
A deep learning method for solving third-
order nonlinear evolution equations

Jun Li (李军)1 and Yong Chen (陈勇)2,3,4

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062,
China
2 School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, Shanghai Key Laboratory of
Trustworthy Computing, East China Normal University, Shanghai, 200062, China
3 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao,
266590, China
4Department of Physics, Zhejiang Normal University, Jinhua, 321004, China

E-mail: ychen@sei.ecnu.edu.cn

Received 15 May 2020, revised 29 July 2020
Accepted for publication 29 July 2020
Published 20 October 2020

Abstract
It has still been difficult to solve nonlinear evolution equations analytically. In this paper, we
present a deep learning method for recovering the intrinsic nonlinear dynamics from
spatiotemporal data directly. Specifically, the model uses a deep neural network constrained with
given governing equations to try to learn all optimal parameters. In particular, numerical
experiments on several third-order nonlinear evolution equations, including the Korteweg–de
Vries (KdV) equation, modified KdV equation, KdV–Burgers equation and Sharma–Tasso–
Olver equation, demonstrate that the presented method is able to uncover the solitons and their
interaction behaviors fairly well.

Keywords: deep learning, nonlinear evolution equations, soliton interaction, nonlinear dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear evolution equations, which depend on certain space–
time signatures, have a multitude of important applications
across broad disciplines including physics, finance and biology.
Certain special solutions to such equations can exhibit soliton
behaviors, that is, they do not disperse and thus conserve their
original forms after the collision [1]. Moreover, interaction
between solitons is one of the most fascinating features of many
soliton phenomena [2].

While direct numerical solutions to some evolution
equations are computationally expensive, with the revival of deep
learning, it has attracted much interest on the development of
more efficient data-driven solutions to nonlinear evolution
equations [3–5]. As a direction of machine learning, deep
learning methods are able to effectively learn the feature repre-
sentations from raw data [6–10]. However, to our knowledge,
previous works focus mainly on some simple solutions to the
given equations, which could not uncover the soliton behaviors

under some circumstances. Thus, we propose to combine a
neural network framework with some underlying physical laws
to reconstruct the soliton solutions.

For a certain amount of physical systems, some nonlinear
and dispersive processes compete while the dissipation can be
neglected. Therefore, in this paper, we will study nonlinear
time-dependent partial differential equations where each
contains the dispersive term in addition to other partial deri-
vatives. These equations often play important roles in many
scientific applications and physical phenomena. Specifically,
we consider the (1+1)-dimensional third-order nonlinear
evolution equations of the form

() ()� &u u u u u, , , , 1t x xx xxx

in order to solve their soliton solutions, where the subscripts t
and x denote the partial derivatives with respect to them and
& is a nonlinear function of the solution u and its arbitrary-
order partial derivatives with respect to the spatial variable x
(concretely, in this work, the highest order is three).

© 2020 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing Printed in China and the UK Communications in Theoretical Physics

Commun. Theor. Phys. 72 (2020) 115003 (11pp) https://doi.org/10.1088/1572-9494/abb7c8

0253-6102/20/115003+11$33.00 iopscience.org/ctp | ctp.itp.ac.cn1

Specifically, we approximate the latent solution u with a
deep neural network [11–13] and then compute the deriva-
tives of the network approximation u with respect to time t
and space x with the help of automatic differentiation [14, 15].

Consequently, define the residual network

≔ () ()� &f u u u u u, , , , 2t x xx xxx

and then the solution network is trained to satisfy the residual
constraint(2), which plays a role of regularization and is
embedded into the mean-squared objective function [16]

∣ () ∣ ∣ () ∣ ()� �� � �
� �

L
N

u t x u
N

f t x
1

,
1

, . 3
u i

N

u
i

u
i i

f j

N

f
j

f
j

1

2

1

2
u f

In this work, we choose the network architecture in a
consistent fashion [17]. Specifically, we learn the unknown
solution u by using a 13-layer feedforward network with 40
neurons per hidden layer. For the choice of activation func-
tions, we have conducted many experiments for different
functions such as tanh, sin, sigmoid (σ) and rectified linear
units (ReLU) in different number of layers and neurons. We
find that the tanh function is a little unstable. Moreover, the
results indicate that the σ and ReLU functions could not
represent the data in current settings. So we select sin as the
activation function in most cases. In addition, we just tune all
parameters of the objective(3) using the L-BFGS method
[18]. More modern and efficient algorithms can be adopted
for larger-scale data, for example, Adam [19], which is a
variant of the stochastic gradient descent algorithm. All
numerical examples reported here are run on a MacBook Pro
computer with 2.4 GHz Dual-Core Intel Core i5 processor and
8 GB memory.

The outline of this paper follows. In section 2, we
reconstruct the one-soliton and two-soliton solutions to the
KdV equation from data collected from simulations. Conse-
quently, we recover the one-soliton and breather solutions to
the mKdV equation in section 3. In section 4, we then con-
sider the kink solution to the KdV–Burgers equation. In
section 5, we focus mainly on the soliton fusion and fission
phenomena of the STO equation. Finally, some concluding
discussion and remarks are contained in section 6.

2. The KdV equation

The KdV equation [20, 21] is a canonical model which
describes the unidirectional propagation of shallow water
waves with certain small amplitude and long wavelength. It
also is one of the earliest equations with soliton solutions. The
KdV equation can be regarded as a dispersive modification of
the Burgers equation and converted by the Cole–Hopf
transformation. The dispersion and nonlinearity of this
equation balance each other which leads to the wave propa-
gation without losing energy. However, The manifestation of
the balance may vary from system to system, thus other
evolution equations could have different soliton forms from
the KdV equation whose soliton solutions are bell-shaped.

In this section, we consider the KdV equation along with
Dirichlet boundary conditions [22–24] given by

⎧
⎨⎪
⎩⎪

[] []
() ()
() ()

()
� � � � � � �

�
� � �

u uu u x t
u t x u x
u t u t

6 0, 20, 20 , 5, 5 ,
, ,

, 20 , 20 0,
4

t x xxx

0 0

where u0(x) is an arbitrary real-valued function. In this
case, � � �& uu u6 x xxx.

Note that this equation and the mKdV equation which
will be considered in the next section are both special cases of
the generalized KdV equation

()� � �u u u 0,t xxx
p

x

where the case p=2 obviously corresponds to the KdV
equation and p=3 to the mKdV equation. By the way, these
two equations are completely integrable.

2.1. One-soliton solution

Here, we first consider the one soliton problem. Some exact
soliton solutions to such nonlinear evolution equations can be
expressed in terms of elementary functions and then these
solutions are very important for understanding the non-
linearity of these systems better. Meanwhile, they are also
useful in testing the performance and accuracy of certain
numerical methods. Applying some analytic methods
[25, 26], one can show that the exact one-soliton solution to
equation (4) admits the explicit expression given by

⎜ ⎟⎛
⎝

⎞
⎠() ()� � �u t x

c c
x x ct,

2
sech

2
.2

0

Specifically, we just set c=3 for convenience. Then, the
corresponding initial condition is obtained with a specific
initial displacement by

⎛
⎝⎜

⎞
⎠⎟() () ()� �u x x

3
2

sech
3

2
15 . 50

2

We simulate equation (4) using the conventional spectral
method to obtain the data. Specifically, starting from the
initial condition(5), we use the Chebfun package [27] with a
Fourier spatial discretization with 512 modes and a 4th-order
explicit Runge–Kutta (RK) integrator with time-step size
1× 10−4, and then integrate the equation up to the final
instant t=5. The solution is saved every Δt=0.05 to give
us totally 201 snapshots. We generate a smaller training
dataset out of this data by randomly sub-sampling Nu=100
initial-boundary data and Nf=10 000 collocation points
which are generated by the Latin hypercube sampling
method [28].

Figure 1 demonstrates our result for the data-driven one-
soliton solution to the KdV equation (4). Specifically, given a
set of initial and boundary data points, we try to learn the
latent solution u(t, x) by tuning all learnable parameters of the
network using the loss function(3). The top panel of figure 1
compares between the exact solution and the predicted spa-
tiotemporal solution. The model achieves a relative �2 error
of size 3.44× 10−3 in a runtime of approximately three and
half a minute. We can see a more detailed assessment in the

2

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

bottom panel of figure 1. We particularly present a comparison
between the exact solution and the predicted solutions at dif-
ferent times t=−3.75, −1.25, 3.75. The algorithm accurately
reconstructs the one-soliton solution to the KdV equation.

From figure 2, we can observe the reconstructed single
solitary wave motion better.

2.2. Two-soliton solutions

Many non-integrable equations also possess localized shape-
preserving traveling waves that resemble soliton solutions.

For example, it would be indistinguishable from a KdV
soliton to single traveling wave solution of the wave equation
expressed by

� �u u 0.t x

However, only integrable ones have the universal prop-
erty of possessing several exact multi-soliton solutions which
reflect perfectly nonlinear elastic interactions between indi-
vidual solitons. Thus, we now consider the two-soliton pro-
blem [26] as an example. Using certain similar analytical
methods, the exact two-soliton solution to equation (4) is
given by

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

() ()

()

� � �

� � �

u t x
c c

x x c t

c c
x x c t

,
2

sech
2

2
sech

2
,

1 2 1
1 1

2 2 2
2 2

where c1 and c2 denote the speeds of two individual solitons,
respectively. From this expression, we know that the width of
the soliton is inversely proportional to the square root of the
wave speed for the KdV equation. Assuming �c c1 2 without
loss of generality, if such two solitons are well separated with
the taller (and thus narrower) to the left of the shorter, then the
taller soliton travels faster to the right and would interact
nonlinearly and collide elastically with the shorter one
[1, 29, 30].

Figure 1. The KdV equation. Top: a one-soliton solution to the KdV equation (left panel) is compared to the corresponding predicted solution
to the learned equation (right panel). The network correctly captures the dynamics behavior and accurately reproduces the soliton solution
with a relative �2 error of 3.44× 10–3. Bottom: the comparison of the predicted and exact soliton solutions which correspond to the three
temporal snapshots depicted by the white vertical lines in the top panel is presented.

Figure 2. The spatiotemporal behavior of a one-soliton solution to
the learned KdV equation.

3

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

As an example, an initial solution is given explicitly by

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠() () ()

()

� � � �u x x x
3
2

sech
3

2
15

1
2

sech
1
2

3 .

6

0
2 2

Using the above same spectral method, starting from the
initial condition(6), we use the Chebfun package [27] with a
Fourier spatial discretization with 512 modes and a 4th-order
explicit RK integrator with time-step size 1× 10−4, and then
integrate the equation up to the final instant t=5. The
solution is saved every Δt=0.05 to give us totally 201
snapshots. We generate a smaller training dataset out of this
data by randomly sub-sampling Nu=100 initial-boundary
data and Nf=10 000 collocation points.

Figure 3 demonstrates the evolution of two KdV solitons
with different amplitudes, which enables the unique deter-
mination of the governing equation [31]. Specifically, given a
set of initial and boundary data points, we try to learn the
unknown solution u(t, x) by training the network using the
loss function(3). The top panel of figure 3 compares between
the exact dynamics and the predicted solution. Initially, we
have two clearly separated solitons. Then, they lose their
identities in certain sort and merge into a composite structure
during the interaction. Numerical simulations of the process
show that a lower wave hump is formed in the interaction
region. The result indicates that it is a nonlinear superposition
of shifted counterparts which distinguishes from some other
simple solitary traveling waves. After a while, these two

solitons emerge from the interaction again. The model
achieves a relative �2 error of size 7.39% in a runtime of
approximately half an hour. We can see a more detailed
assessment of the predicted solution in the bottom panel of
figure 3. We present a comparison between the exact solu-
tions and the predicted solutions at different instants
t=−3.75, −1.25, 3.75. From the bottom of figure 3, we see
that the wave patterns they produced match with the exact
solutions well.

From figure 10, we can observe the elastic collision of
two individual solitons with different amplitudes better.

In addition, if the speeds of these two solitons are close,
i.e. �� �

�
0 1c c

c c
1 2

1 2
, the solitons will exchange their sizes and

speeds at certain much long distance and consequently avoid
the collision [32]. For instance, we consider the initial con-
dition

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

() ()

() ()

� �

� �

u x x

x

1.01
2

sech
1.01
2

12

1
2

sech
1
2

2 , 7

0
2

2

and adopt the same data generation and sampling method.
Then, from figure 5, we can just observe that the two

solitons never cross, but rather repulse each other at a long
distance. However, the detailed process may be difficult to be
observed numerically. See, e.g. [29, 33] for more analytical
details.

Figure 3. The KdV equation. Top: a two-soliton solution to the KdV equation is compared to the corresponding predicted solution to the
learned equation (right panel). The model correctly exhibits the dynamics behavior and accurately reproduces the solution with a relative �2
error of 7.39× 10−2. Bottom: the comparison of the predicted solutions and exact solutions which correspond to the three temporal snapshots
is presented.

4

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

3. The mKdV equation

The mKdV equation, which can be regarded as the KdV
equation with a cubic nonlinearity, is also an integrable model
that possesses most of the properties of the KdV equation
[34–39] and even has a richer family of solutions including
breathers. By the way, it can be obtained from the KdV
equation by the Miura transformation.

3.1. One-soliton solution

First, we consider the one-soliton solution to the mKdV
equation along with Dirichlet boundary conditions read as

⎧
⎨⎪
⎩⎪

[] []
() () (())
() ()

()
� � � � � � �

� � �
� � �

u u u u x t

u t x u x x
u t u t

6 0, 20, 20 , 5, 5 ,

, 3 sech 3 15 ,
, 20 , 20 0.

8
t x xxx

2

0 0

Obviously, we know that � � �& u u u6 x xxx
2 in

this case.
To obtain the training and testing data, we simulate

equation (8) using the spectral method. Starting from the
initial condition, we use the Chebfun package [27] with a
Fourier spatial discretization with 512 modes and a 4th-order
explicit RK integrator with time-step size 1× 10−4, and then
integrate the equation up to the final instant t=5. The
solution is saved every Δt=0.05 to give us totally 201
snapshots. We generate a smaller training data subset by
randomly sub-sampling Nu=100 initial and boundary data
and Nf=10 000 collocation points.

Specifically, given a set of initial and boundary data, we
attempt to parameterize the solution u(t, x) by training the
network using the loss function(3). In figure 6, we graphi-
cally show the wave profile of a one-soliton solution to the the
mKdV equation (8). The top panel of figure 6 compares
between the exact dynamics and the predicted solution. The
model achieves a relative �2 error of size 4.57% in a runtime
of about 13 minutes. From the viewpoint of training time, the
mKdV equation is more complicated compared with the KdV

equation obviously. We can see a more detailed assessment in
the bottom panel of figure 6. We present a comparison
between the exact solutions and the predicted solutions at
different points t=−3.75, −1.25, 3.75.

3.2. Breather solution

Now, we consider the breather solution, which is not only
spatially localized but also time periodic, to the mKdV
equation:

⎧
⎨⎪
⎩⎪

[] []
() ()
() ()

()

� � � � � � �
�

� � �

u u u u x t
u t x u x
u t u t

6 0, 20, 20 , 0.3, 0.3 ,
, ,

, 20 , 20 0.
9

t x xxx
2

0 0

One could obtain the exact breather solution using some
analytical methods [40]:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

() (())
(())

(())
(()) () (()) (())

() (()) (())

C
B

B E
C H

C C H

B E C B B E C H
C B B E C H

� s
�
�

� �

q
� � � �

� � �

u t x
x t
x t

x t

x t x t x t
x t x t

, 2 arctan
sin

cosh

2 sech

cos sin tanh
1 sin sech

,

x

2 2 2

with E B C� � 32 2 and H B C� �3 2 2, where α and β are
arbitrary constants.

When α=1.5 and β=1.0, we generate the data of 201
snapshots directly on the regular space–time grid every
Δt=0.003. We generate a smaller training data subset
scattered in space and time by randomly sub-sampling
Nu=100 initial data and Nf=10 000 collocation points.
Specifically, given a set of initial and boundary data, we try to
learn the solution u(t, x) by training all learnable parameters
of the network. Figure 7 demonstrates the evolution of the
breather solution within about a time period(9). The top
panel of figure 7 compares between the exact dynamics and
the predicted solution. The model achieves a relative �2 error
of size 1.05% in a runtime of about 2.2 h. We can see a more
detailed assessment in the bottom panel of figure 7. We
present a comparison between the exact solutions and the
predicted solutions at different points t=−0.22, 0, 0.23.
From figure 7, we observe that the model exactly reproduces
the breather pattern.

4. The KdV–Burgers equation

The KdV–Burgers equation is often utilized for a large
number of nonlinear systems because this model has damping
and dispersion terms [41–43]. Specifically, we consider the
KdV–Burgers equation with Dirichlet boundary conditions
given by

⎧
⎨⎪
⎩⎪

()

[] []
() ()
() ()

B C� � � � � � � �
�

� � �

10

u uu u u x t
u t x u x
u t u t

0, 40, 40 , 5, 5 ,
, ,

, 40 , 40 0,

t x xx xxx

0 0

Figure 4. The spatiotemporal behavior of a two-soliton solution to
the learned KdV equation.

5

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

where α and β are constants. In this case, � � �& uux

B C�u uxx xxx.
The exact one-soliton solution, that is actually a kink, is

obtained:

⎜ ⎟⎛
⎝

⎞
⎠() B

C
� � �u t x

z z
,

3
25

2 2 tanh
2

sech
2

,
2

2

with ()� �B
C

B
C

z x t
5

6
25

2

, where α and β are constants.

When α=1.0 and β=−1.0, we generate the data. In
this case, we just sample the data on the regular space–time
grid everyΔt=0.05 and finally obtain totally 201 snapshots.
Out of this data, we generate a smaller training data subset
by randomly sub-sampling Nu=100 initial data and
Nf=10 000 collocation points. Figure 8 summarizes our
result for the kink solution to the KdV–Burgers equation. The
top panel of figure 8 compares between the exact dynamics

and the predicted spatiotemporal solution and the resulting
prediction error is measured at 8.08× 10−3 in the relative
�2-norm with a runtime of about one and half a minute. More

detailed assessments are presented in the middle and bottom
panels of figure 8. Moreover, we present a comparison
between the exact solutions and the predicted solutions at
different time instants t=−3.75, −1.25, 3.75. This model
can accurately capture the kink dynamics behavior of the
KdV–Burgers equation.

5. The STO equation

The STO equation has important applications in many sci-
entific areas. It has been investigated using different analytic
methods, such as the Cole–Hopf transformation and Hirota’s
bilinear method. Here, we consider the STO equation [44]
with the Dirichlet boundary condition given by:

where α is an arbitrary constant, and a, b are fixed values
which can be easily obtained given an initial condition. In this
case, B B B B� � � � �& u u u uu u3 3 3x x xx xxx

2 2 .

⎧
⎨⎪
⎩⎪

[] []
() ()
() ()

()
B B B B� � � � � � � � �
�

� � �

u u u u uu u x t
u t x u x
u t a u t b

3 3 3 0, 40, 40 , 5, 5 ,
, ,

, 40 , , 40 ,
11

t x x xx xxx
2 2

0 0

Figure 5. The KdV equation. Top: another two-soliton solution to the KdV equation (left panel) is compared to the predicted solution to the
learned equation. The model correctly exhibits the dynamics behavior and accurately reproduces the solution with a relative �2 error of
2.53× 10−2. Bottom: the comparison of the predicted solutions and exact solutions is presented. The model training took about 7.5 min.

6

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

Figure 6. The mKdV equation. Top: a one-soliton solution to the mKdV equation (left panel) is compared to the predicted solution to the
learned equation. The model correctly exhibits the dynamics behavior and accurately reproduces the solution with a relative �2 error of
4.57× 10−2. Bottom: the comparison of the predicted solutions and exact solutions corresponding to the three temporal snapshots is given.

Figure 7. The mKdV equation. Top: a breather solution to the mKdV equation (left panel) is compared to the predicted solution to the learned
equation. The model correctly exhibits the dynamics behavior and accurately reproduces the solution with a relative �2 error of 1.05× 10−2.
Bottom: the comparison of the predicted solutions and exact solutions is presented.

7

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

Figure 8. The KdV–Burgers equation. Top: a one-kink solution to the KdVB equation (left panel) is compared to the predicted solution to the
learned equation. The model correctly exhibits the dynamics behavior and accurately reproduces the solution with a relative �2 error of
8.08× 10−3. Bottom: the comparison of the predicted solutions and exact solutions is presented.

Figure 9. The soliton fusion phenomenon of the STO equation. Top: a solution to the STO equation (left panel) is compared to the predicted
solution to the learned equation. The model correctly exhibits the dynamics behavior and accurately reproduces the solution with a relative
�2 error of 1.61× 10−2. Middle: the comparison of the predicted solutions and exact solutions is presented. Bottom: the comparison of the
corresponding predicted solutions and exact solutions of the potential −ux is also given.

8

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

An exact soliton solution is obtained using certain
method mentioned above:

()
() ()

() ()
�

�

� �

B B

B B

� �

� �
u t x

k e k e

e e
,

1
.

k x k t k x k t

k x k t k x k t

1 21 1
2

2 2
2

1 1
2

2 2
2

5.1. Soliton fusion

The soliton fusion phenomenon is a resonance-like inelastic
interaction where two or more solitons fuse into one single
structure or less solitons, that is to say, the total number of
solitons is not conserved.

Specifically, when α=1.0 and k1=−1.8, k2=1.0, we
obtain the solution data. In this case, we sample the data on
the regular space–time grid every Δt=0.05 and finally
obtain totally 201 snapshots. Out of this data, we generate a
smaller training data subset by randomly sub-sampling
Nu=100 initial-boundary data and Nf=10 000 collocation
points. Specifically, given a set of initial and boundary data,
we try to learn the solution u(t, x) by tuning all parameters of
the network. Figure 9 graphically shows the evolution of the
soliton fusion phenomena of the the STO equation (11). The
top panel of figure 9 compares between the exact dynamics
and the predicted spatiotemporal solution. The model
achieves a relative �2 error of size 1.61% in a runtime of
approximately 10 minutes. More detailed assessments are
presented in the middle and bottom panels of figure 9. We
present a comparison between the exact solutions and the
predicted solutions at different time points t=−3.75,
−1.25, 3.75.

From figure 4, we can more clearly observe that two
solitons with different speeds fuse into a single soliton with a
larger amplitude.

5.2. Soliton fission

Now, we consider a sort of inverse of the fusion process,
namely, one or several solitons may crack into two or more
solitons.

Note that, we reset []� �x 60, 20 and []�t 0, 4 in this
case. When α=−1.0 and k1=−1.8, k2=−1.0, we obtain
the data. In this case, we just sample the data on the regular
grid everyΔt=0.008 from t=0 up to the final instant t=4
and finally obtain totally 501 snapshots. Out of this data, we
generate a smaller training data subset by randomly sub-
sampling Nu=200 initial-boundary data and Nf=20 000
collocation points.

For this soliton fission case, the sin(x) activation is often
not good, thus we choose the ()xtanh function as the activa-
tion. Specifically, given a set of initial and boundary data, we
try to fit the solution u(t, x) by training the network using the
loss function(3). Figure 11 graphically shows the evolution
of the soliton fission process of the the STO equation (11).
The top panel of figure 11 compares between the exact
dynamics and the predicted spatiotemporal solution. The
model achieves a relative �2 error of size 2.41% in a runtime
of approximately 11 min. More detailed assessments are
presented in the middle and bottom panels of figure 11. We
present a comparison between the exact solutions and the
predicted solutions at different points t=0.5, 1.5, 3.5.

This model approximately reconstructs the exact solution
from the coarse-grained sampled data. However, from the
middle and bottom panels of figure 11, it obviously can not
exhibit the vicinity of wave humps well. One could devise
more sophisticated sampling strategies to enable adaptive
refinement, for instance, by tracking the curvature of the
solution. This will be further investigated in the future
research.

Figure 10. The soliton fusion pattern of the STO equation. (a) The spatiotemporal behavior of the reconstructed solution; (b) the
spatiotemporal dynamics of the corresponding potential.

9

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

6. Remarks and discussion

Deep learning offers a quite different approach for modeling
these dynamical behaviors by using the training data to
parameterize the solution manifold itself; in other words, it
learns both the intrinsic features and their interactions from
data collected from experiments and simulations. In this
paper, we present a neural network framework for extracting
soliton dynamics of evolution equations from the spatio-
temporal data. The framework provides a universal treatment
of (1+1)-dimensional third-order nonlinear evolution
equations. Specifically, we outline how different categories of
soliton solutions (e.g. general soliton solutions, breathers and
kinks) to the equations come about due to different choices of
initial and boundary data. The results show that the model
could recover the different soliton behaviors of these
equations fairly well.

Note that a low loss value is a necessary but not sufficient
condition for stable training and accurate prediction. For the
soliton fission case in the previous section, in particular, the
model with low training loss exhibits relatively poor stability
and prediction result. In addition, soliton behaviors under
certain small perturbations have been studied to some extent
[30, 45, 46]. Correspondingly, it is very interesting to extend
to the stability of solitons with training the neural network
with noisy data. These remain important areas of exploration
for future work.

Acknowledgments

The first author would like to express his sincere thanks to
Tao Xu for his valuable comments and excellent suggestions
on this work. The authors gratefully acknowledge the support
of the National Natural Science Foundation of China (No.
11675054), the Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (Grant No.
ZF1213) and the Science and Technology Commission of
Shanghai Municipality (No. 18dz2271000).

References

[1] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240–3
[2] Craig W, Guyenne P, Hammack J, Henderson D and Sulem C

2006 Phys. Fluids 18 057106
[3] Bongard J and Lipson H 2007 Proc. Natl Acad. Sci. USA 104

9943–8
[4] Raissi M, Perdikaris P and Karniadakis G E 2017 J. Comput.

Phys. 348 683–93
[5] Raissi M and Karniadakis G E 2018 J. Comput. Phys. 357

125–41
[6] Lagaris I E, Likas A and Fotiadis D I 1998 IEEE Trans. Neural

Networks 9 987–1000
[7] Yadav N, Yadav A and Kumar M 2015 An Introduction to

Neural Network Methods for Differential Equations (Berlin:
Springer)

[8] Sirignano J and Spiliopoulos K 2018 J. Comput. Phys. 375
1339–64

Figure 11. The soliton fission phenomenon of the STO equation. Top: a solution to the STO equation (left panel) is compared to the predicted
solution to the learned equation. The model approximately exhibits the dynamics behavior and reproduces the solution with a relative �2
error of 2.41× 10−2. Middle: the comparison of the predicted solutions and exact solutions is presented. Bottom: the comparison of the
corresponding predicted solutions and exact solutions of the potential is also given.

10

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

[9] Han J, Jentzen A and Weinan E 2018 Proc. Natl Acad. Sci.
USA 115 8505–10

[10] Bar-Sinai Y, Hoyer S, Hickey J and Brenner M P 2019 Proc.
Natl Acad. Sci. USA 116 15344–9

[11] Raissi M 2018 J. Mach. Learn. Res. 19 932–55
[12] Raissi M, Perdikaris P and Karniadakis G E 2019 J. Comput.

Phys. 378 686–707
[13] Lu L, Meng X, Mao Z and Karniadakis G E 2019 DeepXDE:

A deep learning library for solving differential equations
(arXiv:1907.04502)

[14] Abadi M et al 2016 12th USENIX Symp. on Operating Systems
Design and Implementation vol 16, pp 265–83

[15] Baydin A G, Pearlmutter B A, Radul A A and Siskind J M
2018 J. Mach. Learn. Res. 18 1–43

[16] Choromanska A, Henaff M, Mathieu M, Arous G B and
Lecun Y 2015 Proc. 18 Int. Conf. on Artificial Intelligence
and Statistics, PMLR vol 38 pp 192–204

[17] Raghu M, Poole B, Kleinberg J, Ganguli S and
Sohl-Dickstein J 2017 Proc. 34th Int. Conf. on Machine
Learning, PMLR vol 70 pp 2847–54

[18] Liu D C and Nocedal J 1989 Math. Program. 45 503–28
[19] Kingma D P and Ba J 2015 Int. Conf. on Learning

Representations (ICLR)
[20] Korteweg D J and de Vries G 1895 Phil. Mag. 539 422–43
[21] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967

Phys. Rev. Lett. 19 1095–7
[22] Hirota R 1971 Phys. Rev. Lett. 27 1192–4
[23] Bona J L and Smith R 1975 Phil. Trans. R. Soc. A 278

555–601
[24] Eckhaus W and Schuur P 1983Math. Methods Appl. Sci. 5 97–116
[25] Wadati M and Toda M 1972 J. Phys. Soc. Japan 32 1403–11

[26] Gardner C S, Greene J M, Kruskal M D and Miura R M 1974
Commun. Pure Appl. Math. 27 97–133

[27] Driscoll T A, Hale N and Trefethen L N 2014 Chebfun Guide
(Oxford: Pafnuty Publications)

[28] Stein M L 1987 Technometrics 29 143–51
[29] Lax P D 1968 Commun. Pure Appl. Math. 21 467–90
[30] Tao T 2009 Bull. Am. Math. Soc. 46 1–33
[31] Rudy S H, Brunton S L, Proctor J L and Kutz J N 2017 Sci.

Adv. 3 e1602614
[32] Martel Y 2019 Proc. Int. Congress of Mathematicians (ICM

2018) pp 2439–66
[33] LeVeque R 1987 SIAM J. Appl. Math. 47 254–62
[34] Wadati M 1972 J. Phys. Soc. Japan 32 1681
[35] Hirota R 1972 J. Phys. Soc. Japan 33 1456–8
[36] Wadati M 1973 J. Phys. Soc. Japan 34 1289–96
[37] Fonseca G, Linares F and Ponce G 1999 Commun. PDE 24

683–705
[38] Hayashi N and Naumkin P 2001 Math. Phys. Anal. Geom. 4

197–201
[39] Germain P, Pusateri F and Rousset F 2016 Adv. Math. 299

271–330
[40] Alejo M A and Muñoz C 2013 Commun. Math. Phys. 324

233–62
[41] Johnson R S 1970 J. Fluid Mech. 42 49–60
[42] Canosa J and Gazdag J 1977 J. Comput. Phys. 23 393–403
[43] Ahmad H, Seadawy A R and Khan T A 2020 Phys. Scr. 95

045210
[44] Wang S, Tang X and Lou S 2004 Chaos Solitons Fractals 21

231–9
[45] Benjamin T B 1972 Proc. R. Soc. A 328 153–83
[46] Bona J 1975 Proc. R. Soc. A 344 363–74

11

Commun. Theor. Phys. 72 (2020) 115003 J Li and Y Chen

