Φ+(x, k) as k → ∞, i.e.:

Φ+(x, k) = I + Φ
(1)
+ (x) 1

k
+ Φ

(2)
+ (x) 1

k2 + O(1/k3), k ∼ ∞.

Substituting this expansion into the spectral equation (10a) and comparing the coefficients with the equal
powers of spectral parameter k, we obtain:

k0 : Q = i[σ3,Φ
(1)
+ ]. (31)

k−1 : ∂xΦ
(1)
+ = −i[σ3,Φ

(2)
+ ] +QΦ

(1)
+ . (32)

The first equation gives us the reconstruction formula for the potential function, and the second one is
useful in the estimation of the leading-order asymptotic expansion, which was calculated in Ref. [12].

Therefore, in order to solve Sasa–Satsuma equation, we need to find the specified analytic solution
Φ+(x, k), so that potential matrix can be reconstructed from leading term Φ

(1)
+ (x).

2.4. Time evolution of scattering data

In this section, we consider the scattering data evolution. In the above discussion, we often omit the time
variable t, actually, it should be added. The scattering relation (16) becomes:

J−(x, t, k)E = J+(x, t, k)ES(k; t).

Noticing that J− must satisfy the spectral Eq. (10b), i.e.:

J−,t = −4ik3[σ3, J−] + V1J−. (33)

Then we can show (
E−1

1 J−E1
)

t
= E−1

1 V1J−E1. (34)

Since u(x, t) ∈ H1,1, we have V1 → 0 as |x| → ∞. So, evaluating (34) when x → +∞ we obtain:

lim
x→+∞

(
E−1

1 J+ES(k; t)E−1E1
)

t
= 0,

which leads (
e4ik3tσ3S(k; t)e−4ik3tσ3

)
t

= 0.

Specifically, we have:

s11,t = s12,t = s21,t = s22,t = s33,t = 0.
s13(t; k) = s13(0; k)e−8ik3t; s23(t; k) = s23(0; k)e−8ik3t;
s31(t; k) = s31(0; k)e−8ik3t; s32(t; k) = s32(0; k)e−8ik3t.

Then the Riemann–Hilbert problem becomes

Φ−1
− Φ+ = G(x, t; k) = E1

⎛⎝ 1 0 r13(0; k)
0 1 r23(0; k)

s31(0; k) s32(0; k) 1

⎞⎠E−1
1 , k ∈ R,

with the boundary condition,
Φ±(x, k) −→ I, as k → ∞.
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Furthermore, after some calculation, we find that J+(x, t, k) also satisfies Eq. (10b):

J+,t = −4ik3[σ3, J+] + V1J+.

Therefore, the analytic matrix functions Φ±(x, k) indeed solve the temporal part of the spectral equation,
and the scattering data needed to solve this RH problem and reconstruct the potential matrix are:{
s31(k; t), s32(k; t), {±kj ,±kj}N

j=1, |vj⟩
}
.

So far, the inverse scattering transform for Sasa–Satsuma equation has been completed.

3. N-soliton solutions

Now we prepare to construct the N-soliton solutions formula for Sasa–Satsuma equation. It is well known
that the soliton solutions correspond to the Reflectionless potential, which means the vanishing of scattering
coefficients, i.e.: s31 = s32 = 0. Then jump matrix G(x, t; k) becomes I, and we intend to solve the RH
problem:

ϕ−1
− (x, k)ϕ+(x, k) = I, k ∈ R,

with boundary condition:
ϕ±(x, k) −→ I, as k → ∞.

Without loss of generality, we can assume a trivial solution for this RH problem is: ϕ± = I. As a result,
we have Φ+ = Γ , and matrix Γ is called the “Dressing” factor. The asymptotic expansion for the dressing
matrix at k = ∞ is:

Γ (x, t; k) = I + Γ (1)(x, t) 1
k

+ Γ (2)(x, t) 1
k2 + O( 1

k3 ), (35)

and now the reconstruction formula (31) can be written as

Q = i[σ3,Γ
(1)(x, t)]. (36)

In the following, we need to calculate the explicit expression for Γ (1)(x, t) so that we will be able to find
solutions for Sasa–Satsuma equation. It is noted that the rational matrix function Γ (x, t) can be decomposed
into the sum of simple fractions:

Γ (x, t; k) = I +
N∑

l=1

(
kl − kl

k − kl

|xl⟩⟨yl| + kl − kl

k + kl
|x−l∗⟩⟨y−l∗ |

)
,

Γ−1(x, t; k) = I +
N∑

j=1

(
kj − kj

k − kj
|yj⟩⟨xj | + kj − kj

k + kj

|y−j∗⟩⟨x−j∗ |
)
.

Next, we consider the identity Γ (x, t; k)Γ−1(x, t; k) ≡ I at k = kj ,−kj where we should pose:

Γ (x, t; kj)|yj⟩⟨xj | = 0,
Γ (x, t; −kj)|y−j∗⟩⟨x−j∗ | = 0,

then the singularity of the identity at kj and −kj can be removed. For convenience, we denote: k2n−1 =
kn, k2n = −kn, and |x2n−1⟩⟨y2n−l|=|xn⟩⟨yn|, |x2n⟩⟨y2n|=|x−n∗⟩⟨y−n∗ |, n = 1, 2, . . . , N . Supposing ⟨xj |yj⟩ ≠
0, ⟨x−j∗ |y−j∗⟩ ≠ 0, then we obtain:

|yj⟩ =
2N∑
l=1

|xl⟩⟨yl|
kl − kl

kj − kl

|yj⟩, j = 1, 2, . . . , 2N. (37)
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Introducing 2N × 2N matrices:

X = (|x1⟩, |x2⟩, . . . , |x2N ⟩) , Y = (|y1⟩, |y2⟩, . . . , |y2N ⟩) ,

Λ = diag(k1 − k1, . . . , k2N − k2N ), M = {Ml,j}2N×2N =
{

⟨yl|
1

kj − kl

|yj⟩
}

2N×2N

.

Then (37) can be reformulated as:

Y = XΛM, or XΛ = YM−1, i.e.:

(kl − kl)|xl⟩ =
2N∑
j=1

(M−1)j,l|yj⟩, l = 1, 2, . . . , 2N.

Introducing notation |j⟩ ≡ |yj⟩, the dressing matrix becomes:

Γ (x, t; k) = I −
2N∑

j,l=1

(
1

k − kl

|j⟩(M−1)j,l⟨l|
)
. (38)

Therefore, from the asymptotic expansion (35) we have:

Γ (1)(x, t; k) = −
2N∑

j,l=1

(
|j⟩(M−1)j,l⟨l|

)
.

In addition, the explicit expression of vector |yj⟩ can be calculated by using the condition Γ (x, t; kj)|yj⟩
⟨xj | = 0, i.e., Φ+(x, t; kj)|yj⟩ = 0, j = 1, 2, . . . , 2N , we can differentiate this equation in x and t and get:

|yj⟩x = −ikjσ3|yj⟩ + µ(x)|yj⟩,
|yj⟩t = −4ik3

jσ3|yj⟩ + ν(t)|yj⟩,

where µ(x) and ν(t) are arbitrary functions, so we have:

|yj⟩ = exp[−ikσ3x− 4ik3σ3t]|yj0⟩ exp[
∫ x

x0

µ(ξ)dξ +
∫ t

t0

ν(ξ)dξ],

and |yj0⟩ is a constant vector. A proper choice of function µ(x) and ν(t) may make the calculation simpler
as we will show later. Next, taking relevant matrix entries from reconstruction formula (36) we have:

u(x, t) = 2iΓ (1)
1,3 (x, t) = 2iΓ (1)

3,2 (x, t). (39)

Furthermore, with some simple algebra operation, we get a more compact formula:

u(x, t) = 2i
⏐⏐M3

1
⏐⏐

|M |
= 2i

⏐⏐M2
3
⏐⏐

|M |
, (40)

where,

M3
1 =

⎛⎜⎜⎜⎝
M11 · · · M1,2N ⟨1|3

...
. . .

...
...

M2N,1 · · · M2N,2N ⟨2N |3
|1⟩1 · · · |2N⟩1 0

⎞⎟⎟⎟⎠ , M2
3 =

⎛⎜⎜⎜⎝
M11 · · · M1,2N ⟨1|2

...
. . .

...
...

M2N,1 · · · M2N,2N ⟨2N |2
|1⟩3 · · · |2N⟩3 0

⎞⎟⎟⎟⎠ .

Hence, to ensure the vitality of potential u(x, t), we must make sure that det(M1) = det(M2), and this
can be proved via some simple linear algebra technique. To get the explicit N-Soliton solutions, we may take

|2j − 1⟩ =

⎛⎝ αj exp[zj + iϕj ]
βj exp[zj + iϕj ]
γj exp[−zj − iϕj ]

⎞⎠ , |2j⟩ =

⎛⎝ βj exp[zj − iϕj ]
αj exp[zj − iϕj ]
γj exp[−zj + iϕj ]

⎞⎠ ,
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where, zj = ηj [x+ 4(η2
j − 3ξ2

j )t], ϕj = −ξj [x+ 4(ξ2
j − 3η2

j )t], and kj = ξj + iηj (j = 1, 2, . . . , N) are discrete
spectrum, αj , βj , γj are arbitrary complex numbers. Then the general N-soliton solution for Sasa–Satsuma
equation can be obtained via formula (40). Firstly, taking N = 1 in (40) we can get the 1-st order solution:

u1 = c1e
2z1+2iϕ1 + c2e

2z1+6iϕ1 + c3e
6z1+2iϕ1 + c4e

6z1+6iϕ1

d1e4z1 + d2e4iϕ1 + d3e4z1+4iϕ1 + d4e4z1+8iϕ1 + d5e8z1+4iϕ1
, (41)

where,

d1 = (βα+ αβ)η2, d2 = −(α2 − β2)(α2 − β
2)η2 − (|α|2 + |β|2)2ξ2,

d3 = −2(|α|2 + |β|2)(η2 + ξ2), d4 = (βα+ αβ)η2, d5 = −ξ2.

c1 = 4α(β2 − α2)η3 + 4iβ(βα+ αβ)η2ξ − 4α(|α|2 + |β|2)ηξ2,

c2 = 4β(α2 − β2)η3 − 4iα(βα+ αβ)η2ξ − 4β(|α|2 + |β|2)ηξ2,

c3 = −4iαη2ξ − 4αηξ2 , c4 = 4iβη2ξ − 4βηξ2.

The real part z1 and the image part ϕ1 in solution (41) cannot be completely separated, and there are
oscillation terms eikϕ1(k = 2, 4, 6, 8) that emerge in (41), so it may bring about the periodical behavior of
the solution. With some simple simplification, we have:

u1 = e−2z1−2iϕ1

(
c1 + c3e

4z1 + c2e
4iϕ1 + c4e

4z1+4iϕ1

d3 + d2e−4z1 + d5e4z1 + 2d4 cos 4ϕ1

)
. (42)

Hence, from this formula, we may find that the oscillation frequency is decided by 4ϕ1, to be specific, the
periodic solution u1 oscillates with the frequency ω1 = −4ξ1 in the x-axis direction and ω2 = 16ξ1(3η2

1 − ξ2
1)

in the t-axis direction, or, in other words, its periodical behavior occurring along the line: x−4(ξ2
j −3η2

j )t = 0.
We might as well name u1 a “breather” solution, and its asymptotic expression at large z1 has the form:

u1 ∼

⎧⎨⎩
(

c3
d5
e−2iϕ1 + c4

d5
e2iϕ1

)
e−2z1 , z1 ∼ +∞(

c1
d2
e−2iϕ1 + c2

d2
e2iϕ1

)
e2z1 , z1 ∼ −∞

and the phase difference for u1 at its limits:

arg(u1(z1 ∼ −∞)) − arg(u1(z1 ∼ +∞)) = arg(r1e
iθ1) − arg(r2e

iθ2),

where, θ1 = arg
(
c3

d5
e−2iϕ1 + c4

d5
e2iϕ1

)
, θ2 = arg

(
c1

d2
e−2iϕ1 + c2

d2
e2iϕ1

)
.

In general, N -solitons interactions can be obtained if we take N distinct spectral parameters k1, k2, . . . , kN

∈ C+.
Next, we conduct an investigation into the Darboux transformation for Sasa–Satsuma equation. First of

all, the elementary DT for spectral problem (6) has the form:

G1 = Ξ2Ξ1, Ξi =
(
I + ki − ki

k − ki

P(i−1)
i

)
, P(i−1)

i = |χ(i−1)
i ⟩⟨χ(i−1)

i |
⟨χ(i−1)

i |χ(i−1)
i ⟩

, (43)

where
|χ(0)

1 ⟩ = Ξ0|y1⟩|k=k1 , |χ(1)
2 ⟩ = Ξ1Ξ0|y2⟩|k=k2 , Ξ0 = I,

vector |yi⟩ are special solutions of Lax-pair (6) at k = ki, and k2 = −k1. The new potential matrix Q[1]

under this transformation becomes:

Q[1] = Q+ i

[
σ3,

2∑
i=1

(ki − ki)P(i−1)
i

]
, (44)

and potential u[1] solves Sasa–Satsuma equation. This two-fold DT can keep the forms of Lax-pair U, V
invariant and meanwhile retain the reduction, i.e, Q[1] satisfies the symmetry conditions (17) and (18).

According to the elementary DT (43), we establish the following theorem [23]:
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Theorem 1. Assume we have 2N distinct spectral parameters k1, k2, . . . , k2N ∈ C+ with the corresponding
eigenfunction matrices |y1⟩, |y2⟩, . . . , |y2N ⟩, which are taken in the special forms. Besides, we need k2n =
−k2n−1, then the N-fold Darboux transformation for Sasa–Satsuma equation can be represented as:

TN = I − (|y1⟩, |y2⟩, . . . , |y2N ⟩)M−1(k − S)−1

⎛⎜⎜⎜⎝
⟨y1|
⟨y2|

...
⟨y2N |

⎞⎟⎟⎟⎠ ,

with, M =
{

⟨yi|yj⟩
kj − ki

}
1≤i,j≤2N

, S = diag(k1, k2, . . . ., k2N ).

Proof. The Darboux transformation can be constructed by N-times iteration of elementary DT, that is:

TN = GNGN−1...G1,

where,

Gk = Ξ2kΞ2k−1, Ξi =
(
I + ki − ki

k − ki

P(i−1)
i

)
, P(i−1)

i = |χ(i−1)
i ⟩⟨χ(i−1)

i |
⟨χ(i−1)

i |χ(i−1)
i ⟩

,

|χ(i−1)
i ⟩ = Ξi−1Ξi−2...Ξ1Ξ0|yi⟩|k=ki

, Ξ0 = I, i = 1, 2, . . . , 2N.

The above Darboux transformation TN can be decomposed into the following linear fraction transformation,
which we may denote as T̂N for convenience:

T̂N = I +
2N∑
i=1

P̂i

k − ki

,

where P̂i are 3 × 3 rank one matrices, thus we can suppose P̂i = |xi⟩⟨yi|, then the involution property gives
the inverse transformation:

T̂−1
N (k) = T̂ †

N (k) = I +
2N∑
i=1

|yi⟩⟨xi|
k − ki

.

Considering the identity T̂N (k)T̂−1
N (k) = I at point ki, we have:

|yj⟩ =
2N∑
i=1

|xi⟩
⟨yj |yi⟩
kj − ki

, j = 1, 2, . . . , 2N.

In addition, because |yi⟩ ∈ Ker(TN (ki)), and as a matter of fact, one can further prove that:

rank(TN (ki)) = 2, i = 1, 2, . . . , 2N,

thus we can suppose the kernel for T̂N at k = ki is

Ker(T̂N (ki)) = |yi⟩, i = 1, 2, . . . , 2N,

where |yi⟩ solves the spectral Eq. (6) at k = ki. At last, by simple linear algebra, we obtain the N-fold
Darboux transformation for Sasa–Satsuma equation in another form. This completes the proof. □

In general, the transformation between potential matrices is in the compact form:

Q[N ] = Q− i[σ3,

2N∑
i,j=1

(
|yi⟩(M−1)i,j⟨yj |

)
]. (45)
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Fig. 1. (a) One-soliton solution with single hump at time t = 0. The parameter: ξ = 1
4 , η = 1

4 ; p1 = 1; (b) One-soliton solution with
double humps at t = 0. The parameter: ξ = 1

24 , η = 1
4 ; p1 = 1.

Moreover, it is noted that the reconstruction formula (36) is exactly corresponding to the case when Q

is taken as zero matrix in formula (45). And some new solutions of S–S equation can be also generated via
(45). For this purpose, we choose the eigenfunction as

|ys⟩ = exp (θsσ3) |ys,0⟩ exp (−θs) , θs = −iksx− 4ik3
st, s ∈ N+, (46)

where the constant vector is |ys,0⟩ = (ps, qs, 1)T .
Set N = 1 in formula (45) and consider the case when p1q1 = 0. Choosing q1 = 0 and denoting

κ = (k1 + k1)/2k1, then the bright one soliton is explicitly written as:

u1(x, t) = 2ip1(k1 − k1) |p1|2e2θ1 + κe−2θ1

|κ|2e−2(θ1+θ1) + |p1|4e2(θ1+θ1) + 2|p1|2
. (47)

Taking p1 = e−2η1x0+iσ0 , where x0 and σ0 are arbitrary real constants, u1(x, t) is written in the form of a
traveling solitary wave:

u1(x, t) = ψ(x− v1t− x0)ei(−2ξ1x−λ1t+σ0),

v1 = 4(η2
1 − 3ξ2

1), λ1 = 8ξ1(ξ2
1 − 3η2

1).

with function ψ defined as

ψ(x) = 4η1
e2η1x + κe−2η1x

e4η1x + 2 + |κ|2e−4η1x
,

and the intensity profile for ψ(x) is

|ψ(x)|2 = 16η2
1
e4η1x + 2|κ|2 + |κ|2e−4η1x

(e4η1x + 2 + |κ|2e−4η1x)2
.

An interesting property of this soliton which is shown in Fig. 1 is that its shape can be single or double
humped depending on the parameter |κ|. It is seen that this soliton has two intensity peaks, which is quite
unusual in integrable systems where single-soliton solutions are often single humped.

In the following analysis, one can take t = 0, x0 = 0, thus the intensity profile becomes:

|u1(x, 0)|2 = (16η2
1 |κ|−1) e4η1x−log |κ| + e−4η1x+log |κ| + 2|κ|(

e4η1x−log |κ| + e−4η1x+log |κ| + 2|κ|−1
)2 .
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Fig. 2. Two single-humped soliton solutions interaction at t = −10, 0.08, 10, respectively. The parameter: ξ1 = 1
2 , η1 = 1

4 ; ξ2 = 1
3 , η2 =

1
3 ; p1 = p2 = 1.

This is a central symmetry function and its center point is located at a = log |κ|/4η, which satisfies the
extremum condition:

∂x|u1(a, 0)|2 = 0.

Furthermore, the second order derivative at x = a is calculated as:

∂2
x|u1(a, 0)|2 = −128η4|κ|(2|κ| − 1)

(1 + |κ|)2 .

Thus, it is easy to see that when 2|κ| − 1⟨0, 0 <|κ| < 0.5, x = a is the minimum point, which corresponds
to the double humped soliton. When 2|κ| − 1 > 0, |κ| > 0.5, x = a is the maximum point, which is exactly
the single humped soliton.

In addition, if p1q1 ̸= 0, these single-soliton solutions are no longer solitary waves. Instead, they become
spatially localized and temporally periodic bound states (Mihalache et al. (1993a)) which has been shown
in expression (39).

Taking N = 2 with q1 = q2 = 0 in formula (45), thus the two-soliton solution of S–S equation has the
form of: u2(x, t) = 2iΩ1/Ω0 with,

Ω1 = δ1,1e
4θ1+4θ2+2θ3+4θ4 + δ1,2e

2θ1+4θ2+4θ3+4θ4 + δ2,1e
2θ1+2θ2+2θ3+4θ4 + δ2,2e

2θ1+4θ2+2θ3+2θ4

+ δ3,1e
4θ1+4θ2+2θ4 + δ3,2e

4θ1+4θ2+2θ4 + δ3,3e
4θ1+4θ2+2θ4 + δ3,4e

2θ2+4θ3+4θ4 + δ3,5e
2θ1+2θ2+2θ4

+ δ3,6e
2θ2+2θ3+2θ4 + δ4,1e

2θ1+4θ2 + δ4,2e
2θ1+4θ4 + δ4,3e

2θ3+4θ2 + δ4,4e
2θ3+4θ4 + δ5,1e

2θ2 + δ5,2e
2θ4 ,

Ω0 = ρ1,1e
4θ1+4θ2+4θ3+4θ4 + ρ1,2e

2θ1+2θ2+4θ3+4θ4 + ρ1,3e
4θ1+4θ2+2θ3+4θ4 + ρ1,4e

4θ1+2θ2+2θ3+4θ4

+ ρ1,5e
2θ1+4θ2+4θ3+2θ4 + ρ1,6e

2θ1+2θ2+2θ3+2θ4 + ρ2,1e
2θ1+4θ2+2θ3 + ρ2,2e

4θ1+2θ2+2θ4

+ ρ2,3e
2θ1+2θ3+4θ4 + ρ2,4e

2θ2+4θ3+2θ4 + ρ3,1e
2θ1+2θ2 + ρ3,2e

2θ1+2θ4 + ρ3,3e
2θ2+2θ3

+ ρ3,4e
2θ3+2θ4 + ρ3,5e

4θ1+4θ2 + ρ3,6e
4θ2+4θ3 + ρ3,7e

4θ1+4θ4 + ρ3,8e
4θ3+4θ4 + ρ0,

where, θj = ikjx+ 4ik3
j t, k2 = −k1, k4 = −k3. The coefficients of these exponential terms are constituted

of p1, p2 and {kj}4
j=1. However, it is cumbersome to write all of them down here and they can be directly

calculated via the computer.
In the following, according to different choices of spectral parameters of {kj}4

j=1, we plot figures of
the shape function |u2(x, t)| at certain moments t = t0, which displays the time evolution of the two-
soliton solution collisions. Fig. 2 shows the collision between two single-humped solitons. In this case, soliton
S1 is running after S2. Fig. 3 depicts the collision between one single-humped soliton and one double-
humped soliton from apposite directions, while Fig. 4 shows two double-humped soliton collisions. It is the
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Fig. 3. One singel-humped soliton and one double-humped soliton solution interaction at t = −15, 0, 10, respectively. The parameter:
ξ1 = 1

24 , η1 = 1
4 ; ξ2 = 1

3 , η2 = 1
3 ; p1 = 1.

Fig. 4. Two double-humped soliton solutions interaction at t = −60, 0, 60, respectively. The parameter: ξ1 = 1
24 , η1 = 1

4 ; ξ2 = 1
18 , η2 =

1
3 ; p1 = 1.

properties of elastic collision that these interacting solitons like particles can retain their respective velocities,
amplitudes, widths before and after the collision, except for a phase shift.

Next, using the asymptotic analysis technique [30], we intend to investigate the collision dynamics of
these bright two-soliton solutions. First of all, because θ2i−1 + θ2i = −2ηi(x− 4νit), νi = 3ξ2

i − η2
i , it yields:

(θ1 + θ2)η2 − (θ3 + θ4)η1 = 8η1η2(ν1 − ν2)t.

In accordance with the results of inverse scattering transformation, one needs ηi > 0. And without losing
generality, we assume that ν1 > ν2, where 4νi stands for the velocity of soliton solution. Then we have
asymptotic expressions of u2(x, t) under different asymptotic states of θ1 + θ2 and θ3 + θ4.

(i) Before collision (as t → −∞)
(a) If θ1 + θ2 ∼ 0, then θ3 + θ4 ∼ −∞:

u2(x, t) ∼ S1− = 2i δ4,1e
2θ2 + δ5,1e

−2θ1

ρ3,5e2θ1+2θ2 + ρ3,1 + ρ0e−2θ1−2θ2
; (48a)

(b) If θ3 + θ4 ∼ 0, then θ1 + θ2 ∼ +∞:

u2(x, t) ∼ S2− = 2i δ1,1e
2θ4 + δ3,1e

−2θ3

ρ1,1e2θ3+2θ4 + ρ1,3 + ρ3,5e−2θ3−2θ4
. (48b)

(ii) After collision (as t → +∞)
(a) If θ1 + θ2 ∼ 0, then θ3 + θ4 ∼ +∞:

u2(x, t) ∼ S1+ = 2i δ1,2e
2θ2 + δ3,4e

−2θ1

ρ1,1e2θ1+2θ2 + ρ1,2 + ρ3,8e−2θ1−2θ2
; (49a)
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Fig. 5. (a). One single-hump soliton becoming into a bound state when interacting with another bound state. The parameter:
ξ1 = 1

2 , η1 = 1
4 , ξ2 = 1

4 , η2 = 1
3 ; p1 = p2 = 1, q2 = 1; (b). Collision of one double-hump soliton becoming into a bound state,

where ξ1 = 1
20 , η1 = 1

4 , ξ2 = 1
8 , η2 = 1

6 ; p1 = p2 = 1, q2 = 1.

(b) If θ3 + θ4 ∼ 0, then θ1 + θ2 ∼ −∞:

u2(x, t) ∼ S2+ = 2i δ4,4e
2θ4 + δ5,2e

−2θ3

ρ3,8e2θ3+2θ4 + ρ3,4 + ρ0e−2θ3−2θ4
. (49b)

It is noted that the asymptotic solutions S1± and S2± can be also written as the function of traveling
solitary wave. And the respective velocity for S1± and S2± is ν1 and ν2, which remains unchanged before
and after the collision.

In addition, when q1 and q2 are not equal to zero. The shape changing phenomena will emerge in the
collision of S–S solitons, which have also been found in [15] via the DT construction technique. That is, one
soliton (or breather) may become a breather (or soliton) when interacting with another breather, and we
have shown these interesting phenomena in Fig. 5.

4. Soliton matrices for high-order zeros

In this case, following the discussion of simple zeros, we consider the high-order zeros in Riemann–Hilbert
problem of S–S equation. First of all, we let functions Φ+(k) and Φ−1

− (k) from above RHP have only one
pair of zero of order n, i.e. {k1,−k1} and {k1,−k1}:

detΦ−1
− = (k − k1)n(k + k1)nφ(k), detΦ+ = (k + k1)n(k − k1)nφ(k), (50)

where φ(k1), φ(−k1) ̸= 0, φ(k1), φ(−k1) ̸= 0. Following the idea proposed in Ref. [21], we first consider the
elementary zero case under the assumption that the geometric multiplicity of {k1,−k1} and {k1,−k1} has the
same number. Hence, one needs to construct the dressing matrix Γ (k) whose determinant is (k−k1)n(k+k1)n

(k+k1)n(k−k1)n .
As a special case, we first consider the elementary zeros which have geometric multiplicity 1. In this case,

Γ is constituted of n elementary dressing factors, i.e.: Γ = ΓnΓn−1...Γ1, Γi = χ̃i(k)χi(k), where,

χi(k) = I + k1 − k1

k − k1
Pi, Pi = |vi⟩⟨vi|

⟨vi|vi⟩
, |vi⟩ ∈ Ker

(
Φ+Γ

−1
1 · · ·Γ−1

i−1(k1)
)
,

χ̃i(k) = I + k1 − k1

k + k1
P̃i, P̃i = |ṽi⟩⟨ṽi|

⟨ṽi|ṽi⟩
, |ṽi⟩ ∈ Ker

(
Φ+Γ

−1
1 · · ·Γ−1

i−1χ
−1
i (−k1)

)
.

In addition, if we let Φ̃+(k) = Φ+(k)Γ−1
1 (k) and Φ̃−1

− (k) = Γ1(k)Φ−1
− (k), then it is proved that matrices

Φ̃+(k) and Φ̃−1
− (k) are still holomorphic in the respective half plans of C. Moreover, {k1,−k1} and {k1,−k1}

are still a pair of zeros of det Φ̃+(k) and det Φ̃−1
− (k), respectively. Thus, Γ (k)−1 cancels all the high-order

zeros for detΦ+(k).
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Fig. 6. The single-humped high-order soliton evolution: (a)–(b). Transverse plot of solution u1(x, t) at t = ln4, 30, respectively; (c)–(d).
Transverse plot of solution |u1(x, t)| at t = ln4, 40, respectively; The parameter: ξ1 = 0, η1 = 1

4 , p1 = 1.

Moreover, it is necessary to reformulate the dressing factor into summation of fractions, then we derive
the soliton matrix Γ (k) and its inverse for a pair of an elementary high-order zero. The results can be
formulated in the following lemma.

Lemma 1. Consider a pair of an elementary high-order zero of order n: {k1,−k1} in C+ and {k1,−k1} in
C−. Then the corresponding soliton matrix and its inverse can be cast in the following form:

Γ−1(k) = I + (|p1⟩, · · · , |p̃n⟩) D(k)

⎛⎜⎝ ⟨qn|
...

⟨q̃1|

⎞⎟⎠ , (51a)

Γ (k) = I +
(

|qn⟩, · · · , |q̃1⟩
)

D(k)

⎛⎜⎝ ⟨p1|
...

⟨p̃n|

⎞⎟⎠ , (51b)

where D(k) and D(k) are 2n× 2n block matrices,

D(k) =
(

T +(k − k1) 0n×n

0n×n T +(k + k1)

)
, D(k) =

(
T −(k − k1) 0n×n

0n×n T −(k + k1)

)
,

T +(s) and T −(s) are upper-triangular and lower-triangular Toeplitz matrices defined as:

T +(s) =

⎛⎜⎜⎜⎜⎝
s−1 s−2 · · · s−n

0
. . . . . .

...
...

. . . s−1 s−2

0 · · · 0 s−1

⎞⎟⎟⎟⎟⎠ , T −(s) =

⎛⎜⎜⎜⎜⎝
s−1 0 · · · 0

s−2 s−1 . . .
...

...
. . . . . . 0

s−n · · · s−2 s−1

⎞⎟⎟⎟⎟⎠ .
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This lemma can be proved by induction as in Ref. [21]. Besides, we notice that in the expressions for
Γ−1(k) (51a) and Γ (k) (51b), only half of the vector parameters, i.e.: |p1⟩, · · · , |pn⟩, |p̃1⟩, · · · , |p̃n⟩ and
⟨p1|, · · · , ⟨pn|, ⟨p̃1|, · · · , ⟨p̃n| are independent. In fact, the rest of the vector parameters in (51) can be derived
by calculating the poles of each order in the identity Γ (k)Γ−1(k) = I at k = k1 and k = k2 = −k1:

Γ (k1)

⎛⎜⎝ |p1⟩
...

|pn⟩

⎞⎟⎠ = 0, Γ (−k1)

⎛⎜⎝ |p̃1⟩
...

|p̃n⟩

⎞⎟⎠ = 0, (52)

where,

Γ (k) =

⎛⎜⎜⎜⎜⎜⎝
Γ (k) 0 · · · 0

d
dkΓ (k) Γ (k)

. . .
...

...
. . . . . . 0

1
(n−1)!

dn−1

dkn−1 Γ (k) · · · d
dkΓ (k) Γ (k)

⎞⎟⎟⎟⎟⎟⎠ .

Hence, in terms of the independent vector parameters, results (51) can be formulated in a more compact
form as in [21], and here we just avoid these overlapped parts. In the following, we derive this compact
formula via the method of generalized Darboux transformation (gDT). We intend to investigate the relation
between dressing matrices and Darboux transformation for S–S equation in the high-order zero case. The
essence of Darboux transformation is a kind of gauge transformation. Following the scheme proposed in [23],
we can construct the gDT for S–S equation as well.

The elementary form of DT has already been constructed in formula (43), then it is obvious to notice that:
G1(k1 +ϵ)|y1(k1 +ϵ)⟩ = 0 and G1(k2 +ε)|y2(k2 +ε)⟩ = 0. Denoting |χ[0]

1 (k1)⟩ = |y1(k1)⟩, |χ[0]
2 (k2)⟩ = |y2(k2)⟩,

and considering the following limitation:

|χ[1]
1 (k1)⟩ ≜ lim

ϵ→0

G1(k1 + ϵ)|χ[0]
1 (k1 + ϵ)⟩
ϵ

= d

dk

[
G1(k)|χ[0]

1 (k)⟩
]

k=k1
,

then |χ[1]
1 ⟩ can be used to construct the next step Darboux transformation, i.e.:

Ξ
[1]
1 (k) =

(
I + k1 − k1

k − k1
P[1]

1

)
, P[1]

1 = |χ[1]
1 ⟩⟨χ[1]

1 |
⟨χ[1]

1 |χ[1]
1 ⟩

. (53)

In the following step, we introduce

|χ[1]
2 (k2)⟩ = Ξ

[1]
1 (k2)|y[1]

2 (k2)⟩,

|y[1]
2 (k2)⟩ ≜ lim

ε→0

G1(k2 + ε)|χ[0]
2 (k2 + ε)⟩

ε
= d

dk

[
G1(k)|χ[0]

2 (k)⟩
]

k=k2
,

so χ[1]
2 can be used in the next step DT:

Ξ
[1]
2 (k) =

(
I + k2 − k2

k − k2
P[1]

2

)
, P[1]

2 = |χ[1]
2 ⟩⟨χ[1]

2 |
⟨χ[1]

2 |χ[1]
2 ⟩

, (54)

then we arrive at the 2nd step gDT:
G

[1]
1 (k) = Ξ

[1]
2 (k)Ξ [1]

1 (k). (55)

Generally, continuing this process we obtain:

|χ[N ]
1 ⟩ = lim

ϵ→0

G
[N−1]
1 ...G

[1]
1 G

[0]
1 (k1 + ϵ)|χ[0]

1 (k1 + ϵ)⟩
ϵN

,
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|y[N ]
2 ⟩ = lim

ε→0

G
[N−1]
1 ...G

[1]
1 G

[0]
1 (k2 + ε)|χ[0]

2 (k2 + ε)⟩
εN

,

the N-times generalized Darboux matrix can be represented as:

TN (k) = G
[N−1]
1 ...G

[1]
1 G

[0]
1 (k), G[i]

1 = Ξ
[i]
2 Ξ

[i]
1 , (56)

where,

Ξ [i]
s = I + ks − ks

k − ks

P [i]
s , P [i]

s = |χ[i]
s ⟩⟨χ[i]

s |
⟨χ[i]

s |χ[i]
s ⟩

, s = 1, 2.

|χ[i]
1 ⟩ = lim

ϵ→0

G
[i−1]
1 ...G

[0]
1 (k1 + ϵ)|χ[0]

1 (k1 + ϵ)⟩
ϵi

,

|χ[i]
2 (k2)⟩ = Ξ

[i]
1 (k2)|y[i]

2 ⟩, |y[i]
2 ⟩ = lim

ε→0

G
[i−1]
1 ...G

[0]
1 (k2 + ε)|χ[0]

2 (k2 + ε)⟩
εi

.

In addition, the transformation between different potential matrices is:

Q[N ] = Q+ i

⎡⎣σ3,

N−1∑
j=0

(k1 − k1)P [j]
1 + (k2 − k2)P [j]

2

⎤⎦ . (57)

In this expression, P [i]
2 and P

[i]
1 are rank-one matrices, so G

[i]
1 (k) can be also decomposed into the

summation of simple fraction, that means the multiple product form of TN can be directly simplified by
the conclusion of Lemma 1. In other words, the above generalized Darboux matrix for S–S equation can be
given in the following theorem:

Theorem 2 ([22], Lemma 4). In the case of one pair of elementary high-order zero, the generalized Darboux
matrix for S–S equation can be represented as:

TN = I − YM
−1

D(k)Y †,

where D(k) is N ×N block Toeplitz matrix which has been given before, Y is a 3 × 2N matrix:

Y =
(

|y1⟩, . . . , |y1⟩(N−1)

(N − 1)! , |y2⟩, . . . , |y2⟩(N−1)

(N − 1)!

)
,

|y1⟩(j) = lim
ϵ→0

dj

dϵj
|y1(k1 + ϵ)⟩, |y2⟩(j) = lim

ε→0

dj

dεj
|y2(k2 + ε)⟩, k2 = −k1

and M is 2N × 2N matrix:

M =
(
M [11] M [12]

M [21] M [22]

)
, M [ij] =

(
M

[i,j]
l,m

)
N×N

,

with
M

[i,j]
l,m = lim

ϵ,ϵ→0

1
(l − 1)!(m− 1)!

∂m−1

∂ϵm−1
∂l−1

∂(ϵ)l−1

[
⟨yi|yj⟩

kj − ki + ϵ− ϵ

]
.

Theorem 2 can be proved via directly calculation as in Ref. [23].
Therefore, if Φ[N ] = TNΦ, then Φ[N ] indeed solves spectral problem (8), i.e.:

(TNΦ)x =
(

−ikσ3 +Q[N ]
)
TNΦ.
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Fig. 7. (a). 3-D plot for the double-humped high-order soliton solution evolution; (b).The density plot for (a); (c)–(d).Transverse plot
of (a) at moment t = −60, 0, respectively. Where, ξ1 = 1

24 , η1 = 1
4 ; p1 = 1.

Substituting TN into the above relation and letting spectral k go to infinity, we have the relation:

Q[N ] = Q− i[σ3,

(
|y1⟩, . . . , |y2⟩(N−1)

(N − 1)!

)
M

−1

⎛⎜⎜⎝
⟨y1|

...
⟨y2|(N−1)

(N−1)!

⎞⎟⎟⎠]. (58)

Moreover, the transformations between the potential functions are:

Q
[N ]
j,l = Q

[0]
j,l + 2i

(
det(Aj,l)
det(M)

)
, Aj,l =

[
M Y [l]†
Y [j] 0

]
, 1 ≤ j, l ≤ 3. (59)

Here the subscript j,l denotes the jth row and lth column element of matrix A, and Y [l] represents the
jth row of matrix Y .

Hence, formula (59) with a zero seed leads to the high-order N-soliton solution formula. Explicitly, taking
N = 2, Q[0]

1,3 = 0 in (59) and considering the special case when ξ1 = 0, we can obtain the high-order
one-soliton or the 1-st order algebra soliton u[1] with the expression:

u1(x, t) = 8p1|p1|2k1F1(x, t, k1)e2η1x−8η3
1t + 16p1k1F2(x, t, k1)e−2η1x+8η3

1t

|p1|4e4η1x−16η3
1t + 4e−4η1x+16η3

1t + 4|p1|2G1(x, t, k1)
, (60)

where the rational polynomials F1, F2, G1 are defined as,

F1 = 1 + f1(x, t, k1), F2 = 1 − f1(x, t, k1),
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G1 = 1 + 2f2
1 (x, t, k1), f1 = −2η1x+ 24η3

1t.

First of all, we put these rational functions onto the exponential term, therefore, the above solution becomes:
(i) When f1(x, t, k1) = 0:

u1(x, t) = 2
√

2p1k1

|p1|
Sech(16η3

1t+ δ), δ = log(|p1|/
√

2). (61)

(ii) When f1(x, t, k1) ̸= 0, u1(x, t) is:

Cp0
e

2η1(x−4η2
1t)+log[f1]+log |p1|√

2 − e
−2η1(x−4η2

1t)+log[f1]−log |p1|√
2 + e

2η1(x−4η2
1t)+log |p1|√

2 + e
2η1(−x+4η2

1t)−log |p1|√
2

e4η1(x−4η2
1t)+2 log |p1|−log 2 + e4η1(−x+4η2

1t)−2 log |p1|+log 2 + elog[G1(x,t,k1)]+log 2
,

(62)
where the constant Cp0 is 4

√
2k1p1
|p1| . The maximum value for solution u1(x, t) is 2

√
2p1k1
|p1| , which is attained

in (62) with the extreme point is located at x0 = −3δ
4η1

, t0 = −δ
16η3

1
.

Different from two-soliton solution. It is found that the above high-order one-soliton (62) has two paralleled
center trajectories:

ϕ1 = 2η1(x− 4η2
1t) + log[f1] + log[p1/

√
2] = 0,

ϕ2 = 2η1(−x+ 4η2
1t) + log[f1] − log[p1/

√
2] = 0,

which can be regarded as the special case of the regular two-soliton solution. In this case, two solitons are
moving along the paralleled center trajectories in the same velocity, which is −4η2

1 . This kind of soliton, as it
has been mentioned in [21], can describe a weak bound state of solitons. And it may appear in the study of
train propagation of solitons with nearly equal velocities and amplitudes. In Fig. 6, we show the propagation
of single-humped high-order soliton. Fig. 7 is the propagation of double-humped high-order soliton.

In the following, to derive the long time asymptotic estimation for the high-order one-soliton. Firstly, we
do the simple variable substitutions:

x− 4η2
1t → y, x+ 4η2

1t → z, (63)

then u1(x, t) becomes,

u1(y, z) = Cp0
e6η1y+log(1−4η1y+2η1z)+log |p1|− 1

2 log 2 + e2η1y+log(1+4η1y−2η1z)−log |p1|+ 1
2 log 2

e8η1y+2 log |p1|−log 2 + e−2 log |p1|+log 2 + elog[1+2(4η1y−2η1z)2]+4η1y+log 2 . (64)

In accordance with the results of the inverse scattering transformation, we need η1 > 0. With simple
calculation, it is found that u1(y, z) possesses the following asymptotic estimation:

(i) If y ≫ 0, x ≫ 4η2
1t, then u1(y, z) → 0, as y → +∞ for all z;

(ii) If y ≪ 0, x ≪ 4η2
1t, then u1(y, z) → 0, as y → −∞ for all z;

(iii) If y ∼ 0, x ∼ 4η2
1t, then u1(y, z) ∼ O( 1

z ), as z → ±∞ (or, as t → ±∞);
(iv) If f1 > 0, i.e. z > 2y and 2η1y ∼ ± ln z, then u1(y, z) ∼ O1(1), as z → +∞
(or, as t → +∞), where O1(1) is seen as a constant;
(v) If f1 < 0, i.e. z < 2y and 2η1y ∼ ± ln z, then u1(y, z) ∼ O2(1), as z → −∞
(or, as t → −∞), where O2(1) is another constant;
It is noted that we only consider the elementary high order zeros of the Riemann–Hilbert problem, that

is, the algebraic multiplicity of the zeros is arbitrary but the geometric multiplicity is one. However, in
general case, the high-order zeros with arbitrary geometric multiplicity which can lead to more general
soliton solutions should be considered in the further work.



B. Yang, Y. Chen / Nonlinear Analysis: Real World Applications 45 (2019) 918–941 939

5. Conclusion and discussion

In conclusion, the inverse scattering method is implemented to Sasa–Satsuma equation with a vanishing
boundary condition, and the soliton matrices are constructed by studying the corresponding Riemann–
Hilbert problem. By means of the regularization of the RHP with finite simple zeros, we obtain the general
N-soliton formula for S–S equation, which was firstly derived in [24]. Furthermore, the high-order soliton
matrices are also obtained by considering the multiple zeros of the RHP. It is interesting that pairs of
zeros are considered in the process of the regularization for the high-order zeros, which is different from the
situation in NLS equation, 3-wave system or the Manakov equation. Besides, the explicit form of DT and
generalized DT for S–S equation was constructed which can be applied to generate interesting solutions.
Our analysis mainly focuses on the two-solitons collision dynamics, asymptotic behavior and the long time
asymptotic estimations for the high-order one-soliton solution.

In discussion, we note that a new integrable reverse space–time nonlocal Sasa–Satsuma equation is recently
introduced and investigated in [31]:

ut(x, t) + uxxx(x, t) + ε {6[u(−x,−t)u(x, t)]ux(x, t) + 3u(x, t)[u(−x,−t)u(x, t)]x} = 0, ε = ±1. (65)

Via using binary Darboux transformation method, the periodic solutions with some localized solutions are
constructed for this nonlocal equation [31], such as dark soliton, W-shaped soliton, M-shaped soliton and
breather soliton. These solutions are generated from either zero or non-zero seed solution, and they can
be nonsingular with certain parameters reductions, even though it is not easy to find the condition of
non-singularity for each of them for this nonlocal Sasa–Satsuma equation. Comparatively speaking, for the
general soliton as well as the high-order soliton we have derived for this local Sasa–Satsuma equation, their
non-singularity has been naturally ensured within the Riemann–Hilbert formulation, which stems from the
symmetry properties for the Jost solution, because one can utilize the involution property (17) to show that
det(M) is nonsingular [23].

Recently, a detailed study of the inverse scattering theory for the integrable nonlocal NLS equation is
presented using a new left–right Riemann–Hilbert problem and the Cauchy problem is formulated [32,33].
Furthermore, it was found in [32] that the symmetries of the eigenfunctions of the associated scattering
problem are such that the eigenfunctions defined in the upper and lower half planes are not related. This is
in sharp contrast to the classical local NLS equation [32]. Therefore, this would be an interesting topic for this
integrable nonlocal Sasa–Satsuma equation. The corresponding inverse scattering transform and Riemann–
Hilbert problem can be also formulated in this way. In that case, the important symmetry properties of the
eigenfunctions and scattering data could be quite different from that in the local case. Actually, if we pose
the reverse space–time nonlocal reduction on the potential matrix Q in the Lax-pair, which becomes:

Q =

⎛⎝ 0 0 u(x, t)
0 0 u(−x,−t)

−u(−x,−t) −u(x, t) 0

⎞⎠ .

Then it satisfies the following two new symmetry properties:

Q†(−x,−t) = σ1Q(x, t)σ1, σ1 =

⎛⎝ 1 0 0
0 1 0
0 0 −1

⎞⎠ ,

Q(−x,−t) = −σ2Q(x, t)σ2, σ2 =

⎛⎝ 0 1 0
1 0 0
0 0 −1

⎞⎠ .

In this case, the Jost solution is found to possess the following new symmetry property:

J†
±(−x,−t,−k) = σ1J

−1
± (x, k)σ1, J±(x, k) = σ2J±(−x,−t, k)σ2.
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Since the analytical and symmetry properties of the Jost solutions as well as the scattering data play
a fundamental role in the RH formulation for the scattering problem, and also in the formulation of
dressing matrices. According to the form of binary DT constructed in [31] for Eq. (65), we can see the
patterns of Riemann–Hilbert zeros could possibly have certain locations on the complex k-plane: this kind
of distribution of zeros is clearly different from what we have shown for the local case, and it might lead to
new type of solutions associated with Cauchy problem for the nonlocal Sasa–Satsuma equation. In addition,
it still remains to be seen whether there exist new symmetry properties which could give rise to unrelated
eigenfunctions [32].
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