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Abstract General high-order roguewaves of the non-
linear Schrödinger–Boussinesq equation are obtained
by the KP-hierarchy reduction theory, and the N-
order roguewaves are expressedwith the determinants,
whose entries are all algebraic forms,which is shown in
the theorem. It is found that the fundamental first-order
rogue waves can be classified into three patterns: four-
petal state, dark state, bright state by choosing differ-
ent values of parameter α. An interesting phenomenon
is discovered as the evolution of the parameter α: the
rogue wave changes from four-petal state to dark state,
whereafter bright state, which are consistent with the
change in the corresponding critical points to the func-
tion of two variables. Furthermore, the dynamical prop-
erty of second-order and third-order rogue waves is
plotted, which can be regarded as the nonlinear super-
position of the fundamental first-order rogue waves.
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1 Introduction

Recently, there are many studies about the rogue waves
on both experimental observation and theoretical anal-
ysis, which initially turn to describe the spontaneous
ocean surface waves. The possible mechanisms of
rogue waves generation consist of modulation instabil-
ity [1,2], ripples interaction [3], the nonlinear focusing
of the transient frequency modulation wave [4] and so
on. The study of rogue waves is currently one of the
hot topics encompassing many aspects, such as optics
[5–7], Bose–Einstein condensates [8], plasma [9] and
even finance [10]. Fundamentally, rogue wave is mod-
eled as a transient wavepacket localized in both space
and time. Aside from having a peak amplitude more
than twice the background wave, it has a special fea-
ture with the instability and unpredictability. As a one-
dimensional integrable scalar equation to display the
nonlinear wave propagation, the nonlinear Schrödinger
equation (NLS) [11–18] plays a key role in the descrip-
tion of rogue waves, which has various applications
related from the deep water hydrodynamics to nonlin-
ear optics. In 1983, Peregrine [19] first gave a rational
rogue waves to the NLS equation, whose generation
principle is identified as the evolution of the breather
when the period tends to infinity. The rogue wave-
peregrine soliton was observed through the experiment
in the optics [5] and in the tank [20]. It is well known
that rogue waves have different spatial–temporal struc-
tures, for example, the eye-shaped pattern can be found
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in the scalar equation while the anti-eye-shaped and
four-petals [21] in the vector ones. The understanding
of the fundamental first-order rogue waves is crucial
to the dynamics property because the corresponding
high-order rogue waves can be regarded as the non-
linear superposition of the fundamental rogue waves
and exhibit higher peak amplitude. It is meaningful to
study the high-order roguewave because the high-order
rogue wave can be regarded as a kind of rogue waves
with higher ratio of peak to the background amplitude.
By using the Darboux transformation, the significant
fourth-order rogue wave was provided on the theoret-
ically by Akhmediev [12]. Chabchoub et al. observed
the fifth-order rogue wave in the water tank [22].

Another significant research on the rogue waves is
the multicomponent coupled system, which can appear
some more exciting dynamical characters consisted of
three kinds of interactions among roguewaves, breather
and soliton: the interaction between the same, two dif-
ferent or even three different states, due to the increase
in the degrees of freedom. For instance, for the cou-
pled NLS equation [23,24], it appears the dark rogue
waves, the interactions between the rogue waves and
other localized waves because the relative velocity
cannot be affected by any trivial changes. The inter-
actions between high-order rogue waves and other
localized waves are presented by using the Darboux
transformation [25,26] or Hirota bilinear method [27].
Apart from the multicomponent coupled system, the
high-dimensional system can describe the rogue waves
more verisimilitude. We found the rogue wave aroused
by the lump soliton and a pair of resonance stripe
solitons, which is different from the traditional high-
dimensional line rogue wave and refers to the KP equa-
tion [28], the Jimbo–Miwa equation [29] and (2 + 1)-
dimensional KdV equation [30].

The KP-hierarchy reduction technique is very pow-
erful to investigate the integrable system and derive
the localized waves. It was established by the Kyoto
School [31,32] in 1980s to get the soliton solution of
integrable system. Based on this technique, Ohta et al.
obtained the N -dark–dark soliton solution of a two-
coupled NLS equation [33] in 2012. In 2014, Feng
constructed the general bright–dark soliton solutions
coupled with all combinations to the NLS equation
[34]. Meanwhile, Ling et al. obtained the multi-dark
soliton for N -component nonlinear Schrödinger equa-
tions by using Darboux transformation [35]. Recently,
the Yajima–Oikawa system (also can be called the long

wave–short wave interaction equation) [36–39] and
Mel’nikov system (also can be called NLS-KP equa-
tion) [40–42] were studied through the KP-hierarchy
reduction technique. In terms of the Yajima–Oikawa
equation, its high-order rogue waves and rational solu-
tions were obtained. Similarly, the N -dark soliton solu-
tion, bright–dark mixed N -soliton solutions to the
Mel’nikov systems were given.

Based on the KP-hierarchy reduction technique, we
construct the general high-order rogue waves to the
NLS-Boussinesq equation,

iΦt − Φxx − uΦ = 0,

uxx + uxxxx + 3(u2)xx − 3utt + (ΦΦ∗)xx = 0,
(1)

whereΦ is a complex function,Φ∗ is the complex con-
jugate function of Φ, and u is a real function. This sys-
tem is used to describe the nonlinear propagation of the
coupled Langmuir and dust-acoustic waves, including
some ions, electrons and massive charged dust parti-
cles. For slowmodulations, the amplitude of Langmuir
wave can be dominated by the NLS equation, while
for the small but finite amplitude ion-acoustic wave,
it must be governed by a driven Boussinesq equation
to display a bidirectional propagation. There are many
studies to Boussinesq equation [43] or its recombined
equations [44]. Generally speaking, NLS equation can
be used to describe the Langmuir wave and the linear
equation can be used to depict the dust-acoustic waves
accompanying with small-amplitude. However, when
the propagation wave is located in the near of the dust-
acoustic with a finite amplitude, the linear equation
will not describe this phenomenon precisely, instead,
this phenomenon can be governed by the nonlinear
Boussinesq equation. This equation was first be given
in [45], then its analytical solution, N -soliton solutions
and other patterns were reported in [46–48]. Recently,
time-fractional Boussinesq equation [49] becomes a
hot point for Rossby solitary waves in fluid, maybe
the time-fractional NLS-Boussinesq equationwill have
more research value.

In this paper, we mainly discuss the general high-
order rogue waves to the NLS-Boussinesq equation
by using the KP-hierarchy reduction technique. To our
knowledge, the high-order rogue waves of the NLS-
Boussinesq equation are never obtained. We give the
general formula of the N-order rogue waves in the the-
orem and prove it by the lemma. The obtained rogue
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waves can be classified as three patterns, four-petal
state, dark state and bright state. As the evolution of
the parameter α, the rogue wave turns from the four-
petal state to the dark state until to the bright state, the
progress can be explained through the critical points
property to the function with two variables, that is, if
there are four critical points, two are maximums and
two the minimums, it is the four-petal state; if there are
three critical points, one is minimum and two the max-
imums, it is the dark state; otherwise, one is maximum
and two minimums, it is the bright state. Since the con-
version between different states can be governed by a
free parameter α, which is meaningful to the transfor-
mation between different states in the experiment. The
rich dynamical behaviors are shown through some fig-
ures. In Ref. [21], the authors demonstrated that these
rogue waves in the two-coupled NLS equation can be
transited to each other; in other words, the four-petal
rogue wave can be changed into the bright state or the
dark state with the varying of the relative frequency.
However, in our paper, the four-petal state cannot be
changed into the bright; perhaps, the reason is that the
relative amplitude of these two minimums is bigger
than that of these two maximums no matter how the
parameter α transform. Then, the dynamical behavior
of second-order and third-order rogue waves is shown
in the figures.

The structure of this paper is organized as follows:
Sect. 2 lists someKP-hierarchywith Gram determinant
and reduce the bilinear KP-hierarchy into the bilinear
equation of the NLS-Boussinesq by some parameter
constraints, in which the elements of this equation are
algebraic expression. The dynamical first-order funda-
mental rogue waves, high-order rogue waves and the
corresponding analysis are presented in Sect. 3. The
last section is the conclusion and some summary.

2 The bilinear form of NLS-Boussinesq
equation derived from the KP-hierarchy

We obtain the bilinear form of Eq. (1) connected with
the famous KP-hierarchy in this section, which is cru-
cial to derive the fundamental rogue waves and high-
order rogue waves. Let us introduce the following vari-
able transformation

Φ = ei(αx+α2t) g

f
, u = 2

∂2

∂x2
log f

whereα is an arbitrary real constant, f is a real-value
function, and g is a complex-valued function. Under
this transformation, the NLS-Boussinesq equation can
be transferred to its bilinear form

(
iDt − 2iαDx − D2

x

)
g · f = 0,

(
D2
x + D4

x − 3D2
t − 1

)
f · f + gg∗ = 0,

(2)

where g∗ is the complex conjugate of g and D is the
bilinear operator defined as

Dm
t Dn

x (a, b)

≡ ∂m

∂sm
∂m

∂ym
a(t + s, x + y)b(t − s, x − y)

∣∣
s=0,y=0.

It needs to some skills to obtain the polynomial solu-
tions of f and g byusing the τ function ofKP-hierarchy
under the reduction. We will give prominence to the
steps of the derivation in detail, which is shown in the
next.

Firstly, we list three bilinear equations from the KP-
hierarchy

(
D2
x1 + 2aDx1 − Dx2

)
τ(k + 1, l) · τ(k, l) = 0,

(
1

2
Dx1Dx−1 − 1

)
τ(k, l)

· τ(k, l) + τ(k + 1, l) · τ(k − 1, l) = 0,(
D4
x1 − 4Dx1Dx3 + 3D2

x2

)
τ(k, l) · τ(k, l) = 0,

(3)

they have been proved to have the following Gram
determinant solutions in Ref. [40],

τ(k, l) = |mi j (k, l)|1≤i, j≤N , (4)

and the elements are given

mi j (k, l) = ci j +
∫

φi (k, l)ψ j (k, l)dx1,

φi (k, l) = (pi − a)kexp(ξi ),

ψ j (k, l) =
( −1

q j + a

)k

exp(ξ̃ j ),
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where ξi and ξ̃ j are functions of thevariables x−1, x1, x2,
x3, which can be written as

ξi = 1

pi − a
x−1 + pi x1 + p2i x2 + p3i x3 + ξi0,

ξ̃ j = 1

q j + a
x−1 + q j x1 − q2j x2 + q3j x3 + ξ̃i0.

Since these bilinear equations containmore than two
variables, we hope to look for an algebraic solutions
satisfying the reduction

(
∂x3 − 1

8
∂x−1 + 1

4
∂x1

)
τ(k, l) = cτ(k, l), (5)

so as to convert the bilinear KP-hierarchy into the
(1 + 1)-dimensional bilinear equations

(
D2
x1 + 2aDx1 − Dx2

)
τ(k + 1, l) · τ(k, l) = 0,

(
D2
x1 + D4

x1 + 3D2
x2 − 1

)
τ(k, l)

· τ(k, l) + τ(k + 1, l) · τ(k − 1, l) = 0.

(6)

Secondly, by defining f = τ(0, 0), g = τ(1, 0),
h = τ(−1, 0), a = iα and with the variables transfor-
mation:

x1 = x, x2 = it

Equation (6) will be transferred into

(
D2
x + 2iαDx − iDt

)
g · f = 0,

(
D2
x + D4

x − 3D2
t − 1

)
f · f + g · h = 0.

(7)

Then, we can obtain the bilinear form of (1 + 1)-
dimensional NLS-Boussinesq equation under the real
and complex conjugate condition:

f = τ(0, 0), g = τ(1, 0), g∗ = h = τ(−1, 0)

Finally, the algebraic solution of (1+1)-dimensional
NLS-Boussinesq equation can be presented according
to its bilinear form.

3 The algebraic solution to the
(1 + 1)-dimensional NLS-Boussinesq equation

In this section, we construct the algebraic solution from
the classical KP-hierarchy, that is, reduction condition
Eq. (5) must be satisfied. The detailed steps will be
given in the lemma.

Lemma Assume the element of the matrix m is the fol-
lowing form

m(μνn)
kl =

(
A(μ)
k B(ν)

l m(n)
) ∣∣∣

p=θ,q=θ∗

where

m(n) = 1

p + q

(
− p − a

q + a

)n

eη+η̃, η

= px1 + p2x2, η̃ = qx1 − q2x2,

θ is a solution of the quadratic dispersion equation

3 (θ − a)3 + 6a (θ − a)2 +
(
3a2 + 1

4

)
(θ − a)

+ 1

8(θ − a)
= 0, (8)

and A(μ)
k , B(ν)

l are two differential operator with
respect to p and q, defined by

A(μ)
k =

k∑
j=0

a(μ)
j

[
(p − a)∂p

]k− j

(k − j)! , k ≥ 0,

B(ν)
l =

l∑
j=0

b(ν)
j

[
(q + a)∂q

]l− j

(l − j)! , l ≥ 0,

(9)

where the coefficients aμ
j , b

ν
j satisfy
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a(μ+1)
j =

j∑
r=0

3r+2(p−a)3+3a2r+2(p−a)2+
(
12a2+1

4

)
(p−a) + (−1)r+1 1

8(p−a)

(r+2)!
a(μ)
j−r , μ = 0, 1, 2 . . .

b(ν+1)
j =

j∑
r=0

3r+2(q+a)3−3a2r+2(q+a)2+
(
12a2+1

4

)
(q+a) + (−1)r+1 1

8(p−a)

(r+2)!
b(μ)
j−r , ν = 0, 1, 2 . . .

(10)

then the solution of bilinear equation (7) can be written
as

τn = det
1≤i, j≤N

=

∣∣∣∣∣∣∣∣∣∣∣

m(N−1,N−1,n)
11 m(N−1,N−2,n)

13 · · · m(N−1,0,n)
1,2N−1

m(N−2,N−1,n)
31 m(N−2,N−2,n)

33 · · · m(N−2,0,n)
3,2N−1

.

.

.
.
.
.

.

.

.

m(0,N−1,n)
2N−1,1 m(0,N−2,n)

2N−1,3 · · · m(0,0,n)
2N−1,2N−1

∣∣∣∣∣∣∣∣∣∣∣
(11)

The proof of this lemma is given in “Appendix A”.

4 Complex conjugate condition and regularity

It has been proved that τn is the solution to the bilinear
equation in the lemma, if the variables x1, x2 satisfy
the following reduction

x1 = x, x2 = − i t, (12)

and the variable values of a(0)
k and b(0)

k are complex

conjugate each other, then the recurrence values a(μ)
k

and b(μ)
k will also be complex conjugate each other

under the condition p = θ, q = θ∗, that is

bμ
k |q=θ∗ =

(
a(μ)
k |p=θ

)∗
(13)

for μ = 1, 2, . . . , n, then the matrix term

m(μ,ν,n)∗
k j = m(μ,ν,n)

k j

∣∣
a(μ)
k ↔b(μ)

k ,x2↔−x2,a↔−a,θ↔θ∗

= m(μ,ν,−n)
jk , (14)

which indicates

τ ∗
n = τ−n . (15)

It is well known that f = τ0, g = τ1, g∗ = τ−1 are
the solution of (1 + 1)-dimensional NLS-Boussinesq
equation

(
iDt − 2iαDx − D2

x

)
g · f = 0,

(
D2
x + D4

x − 3D2
t − 1

)
f · f + gg∗ = 0.

(16)

Next, we show the rational function g
f is nonsingu-

lar. According to the definition of f = τ0, it is found
that f is a determinant of a Hermitian matrix τ0 =
det(m(N−i,N− j,0)

2i−1,2 j−1 ). In Ref. [11], it has been proved that
when the real part of p is positive, τ0 > 0, conversely,
when the real part is negative, τ0 < 0. Hence, whether
the real part of p is positive or negative, the correspond-
ing function τ0 is always nonsingular.

Based on the proof in “Appendix A”, we can
obtain the general high-order rogue waves to the (1 +
1)-dimensional NLS-Boussinesq equation, which is
shown in the theorem.

Theorem The solution of the (1+1)-dimensionalNLS-
Boussinesq equation is

Φ = ei(αx+α2t) τ1

τ0
,

u = 2
∂2

∂x2
logτ0,

(17)
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where

τn = det
1≤i, j≤N

(m(N−i,N− j,n)
2i−1,2 j−1 )

=

∣∣∣∣∣∣∣∣∣∣

m(N−1,N−1,n)
11 m(N−1,N−2,n)

13 · · · m(N−1,0,n)
1,2N−1

m(N−2,N−1,n)
31 m(N−2,N−2,n)

33 · · · m(N−2,0,n)
3,2N−1

.

.

.
.
.
.

.

.

.

m(0,N−1,n)
2N−1,1 m(0,N−2,n)

2N−1,3 · · · m(0,0,n)
2N−1,2N−1

∣∣∣∣∣∣∣∣∣∣
,

(18)

with f = τ0, g = τ1, g∗ = τ−1, and the entries of
matrix m(μ,ν,n)

i j are defined by

m(μ,ν,n)
i j =

i∑
k=0

j∑
l=0

aμ
k

(i−k)!
aν∗
l

( j−l)!
[
(p−a)∂p

]i−k [
(q+a)∂q

] j−l

1

p+q

(
− p−a

q+a

)
e(p+q)x−(p2−q2)it

∣∣∣∣
p=θ,q=θ∗

(19)

where θ is the solution of the quadratic dispersion
equation

3 (θ − a)3 + 6a (θ − a)2 +
(
3a2 + 1

4

)
(θ − a)

+ 1

8(θ − a)
= 0, (20)

and aμ
k satisfies the recurrence relation

a(μ+1)
j =

j∑
r=0

3r+2(p−a)3+3a2r+2(p−a)2+
(
12a2+1

4

)
(p−a) + (−1)r+1 1

8(p−a)

(r+2)!
a(μ)
j−r , μ = 0, 1, 2, . . . (21)

5 General high-order
rogue waves to NLS-Boussinesq equation

During the generation of rogue waves, a critical param-
eter a plays an important role to the pattern of rogue
waves. Under the reduction, this parameter is a pure
imaginary iα. In this section, we will discuss the
dynamics properties detailedly. We first study the solu-
tion of the quadratic dispersion equation

3 (p − a)3 + 6a (p − a)2 +
(
3a2 + 1

4

)
(p − a)

+ 1

8(p − a)
= 0, (22)

this equation includes four roots as follows when a =
iα:

p1 = iα

2
+k

1
2
5

12
+ 1

12

⎛
⎝36iα

k
1
2
5

− 144α4 − 24α2 + 73

k
1
3
3

− 24α2 − k
1
3
3 − 4

⎞
⎠

1
2

,

p2 = iα

2
+k

1
2
5

12
− 1

12

⎛
⎝36iα

k
1
2
5

− 144α4 − 24α2 + 73

k
1
3
3

− 24α2 − k
1
3
3 − 4

⎞
⎠

1
2

,

p3 = iα

2
−k

1
2
5

12
+ 1

12

⎛
⎝36iα

−k
1
2
5

− 144α4 − 24α2 + 73

k
1
3
3

− 24α2 − k
1
3
3 − 4

⎞
⎠

1
2

,

p4 = iα

2
−k

1
2
5

12
− 1

12

⎛
⎝36iα

−k
1
2
5

− 144α4 − 24α2 + 73

k
1
3
3

− 24α2 − k
1
3
3 − 4

⎞
⎠

1
2

, (23)

where

k1 = 3456α6 − 2592α4 + 2952α2 − 1058,

k2 = −1728α6 + 432α4 − 1332α2 − 215,

k3 = k2 + 18k
1
2
1 ,

k4 = 144α4 − 12α2k
1
3
3 + k

2
3
3 − 24α2 − 2k

1
3
3 + 73,
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k5 = k4

k
1
3
3

. (24)

Due to the complexity of the solutions, we cannot
divide the real part from the corresponding solutions.
Sowegive thefirst-order roguewaves based onEq. (18)
and discuss the effect of the parameter α on the pattern
of the rogue waves. For simplicity, let a(0)

0 = 1, a(0)
1 =

0, N = 1, then the functions f and g can be written as

f =
e2κ(2γ t+x)

[(
κx + 2γ κt − 1

2

)2 + (2κ2t)2 + 1
4

] [
(α − γ )2 + κ2

]

2κ3 ,

g =
e2κ(2γ t+x)

[(
m1κx+2κm3t+ γ−α−κ+2iκ

2

)2 +
(
m2κx+2κm4t+ γ−α+κ+2iκ

2

)2 + κ2+(α+γ )2

2

]
(iκ−γ+α)

4κ3 (iκ+γ−α)

m1 = α + κ − γ,

m2 = α − κ − γ,

m3 = κ2 + 2κγ − γ 2 + αγ − ακ,

m4 = κ2 − 2κγ − γ 2 + αγ + ακ,

(25)

where κ is the real part of p and γ is the imaginary part.

Then the first-order rogue wave to NLS-Boussinesq
equation is

Φ = ei(αx+α2t) g

f
,

u = 2
∂2

∂x2
log f

(26)

where f, g is in Eq. (25).
With the simplify calculation, the modular square of

the short-wave component |Φ|2 has five critical points:

(x1, t1) =
(

1

2κ
, 0

)
,

(x2, t2) =
⎛
⎝ (α − 2γ )

(
3� 2 − κ2

) 1
2 + � 2 + κ2

2κ
(
� 2 + κ2

) ,

(
3� 2 − κ2

) 1
2

4κ
(
� 2 + κ2

)
⎞
⎠ ,

(x3, t3) =
⎛
⎝ (2γ − α)

(
3� 2 − κ2

) 1
2 + � 2 + κ2

2θ
(
� 2 + κ2

) ,

(
3� 2 − κ2

) 1
2

−4κ
(
� 2 + κ2

)
⎞
⎠ ,

(x4, t4) =
⎛
⎝

(
αγ − γ 2 + κ2

) (
3κ2 − � 2

) 1
2 + κ

(
� 2 + κ2

)

2κ2
(
� 2 + κ2

) ,

(γ − α)
(
3κ2 − � 2

) 1
2

4κ2
(
� 2 + κ2

)
⎞
⎠ ,

(x5, t5) =
⎛
⎝

(
γ 2 − αγ − κ2

) (
3κ2 − � 2

) 1
2 + κ

(
� 2 + κ2

)

2κ2
(
� 2 + κ2

) ,

− (γ − α)
(
3κ2 − � 2

) 1
2

4κ2
(
� 2 + κ2

)
⎞
⎠ . (27)

where � = α − γ . According to the Hessian matrix
with two variables at these critical points, the first-order
cofactor is

H1(x, t) =
[
∂2|Φ|2
∂x2

]
,

H1(x1, t1) = 192κ4
[
(α − γ )2 − κ2

]
[
(α − γ )2 + κ2

]

H(x2, t2) = H(x3, t3) = −6κ4
[
(α − γ )2 + κ2

]

(α − γ )4

H(x4, t4) = H(x5, t5) = 6
[
(α − γ )2 + κ2

]
(28)

and the second-order cofactor is

H(x, t) =
[

∂2|Φ|2
∂x2

∂2|Φ|2
∂t2

−
(

∂2|Φ|2
∂x∂t

)2
]

H(x1, t1) = 16384κ10
[
(α − γ )2 − 3κ2

] [
3(α − γ )2 − κ2

]
[
(α − γ )2 + κ2

]4 ,

H(x2, t2) = H(x3, t3)

= 64κ10
[
3(α − γ )2 − κ2

] [
(α − γ )2 + κ2

]2
(γ − α)10

,

H(x4, t4) = H(x5, t5)

= −64
[
(α − γ )2 + κ2

]2 [
(α − γ )2 − 3κ2

]
.

(29)
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Fig. 1 (Color online) First-order rogue waves of NLS-Boussinesq equation: a four-petal state α = 0, b dark state α = 1
2 , c bright state

α =
√
3
2

Again, we begin to discuss the solution of Eq. (22). We
only consider the positive value of parameter α because
the negative value has the similar property.

When k1 > 0, that is α >⎛
⎝

(
107+51

√
17

) 1
3

12 − 8

3
(
107+51

√
17

) 1
3
+ 1

4

⎞
⎠

1
2

, the imaginary

part of p1 is α
2+ (−k5)

1
2

12 , the real part is 1
12(

36iα√
k5

− 144α4−24α2+73

k
1
3
3

− 24α2 − k
1
3
3 − 4

) 1
2

, and p2

is the conjugate of p1, but we cannot give the exact
real part and imaginary part for both p3 and p4.

When k1 < 0, that is 0 ≤ α <⎛
⎝

(
107+51

√
17

) 1
3

12 − 8

3
(
107+51

√
17

) 1
3
+ 1

4

⎞
⎠

1
2

these four

roots p1, p2, p3, p4 will not be separated as real part
and imaginary part explicitly. We only can study the
effect of parameter α from the graph. Based on the
analysis of the critical values, we get a conclusion that,
if p = p2 or p = p4, there will appear three pat-
terns of rogue waves: four-petal state, dark state, bright
state. if p = p1 or p = p3, there only exist two pat-
terns: four-petal state and bright state. So the following
rogue waves are presented on the choice of p = p2.
The approximate classification is:

(a) Four-petal state (0 ≤ α < 0.1796): in this
case, (x2, t2), (x3, t3) are two local maximums,
(x4, t4), (x5, t5) are two local minimums, and (x1,
t1) is not a local extremum.

(b) Dark state (0.1796 ≤ α < 0.6538): in this
case, (x1, t1) is the only local minimum and
(x2, t2), (x3, t3) are two local maximums.

(c) Bright state (α ≥ 0.6538): in this case, (x1, t1) is
local maximum and (x4, t4), (x5, t5) are two local
minimums (Figs. 1, 2).

Furthermore, the amplitude change at these three
critical points is shown in Figs. 3, 4 and 5, respectively,
which explain the transformation among these three
different states.

In Fig. 3, (a) indicates that these two critical
points (x2, t2), (x3, t3) are maximums, (b) shows that
these two critical points (x4, t4), (x5, t5) are mini-
mums. In addition, the relative amplitude at points
(x2, t2), (x3, t3) is larger than the points (x4, t4), (x5,
t5), which is called the four-petal state.

Then, the generationmechanism of dark roguewave
is depicted in Fig. 4

It is clear that the critical point (x1, t1) is minimum,
(x2, t2), (x3, t3) are maximums, and the relative ampli-
tude at (x1, t1) is larger than at (x2, t2), (x3, t3), which
generates the dark rogue wave.

The analysis to the bright state is the same as the
dark state. Figure 5a only exhibits the first cofactor at
(x1, t1) due to the order of magnitude to the second
cofactor at (x1, t1) is too large to exhibit, (a) indicates
the critical point (x1, t1) is maximum, (x4, t4), (x5, t5)
are minimums, and the relative amplitude at (x1, t1)
is shorter than at (x4, t4), (x5, t5), which generates the
bright rogue wave.

It is must be emphasized that, when α <⎛
⎝

(
107+51

√
17

) 1
3

12 − 8

3
(
107+51

√
17

) 1
3
+ 1

4

⎞
⎠

1
2

, there exist

two patterns, and as the parameter α gets bigger,
the rogue wave changes from the four-petal state
to dark state. Meanwhile, when α >
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Fig. 2 (Color online) Corresponding density plots of Fig. (1)
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Fig. 3 (Color online) Reason for the generation of four-petal state: a the evolution progress of Eqs. 28 and 29 at (x2, t2), (x3, t3), b the
evolution progress of Eqs. 28 and 29 at (x4, t4), (x5, t5), c the relative amplitude at these four critical points
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Fig. 4 (Color online) Reason for the generation of dark state: a the evolution progress of Eqs. 28 and 29 at (x1, t1), b the evolution
progress of Eqs. 28 and 29 at (x2, t2), (x3, t3), c the relative amplitude at these three critical points

⎛
⎝

(
107+51

√
17

) 1
3

12 − 8

3
(
107+51

√
17

) 1
3
+ 1

4

⎞
⎠

1
2

, it only

appears the bright rogue wave, but the four-petal state
cannot exist. Maybe in this case, if there exists four
critical points, it will appear another kind of four-petal
rogue wave, evolved from the bright state.

6 High-order rogue waves

The second-order rogue waves can be obtained from
Eq. (18) by taking N = 2, and the initial values are
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Fig. 5 (Color online) Reason for the generation of bright state: a the evolution progress of Eqs. 28 and 29 at (x1, t1), b the evolution
progress of Eqs. 28 and 29 at (x4, t4), (x5, t5), c the relative amplitude at these three critical points

Fig. 6 (Color online) Second-order rogue waves of NLS-Boussinesq equation, a the four-petal state for α = 0, a(0)
3 = 500, b dark

state for α = 1
2 , a(0)

3 = 1000, c the bright state for α =
√
3
2 , a(0)

3 = 100 + 10i

Fig. 7 (Color online) Corresponding density plots of Fig. 6

on the choice of a(0)
0 = 1, a(0)

1 = a(0)
2 = 0; then, the

functions f, g will be written as

f =
∣∣∣∣∣
m(1,1,0)

11 m(1,0,0)
13

m(0,1,0)
31 m(0,0,0)

33

∣∣∣∣∣ , g =
∣∣∣∣∣
m(1,1,1)

11 m(1,0,1)
13

m(0,1,1)
31 m(0,0,1)

33

∣∣∣∣∣ (30)

where

m(μ,ν,0)
i, j = A(μ)

i B(ν)
j

1

p + q
e(p+q)x−(p2−q2)i t

∣∣
p=θ,q=θ∗ ,

m(μ,ν,1)
i, j = −A(μ)

i B(ν)
j

1

p + q

p − iα

q + iα

e(p+q)x−(p2−q2)i t
∣∣
p=θ,q=θ∗ .

(31)
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Fig. 8 (Color online)
Third-order rogue waves: a
four-petal state with the
choices α = 0, a(0)

0 =
1, a(0)

1 = a(0)
2 = a(0)

3 =
a(0)
4 = 0, a(0)

5 = 1000, b
dark state by choosing
α = 1

2 , a(0)
0 = 1, a(0)

1 =
a(0)
2 = a(0)

3 = a(0)
4 =

0, a(0)
5 = 300,000

Similarly, the second-order roguewaves have also three
patterns: four-petal state, dark state, bright state, which
are depicted in Fig. 6.

Its corresponding density plots are shown in Fig. 7
These three patterns second-order rogue waves

(four-petal state, dark state, bright state) all consist
of three fundamental first-order rogue waves, and the
structures of these three fundamental first-order rogue
waves exhibit triangle arrays. In addition, the patterns
affected by the parameter α are similar to the funda-
mental first-order rogue wave, that is, when 0 ≤ α <

0.1796, the second-order roguewave is four-petal state,
when 0.1796 ≤ α < 0.6538, it is the dark rogue wave,
when α > 0.6538, it is bright rogue wave.

Finally, the four-petal state and dark state of third-
order rogue waves are presented in Fig. 8 by choosing
some appropriate initial values. But the bright third-
order and higher-order roguewaves cannot be exhibited
due to the expressions are too complicated to illustrate
here.

7 Conclusion

Based on the KP-hierarchy reduction technique, we
construct the general high-order rogue waves and ana-
lyze the dynamical property of roguewaves, the general
formula of N-order rogue waves is given as a determi-
nant form in the theorem and proved by the lemma.
The obtained rogue waves exhibit three patterns: four-
petal state, dark state and bright state under the extreme
value theory, which is governed by a free parameter α.
We mainly analyze the Hessian matrix of the function
|Φ|2 with respect to the variables x and t from two
cases k1 > 0 and k1 < 0. When k1 > 0, if the function
has two maximums and two minimums, it will appear

the four-petal state. As the parameter α evolution, the
upper relative amplitude is becoming smaller and the
lower relative amplitude is bigger, when the critical
points number reduces to three, twomaximums and one
minimum, there appear the dark state. When k1 < 0,
the function always has two minimum values and one
maximum no matter what the values of parameter α,
it appears the bright rogue wave. The theoretical anal-
ysis above shows that the different states can be con-
verted by choosing different values of a free parameter
α, which provides a favorable theoretical basis to the
experiment. In Ref. [21], Zhao et al. studied the transi-
tion between the four-petal state and the bright state or
the dark state as the change in the relative frequency.
But in our paper, the transformation between the bright
state and four-petal state is not realized, maybe it is
because the upper relative amplitude is smaller than the
lower relative amplitude to the four-petal state, which
is different from the four-petal state in Ref. [21]. This
analysis can be also used to the dynamical behavior of
high-order rogue waves for the reason that the high-
order rogue waves are the superposition of fundamen-
tal rogue waves, such as, the second order is consisted
of three fundamental rogue waves and the third order
contains six fundamental rogue waves.

As we all know that, by using the Darboux trans-
formation, the interactions between high-order rogue
waves and breather or bright–dark soliton are dis-
cussed. But as to the Hirota bilinear method and KP-
hierarchy reduction technique, there are scarcely any
studies about the interaction between the high-order
rogue waves and other localized waves. In this paper,
we have obtained the high-order rogue waves to the
NLS-Boussinesq equation, we should try to focus on
the hybrid solutions with the Hirota bilinear method.
Furthermore, some nonisospectral equations [50,51]

123



2180 X. Zhang, Y. Chen

can be discussed by using the similar methods, maybe
there will appear some more exciting phenomena. In
addition, the rogue wave to discrete integrable system
[52,53] is worthy of study.
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Appendix A

In this appendix, we will give the proof to the lemma
in Sect. 3 with the KP reduction theory. The detail is as
follows:

Proof Based on the solution of the bilinear KP-
hierarchy (4), let us bring in the functions with the
following form

m̂(n) = 1

p + q

(
− p − a

q + a

)n

eγ+γ̂ , φ̂(n)

= (p − a)neγ , ψ̂(n) =
( −1

q + a

)n

eγ̂ , (32)

where

γ = 1

p − a
x−1 + px1 + p2x2 + p3x3,

γ̂ = 1

q + a
+ qx1 − q2x2 + q3x3,

in addition, these functions should be satisfied the dif-
ferential form

∂x1m̂
(n) = φ̂(n)ψ̂(n),

∂x2m̂
(n) =

(
∂x1 φ̂

(n)
)

ψ̂(n) − φ̂(n)
(
∂x1ψ̂

(n)
)

,

∂x3m̂
(n) =

(
∂2x1 φ̂

(n)
)

ψ̂(n) −
(
∂x1 φ̂

(n)
)

ψ̂(n)

+ φ̂(n)
(
∂2x1ψ̂

(n)
)

,

∂x−1m̂
(n) = − φ̂(n−1)ψ̂(n+1),

m̂(n+1) = m̂(n) + φ̂(n)ψ̂(n+1),

∂x2 φ̂
(n) = ∂2x1 φ̂

(n),

∂x3 φ̂
(n) = ∂3x1 φ̂

(n),

φ̂(n+1) = (∂x1 − a)φ̂(n),

∂x2ψ̂
(n) = −∂2x1ψ̂

(n),

∂x3ψ̂
(n) = ∂3x1ψ̂

(n),

ψ̂(n−1) = −(∂x1 + a)ψ̂(n).

Then introduce a newentries of thematrix composed
by two differential operators:

m̂(μνn)
i j = A(μ)

i B(ν)
j m̂(n), φ̂

(μn)
i = A(μ)

i φ̂(n), ψ̂
(νn)
j

= B(ν)
j ψ̂(n).

It is clear that the operators Aμ
i , Bν

j can commute
with the differential operator ∂x1 , ∂x−1 , ∂x2 , ∂x3 , so
these functions are suit for the bilinear KP-hierarchy
(3). Furthermore, for an arbitrary (i1, i2, . . . iN ; μ1,

μ2, . . . , μN , j1, j2, . . . , jN , ν1, ν2, . . . , νN ), the cor-
responding determinant

τ̂n = det
(
m̂(μk ,νl ,n)

ik , jl

)

is satisfied the bilinear KP-hierarchy, especially, when

τ̂n = det
1≤i, j≤N

(
m̂N−i,N− j,n

2i−1,2 j−1

)
, it is also the solution.

Based on the Leibniz rule, one can get

[
(p − a)∂p

]m (
p3 + p

4
− 1

8(p − a)

)

=
m∑
l=0

(
m
l

) [
3l(p−a)3+3a2l(p−a)2

+ (3a2+1

4
)(p−a)+(−1)l+1 1

8(p−a)

]

[
(p−a)∂p

]m−l +
(
a3 + 1

4
a

)
[(p − a)∂p]m,

(33)

and

[
(q + a)∂q

]m (
q3 + q

4
− 1

8(q + a)

)

=
m∑
l=0

(
m
l

) [
3l(q+a)3−3a2l(q+a)2

+ (3a2+1

4
)(q+a)+(−1)l+1 1

8(q+a)

]

[
(q+a)∂q

]m−l −
(
a3 + 1

4
a

)
[(q + a)∂q ]m .

(34)
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Hence, one can obtain the commutator operation

[
A(μ)
k , p3 + p

4
− 1

8(p − a)

]

=
k∑
j=0

a(μ)
j

(k − j)!
[(

(p − a)∂p
)k− j

, p3 + p

4
− 1

8(p − a)

]

=
k−1∑
j=0

k− j∑
l=1

a(μ)
j

[
3l(p−a)3+3a2l(p−a)2+( 12a

2+1
4 )(p−a)+ (−1)l+1

8(p−a)

] [
(p−a)∂p

]k− j−l

l!(k− j−l)!

(35)

where [, ] devotes the commutator given by [X,Y ] =
XY − Y X .

Suppose θ is the solution of the quadratic dispersion
equation

3 (θ − a)3 + 6a (θ − a)2 +
(
3a2 + 1

4

)
(θ − a)

+ 1

8(θ − a)
= 0, (36)

then the commutator operation equals to zero when
k = 0, 1,

[
A(μ)
k , p3 + p

4
− 1

8(p − a)

] ∣∣∣∣
p=θ

= 0. (37)

When k ≥ 2:

[
A(μ)
k , p3 + p

4
− 1

8(p − a)

]

=
k−2∑
j=0

k− j∑
l=2

a(μ)
j

[
3l(p−a)3+3a2l(p−a)2+

(
12a2+1

4

)
(p−a)+ (−1)l+1

8(p−a)

] [
(p−a)∂p

]k− j−l

l!(k− j−l)!
∣∣∣∣
p=θ

=
k−2∑
j=0

k− j−2∑

l̃=0

aμ
j

[
3l̃+2(p−a)3+3a2l̃+2(p−a)2+

(
12a2+1

4

)
(p−a)+ (−1)l̃+1

8(p−a)

] [
(p−a)∂p

]k− j−l̃−2

(l̃+2)!(k− j−l̃−2)!
∣∣∣∣
p=θ

=
k−2∑

ĵ=0

⎛
⎜⎝

ĵ∑

l̂=0

3l̂+2(p−a)3+3a2l̂+2(p−a)2+
(
12a2+1

4

)
(p−a)+ (−1)l̂+1

8(p−a)

(l̂ + 2)! a(μ)

ĵ−l̂

⎞
⎟⎠

(
(p − a)∂p

)k−2− ĵ

(k − 2 − ĵ)!

∣∣∣∣
p=θ

=
k−2∑

ĵ=0

a(μ+1)
ĵ

(
(p − a)∂p

)k−2− ĵ

(k − 2 − ĵ)!

∣∣∣∣
p=θ

= A(μ+1)
k−2

∣∣
p=θ

.

(38)

Thus, there exists a recurrence relation between the two
differential operators

[
A(μ)
k , p3 + p

4
− 1

8(p − a)

] ∣∣∣∣
p=θ

= A(μ+1)
k−2

∣∣∣∣
p=θ

,

spontaneously, when k < 0, this operator A(μ)
k = 0.

Similarly, it is obviously that the differential opera-
tor B(ν)

l also satisfies

[
Bν
l , q3 + q

4
− 1

8(q + a)

]
= B(ν+1)

l−2

∣∣
q=θ∗

when l > 0, and when l < 0, we define B(ν)
l = 0.
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Under the above two recurrence equation, the fol-
lowing derivative relation can be derived as:

(
∂x3 + 1

4
∂x1 − 1

8
∂x−1

)
m̂(μνn)

kl

∣∣∣∣
p=θ,q=θ∗

=
(
A(μ)
k B(ν)

l

(
p3 + q3 + 1

4
(p + q)

−1

8

(
1

p − a
+ 1

q + a

))
m̂(n)

) ∣∣∣∣
p=θ,q=θ∗

=
(
A(μ)
k

(
p3+ p

4
− 1

8(p−a)

)

B(ν)
l m̂(n)

) ∣∣∣∣
p=θ,q=θ∗

+
(
A(μ)
k B(ν)

l

(
q3+q

4
− 1

8(q+a)

)

m̂(n)
) ∣∣∣∣

p=θ,q=θ∗

=
(((

(p3+ p

4
− 1

8(p−a)
)A(μ)

k

)

+A(μ+1)
k−2

)
B(ν)
l m̂(n)

) ∣∣∣∣
p=θ,q=θ∗

+
(
A(μ)
k

(((
q3+q

4
− 1

8(q+a)

)
B(ν)
l

)
m̂(n)

)

+Bν+1
l−2

) ∣∣∣∣
p=θ,q=θ∗

=
(
p3+ p

4
− 1

8(p−a)

)
m̂(μνn)

kl

∣∣∣∣
p=θ,q=θ∗

+ m̂(μ+1,ν,n)
k−2,l

∣∣∣∣
p=θ,q=θ∗

+
(
q3+q

4
− 1

8(q+a)

)
m̂(μνn)

kl

∣∣∣∣
p=θ,q=θ∗

+ m̂(μ,ν+1,n)
k,l−2

∣∣∣∣
p=θ,q=θ∗

.

(39)

Oncemore, based on the above relation, the differential
form of a special determinant rewritten as

ˆ̂τn = det
1≤i, j≤N

(
m̂N−i,N− j,n

2i−1,2 j−1

∣∣
p=θ,q=θ∗

)
(40)

can be worked out as

(
∂x3 + 1

4
∂x1 − 1

8
∂x−1

)
ˆ̂τn

=
N∑
i=1

N∑
j=1

�i j

(
∂x3 + 1

4
∂x1 − 1

8
∂x−1

)

(
m̂N−1,N− j,n

2i−1,2 j−1

∣∣∣∣
p=θ,q=θ∗

)

=
N∑
i=1

N∑
j=1

�i j

[ (
p3+ p

4
− 1

8(p−a)

)

m̂(N−i,N− jn)
2i−1,2 j−1

∣∣∣∣
p=θ,q=θ∗

+ m̂(N−i+1,N− j,n)
2i−3,2 j−1

∣∣∣∣
p=θ,q=θ∗

+
(
q3+q

4
− 1

8(q+a)

)
m̂(N−i,N− jn)

2i−1,2 j−1

∣∣∣∣
p=θ,q=θ∗

+ m̂(N−i,N− j+1,n)
2i−1,2 j−3

∣∣∣∣
p=θ,q=θ∗

]

=
(
p3+ p

4
− 1

8(p−a)

)
N ˆ̂τn

∣∣∣∣
p=θ,q=θ∗

+
N∑
i=1

N∑
j=1

�i j m̂
(N−i+1,N− j,n)
2i−3,2 j−1

∣∣∣∣
p=θ,q=θ∗

+
(
q3+q

4
− 1

8(q+a)

)
N ˆ̂τn

∣∣∣∣
p=θ,q=θ∗

+
N∑
i=1

N∑
j=1

�i j m̂
(N−i,N− j+1,n)
2i−1,2 j−3

∣∣∣∣
p=θ,q=θ∗

,

(41)

where �i j is the (i, j)-cofactor of the matrix(
m̂N−i,N− j,n

2i−1,2 j−1

)
. It is obvious that

∑N
i=1

∑N
j=1 �i j

m̂(N−i+1,N− j,n)
2i−3,2 j−1

∣∣
p=θ,q=θ∗ = 0 for �i j is the (i, j)-

cofactor of the matrix
(
m̂N−i,N− j,n

2i−1,2 j−1

)
but not the(

m̂N−i+1,N− j,n
2i−3,2 j−1

)
. Similarly,

∑N
i=1

∑N
j=1 �i j

m̂(N−i,N− j+1,n)
2i−1,2 j−3

∣∣
p=θ,q=θ∗ = 0. Therefore, Eq. (41)

will be changed into
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(
∂x3 + 1

4
∂x1 − 1

8
∂x−1

)
ˆ̂τn

=
(
p3+ p

4
− 1

8(p−a)
+ q3+q

4
− 1

8(q+a)

)
N ˆ̂τn .

(42)

Due to ˆ̂τn is a special case of τ̂n , so ˆ̂τn is the solution
to the (1 + 1)-dimensional bilinear equation:

(
D2
x1 + 2aDx1 − Dx2

) ˆ̂τn+1 · ˆ̂τn = 0,
(
D2
x1 + D4

x1 + 3D2
x2 − 1

) ˆ̂τn · ˆ̂τn + ˆ̂τn+1 · ˆ̂τn−1 = 0.

(43)

Under reduction Eq. (42), these variables x−1, x3
in ˆ̂τn will become dummy. Thus, the matrix entries
m̂(N−i,N− j,n)

2N−i,2N− j reduce to m(N−i,N− j,n)
2N−i,2N− j , τn in Eq. (11)

satisfy Eq. (6), and the proof is completed. 	


References

1. Onorato, M., Osborne, A.R., Srio, M.: Modulational insta-
bility in crossing sea states: a possible mechanism for the
formation of freakwaves. Phys.Rev. Lett. 96, 014503 (2006)

2. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.,
Onorato, M., Wabnitz, S.: Vector rogue waves and baseband
modulation instability in the defocusing regime. Phys. Rev.
Lett. 113, 034101 (2014)

3. Peterson, P., Soomere, T., Engelbrecht, J., Groesen, E.V.:
Soliton interaction as a possible model for extreme waves
in shallow water. Nonlinear Process. Geophys. 10, 503–510
(2003)

4. Pelinovsky, E., Kharif, C., Talipova, T.: Large-amplitude
long wave interaction with a vertical wall. Eur. J. Mech. B
Fluid 27, 409–418 (2008)

5. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical
rogue waves. Nature 450, 1054–1058 (2007)

6. Pierangeli, D., Mei, F.D., Conti, C., Agranat, A.J., DelRe,
E.: Spatial rogue waves in photorefractive ferroelectrics.
Phys. Rev. Lett. 115, 093901 (2015)

7. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.:
Recent progress in investigating optical rogue waves. J.
Opt. 15, 060201 (2013)

8. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue
waves. Phys. Rev. A 80, 033610 (2009)

9. Moslem, W.M.: Langmuir rogue wave in electron–positron
plasmas. Phys. Plasmas 18, 032301 (2011)

10. Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375,
4274–4279 (2011)

11. Ohta, Y., Yang, J.K.: Genera high-order rogue wvae and
their dynamics in the nonlinear Schrödinger equation. Proc.
R. Soc. Lond. Sect. A 468, 1716–1740 (2012)

12. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue
waves and rational solutions of the nonlinear Schrödinger
equation. Phys. Rev. E 80, 026601 (2009)

13. Guo, B.L., Ling, L.M., Liu, Q.P.: High-order solution and
generalized Darboux transformation of derivative nonlinear
Schrödinger equation. Stud. Appl. Math. 130, 317–344
(2012)

14. Ling, L.M., Guo, B.L., Zhao, L.C.: High-order rogue waves
in vector nonlinear Schrödinger equation. Phys. Rev. E 89,
041201 (2014)

15. Xu, S.W., He, J.S., Wang, L.H.: The Darboux transforma-
tion of the derivative nonlinear Schrödinger equation. J.
Phys. A Math. Theor. 44, 305203 (2011)

16. Wang, Y.Y., Liang, C., Dai, C.Q., Zheng, J., Fan, Y.: Exact
vector multipole and vortex solitons in the media with
spatially modulated cubic–quintic nonlinearity. Nonlinear
Dyn. 90, 1269–1275 (2017)

17. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.:
Vector multipole and vortex solitons in two-dimensional
Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)

18. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction
of stability for Gaussian spatial solitons in quintic–septimal
nonlinear materials under PT-symmetric potentials. Non-
linear Dyn. 92, 1351–1358 (2018)

19. Peregrine, D.H.: Water waves, nonlinear Schrödinger
equations and their solutions. J. Aust. Math. Soc. B 25,
16–43 (1983)

20. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty,
G., Akhmediev, N., Dudley, J.M.: The peregrine soliton in
nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

21. Zhao, L.C., Xin, G.G., Yang, Z.Y.: Rogue-wave pattern
transition induced by relative frequency. Phys. Rev. E 90,
022918 (2014)

22. Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A.,
Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation
of hierarchy of up to fifth-order rogue waves in a water
tank. Phys. Rev. E 86, 056601 (2012)

23. Guo, B.L., Ling, L.M.: Rogue wave, breathers and bright–
dark-rogue solutions for the coupled Schrödinger equations.
Chin. Phys. Lett. 28, 110202 (2011)

24. Zhang, G.Q., Yan, Z.Y., Wen, X.Y., Chen, Y.: Interactions
of localized wave structures and dynamics in the defocusing
coupled nonlinear Schrödinger equations. Phys. Rev. E 95,
042201 (2017)

25. Xu, T., Chen, Y., Lin, J.: Localized waves of the coupled
cubic-quintic nonlinear Schrödinger equations in nonlinear
optics. Chin. Phys. B 26, 120200 (2017)

26. Wei, J., Wang, X., Geng, X.G.: Periodic and rational solu-
tions of the reduced Maxwell–Bloch equations. Commun.
Nonlinear Sci. Numer. Simul. 59, 1–14 (2017)

27. Liu, Y.K., Li, B., An, H.L.: General high-order breathers,
lumps in the (2 + 1)-dimensional Boussinesq equa-
tion. Nonlinear Dyn. (2018). https://doi.org/10.1007/
s11071-018-4181-6

28. Zhang, X.E., Chen, Y., Tang, X.Y.: Rogue wave and a
pair of resonance stripe solitons to a reduced generalized
(3 + 1)-dimensional KP equation. arXiv:1610.09507

29. Zhang, X.E., Chen, Y.: Rogue wave and a pair of resonance
stripe solitons to a reduced (3 + 1)-dimensional Jimbo–
Miwa equation. Commun. Nonlinear Sci. Numer. Simul.
52, 24–31 (2017)

123

https://doi.org/10.1007/s11071-018-4181-6
https://doi.org/10.1007/s11071-018-4181-6
http://arxiv.org/abs/1610.09507


2184 X. Zhang, Y. Chen

30. Zhang, X.E., Chen, Y.: Deformation rogue wave to the
(2 + 1)-dimensional KdV equation. Nonlinear Dyn. 90,
755–763 (2017)

31. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie
algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

32. Ohta, Y.: Wronskian solutions of soliton equations. RIMS
kôkyûroku 684, 1–17 (1989)

33. Ohta, Y., Wang, D.S., Yang, J.K.: General N -dark–dark
solitons in the coupled nonlinear Schrödinger equations.
Stud. Appl. Math. 127, 345–371 (2011)

34. Feng, B.F.: General N -soliton solution to a vector nonlinear
Schrödinger equation. J. Phys. A Math. Theor. 47, 355203
(2014)

35. Ling, L.M., Zhao, L.C., Guo, B.L.: Darboux transforma-
tion and multi-dark soliton for N -component nonlinear
Schrödinger equations. Nonlinearity 28, 3243–3261 (2015)

36. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I., Ohta, Y.:
An integrable semi-discretization of the coupled Yajima–
Oikawa system. J. Phys. A Math. Theor. 49, 165201 (2016)

37. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I., Ohta, Y.:
General high-order rogue waves of the (1+ 1)-dimensional
Yajima–Oikawa system. arXiv:1709.03781

38. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I.: Rational
solutions to two-and one-dimensional multicomponent
Yajima–Oikawa systems. Phys. Lett. A 379, 1510–1519
(2015)

39. Chen, J.C., Feng, B.F., Chen, Y., Ma, Z.Y.: General
bright–dark soliton solutions to (2 + 1)-dimensional multi-
component long-wave–short-wave resonance interaction
system. Nonlinear Dyn. 88, 1–16 (2017)

40. Han, Z., Chen, Y., Chen, J.C.: General N -dark soliton
solutions of the multi-component Mel’nikov system. J.
Phys. Soc. Jpn. 86, 074005 (2017)

41. Han, Z., Chen, Y., Chen, J.C.: Bright-dark mixed N -soliton
solutions of the multi-component mel’nikov system. J.
Phys. Soc. Jpn. 86, 104008 (2017)

42. Sun, B.N., Wazwaz, A.M.: Interaction of lumps and dark
solitons in the Mel’nikov equation. Nonlinear Dyn. (2018).
https://doi.org/10.1007/s11071-018-4180-7

43. Wazwaz, A.M.: Multiple soliton solutions and multiple
complex soliton solutions for two distinct Boussinesq
equations. Nonlinear Dyn. 85, 731–737 (2016)

44. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3 + 1)-
dimensional KP-Boussinesq and BKP-Boussinesq equa-
tions by the simplified Hirota’s method. Nonlinear Dyn. 88,
3017–3021 (2017)

45. Rao, N.N.: Exact solutions of coupled scalar field equations.
J. Phys. A Math. Gen. 22, 4813–4825 (1989)

46. Singh, S.V., Rao, N.N., Shukla, P.K.: Nonlinearly coupled
Langmuir and dust-acoustic waves in a dusty plasma. J.
Plasma Phys. 3, 551–567 (1998)

47. Hase, Y., Satsuma, J.: An N -soliton solutions for the
nonlinear Schrödinger equation coupled to the Boussinesq
equation. J. Phys. Soc. Jpn. 57, 679–682 (1988)

48. Mu, G., Qin, Z.Y.: Rogue waves for the coupled
Schrödinger–Boussinesq equation and the coupled higgs
equation. J. Phys. Soc. Jpn. 81, 084001 (2012)

49. Lu, C.N., Fu, C., Yang, H.W.: Time-fractional generalized
Boussinesq equation for Rossby solitarywaveswith dissipa-
tion effect in stratified fluid and conservation laws as well as
exact solutions. Appl. Math. Comput. 327, 104–116 (2018)

50. Xu, X.X.: An integrable coupling hierarchy of the
Mkdv-integrable systems, its hamiltonian structure and
corresponding nonisospectral integrable hierarchy. Appl.
Math. Comput. 216, 344–353 (2010)

51. Xu, T., Chen, Y.: Darboux transformation of the coupled
nonisospectral Gross–Pitaevskii system and its multi-
component generalization. Commun. Nonlinear Sci.
Numer. Simul. 57, 276–289 (2018)

52. Tang, L.Y., Fan, J.C.: A family of liouville integrable lattice
equations and its conservation laws. Appl. Math. Comput.
217, 1907–1912 (2010)

53. Li, X.Y., Li, Y.X., Yang, H.X.: Two families of liouville
integrable lattice equations. Appl. Math. Comput. 217,
8671–8682 (2011)

123

http://arxiv.org/abs/1709.03781
https://doi.org/10.1007/s11071-018-4180-7

	General high-order rogue waves to nonlinear Schrödinger–Boussinesq equation with the dynamical analysis
	Abstract
	1 Introduction
	2 The bilinear form of NLS-Boussinesq equation derived from the KP-hierarchy
	3 The algebraic solution to the (1+1)-dimensional NLS-Boussinesq equation
	4 Complex conjugate condition and regularity
	5 General high-order rogue waves to NLS-Boussinesq equation
	6 High-order rogue waves
	7 Conclusion
	Acknowledgements
	Appendix A
	References




