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Abstract The Darboux transformation of the three-
component coupled derivative nonlinear Schrödinger
equations is constructed. Based on the special vector
solution generated from the corresponding Lax pair,
various interactions of localized waves are derived.
Here, we focus on the higher-order interactional
solutions among higher-order rogue waves, multi-
solitons, and multi-breathers. It is defined as the identi-
cal typeof interactional solution that the samecombina-
tion appears among these three components q1, q2, and
q3, without considering different arrangements among
them. According to our method and definition, these
interactional solutions are completely classified as six
types, amongwhich there are fourmixed interactions of
localized waves in these three different components. In
particular, the free parameters μ and ν play the impor-
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tant roles in dynamics structures of the interactional
solutions. For example, different nonlinear localized
waves merge with each other by increasing the abso-
lute values of these two parameters. Additionally, these
results demonstrate thatmore abundant andnovel local-
ized waves may exist in the multi-component coupled
systems than in the uncoupled ones.

Keywords Interactions of localized waves · Rogue
wave · Soliton · Breather · Three-component coupled
derivative nonlinear Schrödinger equations · Darboux
transformation

1 Introduction

Recently, there have been a variety of researches about
nonlinear localized waves in the field of nonlinear sci-
ence, such as bright [1–4] or dark soliton [5–7], breather
[8,9], and rogue wave [10–14]. In most cases, soli-
ton (bright or dark soliton) keeps its amplitude and
speed unchanged during propagating. Based on the
instability of small-amplitude perturbations, breathers
may be generated, and they localize in space or (and)
time. They are greatly different from soliton solutions,
such as their periodic properties. Up to the present,
there are mainly two special kinds of breathers such as
Akhmediev breathers (ABs) [15,16] and Kuznetsov-
Ma breathers (KMBs) [17]. The former localizes in
time and propagates periodically in space, whereas
the latter propagate periodically in time and localizes
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in space. A simple rational solution—the Peregrine
soliton, which is the rogue wave prototype—was first
derived by Peregrine [18]. Besides, the Peregrine soli-
ton can be generated through taking limiting process
about ABs or KMBs. Localizing in both space and
time, rogue wave (RW) always appears from nowhere
and disappears without a trace, and its peak amplitude
is usually more than twice of the plane background’s
height [19]. There have beenmany experimental obser-
vations [20,21] and theoretical researches [22–26] on
RWs in different nonlinear models.

In recent years, different interactions of localized
waves have been reported in many single-component
systems. The hybrid solutions between RWs and
cnoidal periodic waves were constructed in the focus-
ing nonlinear Schrödinger (NLS) equation through
Darboux transformation (DT)method [27]. Some inter-
actional solutions between solitons and several other
types of nonlinear waves were obtained in a lot of non-
linear systems by the consistent Riccati expansion and
consistent tanh expansion methods [28,29]. It is found
that RWs interacted with solitons and breathers at the
same time in theBoussinesq equation byHirota bilinear
methods [30]. Besides, some novel semi-rational solu-
tions were constructed in several nonlocal nonlinear
integrable models [31,32]; for example, lump solitons
interacted separatelywithRWs, solitons, and breathers,
and lump solitons interacted with breathers and peri-
odic line waves at the same time and so on. RW was
triggered by the interaction between lump soliton and
a pair of resonance kink stripe solitons through Hirota
bilinear method [33,34].

Additionally, the studies for interactions of local-
ized waves have been extended to multi-component
coupled systems. It was reported that dark-dark and
bright-dark solitons existed in various coupled non-
linear systems by KP reduction technique [6,35,36].
Bright-dark-rogue wave solutions were constructed in
both two-component NLS [37] equations and Hirota
[38] equations by DT. Interactional solutions including
breather and dark soliton, breather and anti-dark soli-
ton, dark soliton, and anti-dark soliton were all con-
structed in multi-component coupled nonlocal NLS
equations [39,40]. It indicates that more novel and
abundant nonlinear localizedwavesmaybe constructed
in the coupled systems [41] than the ones in single-
component systems. In this paper, we focus on con-
structing some novel interactional solutions in the fol-

lowing three-component coupled derivative nonlinear
Schrödinger (DNLS) equations [42,43]
⎧
⎪⎪⎨

⎪⎪⎩

iq1t + q1xx − 2i
3 ε[(|q1|2 + |q2|2 + |q3|2)q1]x = 0,

iq2t + q2xx − 2i
3 ε[(|q1|2 + |q2|2 + |q3|2)q2]x = 0,

iq3t + q3xx − 2i
3 ε[(|q1|2 + |q2|2 + |q3|2)q3]x = 0.

(1)

Here, q1, q2, and q3 are the complex envelops of three
fields along the coordinate x , and t is the time. Besides,
the subscripted variables x and t in Eq. (1) denote for
the corresponding partial differentiation and ε = ±1.
The DNLS system is important in plasma physics
and the ultra-short pulse field [42,44–48]. In a low-
β plasma (the ratio of kinetic to magnetic pressure),
the DNLS equations (1) can describe the evolution of
small-amplitude Alfvén waves, which propagate at a
small angle [44,45] or parallel [46] to the ambientmag-
netic field. Additionally, it is shown that the DNLS
system (1) can be also used to describe the behavior
of large-amplitude magnetohydrodynamic waves in a
high-β plasma propagating at an arbitrary angle [47] to
the ambient magnetic field. The standard NLS models
cannot be used in the ultra-short pulses field, because
the spectrum of these ultra-short pulses is approxi-
mately of the order 1015 s−1 and the width of optical
pulse is in the order of femtosecond [43,48]. However,
the DNLS system can describe the propagation of the
ultra-short pulses well.

Higher-order RWs and the hierarchy of higher-
order solutions of the single-component DNLS equa-
tion were constructed in [48–51] by DT, respec-
tively. Besides, some higher-order semi-rational solu-
tions of the single-component DNLS equation, which
included higher-order RWs and higher-order breathers,
was constructed in [52]. There have been many other
results about single-component DNLS equation, such
as soliton solutions [53], stationary solutions [54] and
breather solutions [55]. The two-component coupled
DNLS system was derived by Morris and Dodd [42].
N-soliton solutions of the two-component case of the
coupled system (1) was constructed by DT [43]. In
[56], Baronio et al. constructed the first-order interac-
tional solutions of the two-component coupled NLS
equations, which included first-order RW, first-order
RW interacting with one-bright (dark) soliton or one-
breather. Compared to the first-order RW, the higher-
order RWs are the nonlinear superposition of some
first-order ones and can describe the realistic phenom-
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ena well [57]. It is greatly necessary to investigate the
interactional solutions between higher-order RWs and
other nonlinear localized waves in the DNLS system
(1), such as multi-soliton and multi-breather.

Compared to the two-component systems [58–60],
there may exist some novel and interestingmixed inter-
actions of localized waves in the three-component ones
[61,62]. Here, we extend the two-component coupled
DNLS equations in [42,43] to three-component sys-
tem (1) and successfully construct the correspond-
ing Lax pair. It is very complicated to construct the
interactional solutions among RWs, breathers and soli-
tons in multi-component DNLS system. The integra-
bility and N-soliton in two-component DNLS system
(even) are discussed in [42,43], respectively. Here,
we focus on investigating the interactions of local-
ized waves in three-component case (odd). Consider-
ing both two- (even) and three-component (odd) DNLS
systems, we can understand the interactional solutions
between RWs and other two states (breathers and soli-
tons) in multi-component case well.

In this paper, hybrid (interactional) solution is
defined as RW interacting with other two states (soli-
ton or breather) in each component. Besides, it is
namedmixed hybrid (interactional) solution that differ-
ent hybrid (interactional) solutions combine together in
the three components q j ( j = 1, 2, 3) at the same time.
Through defining the same combination as the same
type solution among the three components q1, q2, and
q3, these interactional solutions are completely classi-
fied as six cases, among which there are four mixed
types.

This article is organized as follows. In Sect. 2, the
DT of the three-component coupled DNLS equations
is constructed. In Sect. 3, higher-order mixed interac-
tional solutions are obtained and some dynamics are
discussed. The last section contains several conclusions
and discussion.

2 Darboux transformation for the
three-component DNLS equations

For convenience, the parameter ε in the coupled system
(1) is chosen as ε = −1 in the following contents. Here,
the two-component coupled DNLS equations [42,43]
is extended to three-component case (1), and the cor-
responding Lax pair can be constructed as

Ψx = UΨ = λ2U1 + λU2, (2)

Ψt = VΨ = λ4V1 + λ3V2 + λ2V3 + λV4, (3)

with

U1 = diag(−2i, i, i, i), U2 =
(

0 Q†
−Q 03×3

)

,

V1 = diag(−9i, 0, 0, 0),

V2 = 3U2, V3 = −iσU 2
2 ,

V4 = iσU2x−2

3
(|q1|2+|q2|2+|q3|2)U2,

Q = (q∗
1 , q∗

2 , q∗
3 )T , σ = diag(1,−1,−1,−1),

where Ψ (x, t) = (ψ1, ψ2, ψ3, ψ4)
T and λ is the spec-

tral parameter. Besides, T denotes the transpose of
the vector and † represents the Hermitian conjugation.
Additionally, the three-component coupled DNLS sys-
tem (1) can be easily generated from the compatibility
condition Ut − Vx + [U, V ] = 0.

In [43], the DT of the two-component coupled
DNLS equations was constructed, and it was also gen-
eralized to the multi-component case. Based on the DT
in [43], we can construct the elementary DT of the cou-
pled system (1) as

Ψ [1] = TΨ10, T = M0λ
2 + M1λ − I, (4)

qk[1] = qk − λ∗
1 − λ21

|λ1|2 (
ψ10ψ

∗
(k+1)0

Ω10
)x (k = 1, 2, 3),

(5)

with

I = diag(1, 1, 1, 1),

M0 = 1

λ∗2
1

I + λ∗2
1 − λ21

λ∗2
1 λ1

⎛

⎝

ψ10ψ
∗
10

Ω10
01×3

03×1
P1P

†
1

Ω∗
10

⎞

⎠ ,

M1 = λ∗
1−λ21

λ1λ
∗
1

⎛

⎝
0

ψ10P
†
1

Ω10
P1ψ∗

10
Ω∗

10
03×3

⎞

⎠ , Ω10 = λ1|ψ10|2

+ λ∗
1(|ψ20|2+|ψ30|2+|ψ40|2),

P1 = (ψ20, ψ30, ψ40)
T ;

here, the subscript x in (5) denotes for partial differ-
entiation and Ψ10(x, t) = (ψ10, ψ20, ψ30, ψ40)

T is the
solution of the Lax pair (2–3) under the condition that
λ = λ1.

We choose q1 = q1[0], q2 = q2[0], q3 = q3[0]
as the seed solution of the three-component coupled
DNLS system (1) with λ = λ1+δ. Then, a special vec-
tor eigenfunction of theLax pair (2–3) can be derived as
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Ψ1(x, t)(λ1 + δ) = (ψ11, ψ21, ψ31, ψ41)
T . Expanding

the column vector Ψ1(λ1 + δ) at δ = 0, we have

Ψ1 =
∞∑

j=0

Ψ
[ j]
1 δ j , Ψ

[ j]
1 =

(
ψ

[ j]
1 , ψ

[ j]
2 , ψ

[ j]
3 , ψ

[ j]
4

)T
,

Ψ
[ j]
1 = 1

j !
∂ lΨ1

∂δ j
|δ=0 ( j = 0, 1, 2, 3, . . .).

Iterating the generalized DT N times, the N -fold
generalized DT of the three-component coupled DNLS
equations (1) can be derived as follows

Ψ [N ] = T [N ]T [N−1] . . . T [2]T [1]Ψ,

T [ j] = M0[ j]λ2 + M1[ j]λ − I ( j = 1, 2, . . . , N ),

(6)

qk[N ] = qk[N−1]
−λ∗2

1 − λ21

|λ1|2
(

ψ1[N−1]ψ(k+1)[N−1]∗
ΩN

)

x
,

(k = 1, 2, 3), (7)

where

Ψ1[N−1] = (ψ1[N−1], ψ2[N−1], ψ3[N−1],
ψ4[N−1])T = lim

δ→0

Ψ [N−1]|λ=λ1+δ

δN−1 , (8)

ΩN = λ1|ψ1[N−1]|2+λ∗
1(|ψ2[N−1]|2

+ |ψ3[N−1]|2+|ψ4[N−1]|2), (9)

M0[ j] = 1

λ∗2
1

I + λ∗2
1 − λ21

λ∗2
1 λ1

⎛

⎝

ψ1[ j−1]ψ1[ j−1]∗
Ω j

01×3

03×1
P[ j]P[ j]†

Ω∗
j

⎞

⎠ ,

(10)

M1[ j] = λ∗2
1 −λ21

λ1λ
∗
1

⎛

⎝
0 P[ j]†ψ1[ j−1]

Ω j
P[ j]ψ1[ j−1]∗

Ω∗
j

03×3

⎞

⎠ ,

P[ j] = (ψ2[ j], ψ3[ j], ψ4[ j])T . (11)

3 Higher-order mixed interactions of localized
waves

In order to construct various interactional solutions of
the three-component DNLS equations (1), we choose
a general nontrivial seed solution as

q1[0] = c1e
− 2
3 iθ , q2[0] = c2e

− 2
3 iθ ,

q3[0] = c3e
− 2
3 iθ , (12)

where θ = (c21 + c22 + c23)x and c j ( j = 1, 2, 3) are all
real constants. For convenience, the above seed solu-
tion is chosen periodically in space variable x without

depending on time variable t . Starting with the above
seed solution q1 = q1[0], q2 = q2[0], q3 = q3[0] with
the spectral parameter λ, the special vector solution of
the Lax pair (2)–(3) can be elaborately constructed as
follows

Φ1=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(l1eη1+η2 − l2eη1−η2 )e−
i
3 θ

r1(l1eη1−η2 − l2eη1+η2 )e
i
3 θ − (μc2 + νc3)ei xλ

2

r2(l1eη1−η2 − l2eη1+η2 )e
i
3 θ + μc1ei xλ

2

r3(l1eη1−η2 − l2eη1+η2 )e
i
3 θ + νc1ei xλ

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(13)

where

l1 = i(9λ2 − 2τ − √
81λ4 + 4ρ2)

1
2

√
81λ4 + 4ρ2

,

l2 = i(9λ2 − 2ρ + √
81λ4 + 4ρ2)

1
2

√
81λ4 + 4ρ2

,

η1 = − i

2
λ2(x + 9λ2t),

η2 = i

6

√
81λ4 + 4ρ2

(

x + 3λ2t +
N∑

k=1

skδ
2k

)

,

r1 = c1√
ρ

, r2 = c2√
ρ

, r3 = c3√
ρ

,

sk = mk + ink, ρ = c21 + c22 + c23,

the parameters mk, nk (k = 1, 2, . . . , N ), μ and ν are
all real free constants. The structures of high-orderRWs
in the hybrid solutions is controlled by the parameters
sk = mk + ink ; for example, the fundamental second-
order RW can split into three first-order ones if s1 �= 0.

Here, we choose the spectral parameter λ =
√

ρ

3 (1+
i +δ2)with arbitrary small parameter δ and expand the
Taylor expansion of the special vector function Φ1 in
(13) at δ = 0 as follows:

Φ1 =
∞∑

j=0

Φ
[ j]
1 δ2 j , Φ

[ j]
1 =

(
ψ

[ j]
1 , ψ

[ j]
2 , ψ

[ j]
3 , ψ

[ j]
4

)T

= 1

(2 j)!
∂ jΦ1

∂δ j
|δ=0 ( j = 0, 1, 2, 3, . . .).

The concrete expressions of Φ
[ j]
1 can be easily calcu-

lated through Maple software. Besides, these expres-
sions are very tedious and complicated, and we omit
them.
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Fig. 1 (Color online) Evolution plot of the first-order interactional solution in case (2) with the parameters chosen by c1 = 1, c2 =
−2, c3 = −1, μ = 0, ν = 1

200000

Through formulae (7), the general expressions of
the first-order interactions of localized waves for the
three-component coupled DNLS equations (1) can be
derived as

q1[1] = c1e
− 2

3 iθ

+ 2i

(
6c1ρ

3
2 K1e− 2

3 iθ + 54(1 + i)(μc2 + νc3)ρ
3
2 K2eξ1

−(1 + i)
√
2L1 + 324ρ2(1 − i)L2eξ2

)

x

,

(14)

q2[1] = c2e
− 2

3 iθ

+ 2i

(
6c2ρ

3
2 K1e− 2

3 iθ − 54(1 + i)c1μρ
3
2 K2eξ1

−(1 + i)
√
2L1 + 324ρ2(1 − i)L2eξ2

)

x

, (15)

q3[1] = c3e
− 2

3 iθ

+ 2i

(
6c3ρ

3
2 K1e− 2

3 iθ − 54(1 + i)c1νρ
3
2 K2eξ1

−(1 + i)
√
2L1 + 324ρ2(1 − i)L2eξ2

)

x

, (16)

where

ξ1 = ρ

9
[(−3 + 3i)x + 2iρ], ξ2 = −2

3
ρx,

K1 =
(
12 i xρ + 8 ρ2t + 9 − 9 i

) (
12 i xρ − 8 ρ2t + 9 + 9 i

)

√
(−2 − 2 i) ρρ

√−2 + 2 i
,

K2 = 12 i xρ − 8 ρ2t + 9 + 9 i√
(−2 + 2 i) ρ

,

L1 = (
72 iρ2c1

2+72 iρ2c2
2+72 iρ2c3

2−72 ρ3) x2

− 108 ρ
(
ic1

2+ic2
2+ic3

2+ρ
)
x

+ 32 t2ρ4 (
ic1

2+ic2
2+ic3

2−ρ
)

+ 72 tρ2 (
ic1

2+ic2
2+ic3

2+ρ
)

+ 81(ic1
2+ic2

2+ic3
2−ρ),

L2 = μ2c1
2 + μ2c2

2 + 2μ ν c2c3 + ν2c1
2 + ν2c3

2.

(1) When μ = ν = 0, the first-order interactional
solutions degenerate to the first-order RWs.

(2) If one of the two parameters μ and ν is zero, and
the backgrounds are all non-vanished (μ = 0, ν �=
0, c j �= 0 ( j = 1, 2, 3)), we can find that a first-
order RW interacts with a breather in q1 and q3
components, and a first-order RW interacts with
an amplitude-varying soliton in q2 component in
Fig. 1. Choosing the case that μ = 0, ν �= 0 and
c j �= 0, we can get a different various arrangement
of three components q1, q2 and q3. However, the
combination is the same, namely one component
is RW and amplitude-varying soliton, two com-
ponents are RW and breather. Here, we define the
same combination as the same kind of interactional
solution.

The density plot of q2 in Fig. 2a shows that the soli-
ton in q2 component is anti-dark soliton if t < 0 and
becomes dark soliton if t > 0. Besides, this kind of
amplitude-varying soliton annihilates if t = 0. When
t < 0, the amplitude of anti-dark soliton in q2 compo-
nent becomes big with t increasing, see Fig. 2b; other-
wise, if t > 0, the amplitude of dark soliton in q2 com-
ponent becomes small with t increasing, see Fig. 2d.
Moreover, it demonstrates that the soliton annihilates
and only a first-order RW exist at t = 0 in q2 compo-
nent from Fig. 2c. By increasing the absolute value of
ν, the first-order RW can merge with one-breather or
one-amplitude-varying soliton.

(3) When μ = 0, ν �= 0, c1 �= 0, c2 �= 0, and c3 = 0,
it demonstrates that hybrid solution between a
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Fig. 2 (Color online) a Evolution density plot of q2 component in Fig. 1b. Plane evolution plot of the interactional process between
the first-order RW and the amplitude-varying soliton of q2 component in Fig. 1b at different moments: b t < 0; c t = 0; d t > 0

Fig. 3 (Color online) Evolution plot of the first-order interactional solution in case (3) with the parameters chosen by c1 = 1, c2 =
−2, c3 = 0, μ = 0, ν = 1

2000

first-order RW and an amplitude-varying soliton
exists in q1 and q2 components, and hybrid solu-
tion between a first-order RW and a bright soliton
exists in q3 component in Fig. 3. In Fig. 3c, the
first-order RW in q3 component cannot be easily
observed since it emerges from zero plane back-
ground. By increasing the absolute value ν, the
first-order RW can merge with amplitude-varying
soliton and bright soliton, respectively.

(4) When μ �= 0, ν �= 0, and one of the three back-
grounds is vanished (c1 �= 0, c2 �= 0 and c3 = 0),
we can find that a first-order RW merges with a
breather in q1 and q2 components, and a first-order
RWmerges with a bright solitons in q3 component
from Fig. 4. Similar with case (3), the nonlinear
localized waves can separate in the three compo-
nents q1, q2, and q3 by decreasing the absolute val-
ues of μ and ν. Here, we omit these figures.

(5) Similar with case (4), setting μ �= 0, ν �= 0,
and two of the three backgrounds be vanished
(c1 �= 0, c2 = c3 = 0), we can find that a first-
order RWmerges with a bright soliton in q2 and q3
components, and a first-order RW merges with an
amplitude-varying soliton in q1 component from
Fig. 5.

(6) When these five free parameters μ, ν and c j ( j =
1, 2, 3) are all not zero, the interactional solutions
can be constructed that a first-order interacts with a
breather in three componentsq1, q2 andq3, see Fig.
6. Furthermore, it is interesting that the breather
in q2 component is different from ones in other
two components. Similarly, the first-order RW can
merge with the breather through increasing the
absolute values of μ and ν.

Without considering different arrangements among
the three components q1, q2 and q3, the same combina-
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Mixed interactions of localized waves 2139

Fig. 4 (Color online) Evolution plot of the first-order interactional solution in case (4) with the parameters chosen by c1 = 1, c2 =
−2, c3 = 0, μ = 1

20 , ν = − 1
20 .

Fig. 5 (Color online) Evolution plot of the first-order interactional solution in case (5) with the parameters chosen by c1 = 2, c2 =
0, c3 = 0, μ = 1

2 , ν = − 1
2

Fig. 6 (Color online) Evolution plot of the first-order interactional solution in case (6) with the parameters chosen by c1 = 1, c2 =
−2, c3 = 1

2 , μ = 1
20000 , ν = − 1

20000

tion is defined as the same type of hybrid solution. The
first-order interactions of localized waves for the three-
component coupled system (1) can be completely clas-

sified as six types according to our method and defini-
tion. It is shown that cases (2)–(5) are four mixed inter-
actions of localized waves. Iterating DT of the three-
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component coupled DNLS equations (1), the higher-
order interactions of localized waves can be obtained
through the formulae (7). Similar to the first-order case,
the higher-order interactional solutions canbe also clas-
sified as six types. Among the above six types of inter-
actional solutions, there are also four mixed cases.

4 Conclusion

Utilizing both a limiting process and the peculiar vec-
tor solution (13) of the Lax pair (2)–(3), various novel
and interesting higher-order interactional solutions in
the three-component coupledDNLS equations are con-
structed through DT technique. Considering both dis-
turbing terms (μ and ν) and the backgrounds (c j , j =
1, 2, 3), the interactional solutions of Eq. (1) are com-
pletely classified as six types, among which there are
four mixed cases. These results provide evidence of
some obvious interactions between higher-order RWs
and multi-soliton or multi-breather. When the compo-
nents of theDNLS system aremore than 3, thematrices
in the corresponding Lax pair (2)–(3) are more than
4 × 4. At this point, the degree of the characteristic
equation of transformed matrix U0 (U in Eq. (2) with
exponential functions is transformed to constant coeffi-
cientmatrixU0) is equal or greater than 5. The equation
with one unknown quantity whose degree is equal or
greater than 5 has not radical solutions and this is an
open problem. Based on the above facts, the special
vector solution of the corresponding Lax pair (2)–(3)
of the DNLS system whose components are more than
3 cannot be directly constructed. For the 4-coupled (or
more than 4) DNLS system, the special vector solu-
tion of the Lax pair is expected to be constructed by
numerical simulation method in our future work.

In this work, we generalize Baronio’s results [56] to
the higher-order case in the three-component DNLS
equations (1) and obtain four mixed interactions of
localized waves. Besides, we constructed mixed inter-
actions of localized waves in three-component NLS
equations [61] and Hirota equations [62] through gen-
eralized DT. However, these mixed interactions cannot
be obtained in single- and two-component systems by
DT technique. Based on the above facts, a conclusion
can be drawn that these kinds of mixed interactions
of localized waves can be only obtained by DT in the
nonlinear systems, whose components are more than 3
with the corresponding Lax pair including the matrices

larger than 3×3. In [56], Baronio et al. gave the exper-
imental conditions for observing the first-order inter-
actional solutions among RW, one-bright (dark) soli-
ton and one-breather in two-component coupled NLS
equations.Motivated byBaronio’s experimental condi-
tions in [56], we expect that these interactions of local-
ized waves obtained in this article will be verified and
observed in the physical experiments in the future.
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