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In this paper, a vector Ramani equation is proposed by using the bilinear approach.
With the help of the bilinear exchange formulae, bilinear Bécklund transformation and
the corresponding Lax pair for the vector Ramani equation are derived. Besides, multi-
soliton solution expressed by pfaffian is given and proved by pfaffian techniques.
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1. Introduction

In recent years, several approaches have been developed to search for various inte-

1-8

grable coupled versions of soliton equations,” since there are much richer mathe-

matical structures behind integrable coupled systems than scalar ones. One of them
is to use bilinear approach to construct the vector extension from the bilinear form
of the original nonlinear equation.® 8 For example, the celebrated Korteweg—de
Vries (KdV) equation

Ut + 6UUy + Ugyy =0 (1)
can be transformed into the bilinear form

D, (Dy+D3)f-f=0, (2)

8Corresponding author.
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through the dependent variable transformation v = 2(In f),,, where the Hirota’s
bilinear differential operators' are defined by

" 0 aN" [0 a\" ,
DiDi*(a-b) = (333 - (9:13’) (61& - at’) a(z, t)b(z’ ') | pmar 1=t -

In Ref. 6, it is shown that the extension of the bilinear equation (2) into a coupled
bilinear form

Dy(De+D3)f - f = g%, 3)
(D¢ —2D3)f-g=0, (4)
results in the following Hirota—Satauma coupled KdV equation:
U + ULy + Uppe = 200, , (5)
Vp — 2Uppw — 6uv, = 0, (6)

where u = 2(In f);, and v =g/ f.

In what follows, we list several extensions of the KdV equation by using the
bilinear approach.

(i) Taking into account the fact that the KdV equation (1) can be transformed
into another bilinear form

(D¢ +D3)g- f =0, (7)
Dif-f=29f, (8)
through the rational transformation u = g/ f, the following bilinear equations
(D: + D3)g; - f =0, (9)
N
Dif-f=2|> g |f i=12....N, (10)
j=1

give rise to a coupled KdV equation of the form

N
ou; ouj  Duy
—L+6 2 +—=0, j=12,...,N 11
8t + (kgluk> 330 + 8x3 5 J ) Ay ) ) ( )
through the dependent variable transformation u; = g;/f. Equation (11) has been
studied by Yoneyama in Ref. 7.

(ii) Based on the fact that the bilinear form of the KdV equation (1) can be
rewritten as

(Dy+ D) fe- =0, (12)

Hirota et al.® noticed that Eq. (12) can be cast into an alternative form
(Di+D3)g- f=0, (13)
Dif-f=2Dug-f, (14)
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by letting g = f,, and extending Eqgs. (13) and (14) to the following coupled form

(D¢ + D3)g; - f=0, (15)
N

Dif-f=2D, Zgj f, j=12,...,N. (16)
j=1

By using the dependent variable transformation v; = 2g;/f, Egs. (15) and (16) are
converted to the N-component potential KAV equation

ov; ovj 83vj .
7 E -3 = =1,2....N. 1
ot 3 <k—1 Uk) ox + Ox3 0. J 2 (17)

(iii) Starting from the bilinear form of the Hirota—Satauma coupled KdV equa-
tions (5) and (6), we considered a generalized vector Hirota—Satauma coupled KdV

equation?
(DeDi+3D2) f-f=3 > ¢ingign, (18)
1<j<k<N

(Dt—Di)gzwf:O, i=1,2,...,N, (19)

which has the nonlinear form
U + %umww + Suuw =3 Z Cjk(¢j¢k:)w ; (20)

1<j<k<N

¢i,t - (z)i,zxa: - 3u¢i,z =0, 1= ]-7 2; B Na (21)

by the dependent variable transformation v = 2(In f),, and ¢; = ¢;/f. In partic-
ular, when N = 2, (20) and (21) are reduced to the generalized Hirota—Satauma
coupled KdV equation'® under some adequate scaling transformations.

The Ramani equation:

- 5(Uzmxt + 3uatzut + 3uruzt) - 5utt = 07 (22)

was first proposed in Ref. 11, which can be obtained as a 5-reduction of the BKP
equation.!? It has been shown that the Ramani equation possesses bilinear Backlund
transformation and conservation laws.13 In Ref. 14, a coupled Ramani equation of
the following form has been proposed as follows:

— 5(Uggat + BUgzty + 3Uztiyge) — Duge + 18w, =0, (23)
Wy — Wapr — IWaly — SWUzye = 0. (24)

Moreover, several extensions of the coupled Ramani equation were studied in
Refs. 15-17.

1750133-3



Mod. Phys. Lett. B 2017.31. Downloaded from www.worldscientific.com
by EAST CHINA NORMAL UNIVERSITY on 11/13/17. For personal use only.

J. Chen, B.-F. Feng & Y. Chen

The purpose of this paper is to extend the coupled Ramani equations (23)
and (24) to a vector form and to study its integrability using the bilinear approach.
We will give bilinear Backlund transformation, Lax pair and soliton solution ex-
pressed by pfaffian for the vector Ramani equation.

The rest of the paper is organized as follows. In Sec. 2, we give the vector Ramani
equation by extending the bilinear form of Egs. (23) and (24). In Sec. 3, with the
help of the exchange formulae, we derive a bilinear Bécklund transformation and
the corresponding Lax pair for the vector Ramani equation. In Sec. 4, multi-soliton
solution expressed by pfaffian is given and proved by pfaffian techniques. Finally,
this paper is concluded by Sec. 5.

2. The Vector Ramani Equation and Its Bilinear Form

By the dependent variable transformations

w=2(nf),, w= (g)x . (25)

f
Equations (23) and (24) are cast into the following bilinear form:
(DS —5D3Dy — 5D?)f - f4+18D,g- f =0, (26)
(Di=Dp)g- f=0. (27)

Furthermore, by introducing an auxiliary variable z and letting g = f,, (26) and
(27) become the following bilinear equations for a single field f:

(D$ —5D3D, —5D; + 9D, D.)f - f =0, (28)

D-(Dy = D3)f - f = 0. (29)

Based on the bilinear equations (28) and (29), the Lax pair and Bécklund trans-
formation for (23) and (24) were discussed in Ref. 14. Multi-soliton solution for
Egs. (23) and (24) was derived and expressed using pfaffians in a compact form.!®
We note that the bilinear equations (28) and (29) are similar to those of the KdV

equation (13). Thus, we consider the following bilinear equations as an extension
of the coupled Ramani equations (23) and (24):

M
(D§ = 5D3Dy —5DF)f - f+18)  Dagu-f =0, (30)
p=1
(Dy = D3)gu- f =0, (31)
M
Zgu:fza u:1a27"'7M7 (32)
p=1

which is transformed into the following nonlinear form:

M
— 5(Ugart + Btaalis + BUglip) — Buiy + 18 Y w0 =0, (33)
p=1
1750133-4
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Wyt — Wy pez — 3Wy Uy — SWylye =0, (34)
M

uZ:2Zwu, w=12 ..., M, (35)
pn=1

or the equivalent vector form

2

— 5(Uggat + gzt + Bugty) — Suy + 18(C - W), =0, (36)
W, — Wass — 30 W, — 3uzaW =0, (37)
u, =2C-W, (38)

through the dependent variable transformations

w=2(nf),, w,= (g”) : (39)
).
where W = (wy,wa,...,wp), C = (1,1,...,1) and the inner product C - W is
M
defined by C- W =3 " | wy.

Similar to the vector potential KAV equation and vector Ito equation,® the
vector asymmetrical Nizhnik-Novikov—Veselov equation!'? and the multi-component
higher-order Ito equation,2° this is a natural extension from the bilinear equations
(28) and (29) of the coupled Ramani equations (23) and (24).

3. Bilinear Backlund Transformation and Lax Pair

In this section, we first derive a bilinear Backlund transformation for the vector
Ramani equations (33) and (35). To this end, we consider

M
P = [(DS, —5D3Dy —5D7)f - f +18 " Dagy - f] 1

p=1
M
p=1
Py = [(Dy = D)gy - f1* = [(Dy = D)gy, - f1£2, (41)

where g;, and f’ satisfy

(DS —5D3Dy —5D3)f" - f' +18 32 Dugl, - f' =0, (42)
(Dy = D3)g,, - f' =0, (43)

M
Sg=f, n=12...,M. (44)

n=1

1750133-5
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With the help of the bilinear operator identities:
b¥’DSa-a—a®DSb-b=3D,[ab- (D2a-b) +5(D3a-b) - (D2a - b)]
+5D3(D3a - b) - ab,
b¥’D3Dsa-a —a?>D3Dyb-b = 2Dy(D3a-b) - ab+ 6D, (Dya-b) - (DyDsa - b),
b’D?a-a — a®>D?b-b = 2D,(D;a - b) - ab,
¢*Dia-b—b*Dyd - ¢ = beDy(a - ¢ —d-b) — (ac+bd)Dyb - ¢,
D3a-b—b0?D3d-c=beD3(a-c—d-b) — (ac+bd)D3b - ¢
—=3Dg[Dz(a-c—b-d)] - [Dzb- ],
*Dya-b—b*D,d - c = D,(ac— db) - be,
D3(Dsa -b) - ab = Dy(D3a-b) -ab+3Dy(Dya-b) - (D2a-b),
Dy(Dga-b) - (D2a-b) + Dy[(Dia - b) - (D2a - b) — 2(Dya - b) - (DyDya - b)]
= Dy(D3a-b)-ab— Dy(D?*Dsa - b) - ab,
P; and P, can be rewritten as
Py =3D,[ff" - (D3f - f1) +5(D3f - f) - (Df - f))] + 5DID3f - f) - ff
—10D(D3f - f') - ff' = 30Dy (Dyf - f') - (DaDif - ') = 10D(Dif - f) -

M
+18 " Dalguf — g, f) - fF'
pn=1

= =3D,(Dyf - f') - ff + 15D, [(D3 — Do) f - f']- (D3 - f')
+15D,(Dof - f') - (DLf - f)+5DZ(D; = Do) f - f]- ' +5D3(Def - ') - ff
—10Dy(D3f - f') - ff' = 30Du(Daf - f') - (DuDif - f') = 10De(Def - ') -

M
+18> " Dulguf = g, f) - £
pu=1

= =3D,(Dyf - f') - ff +15Do(Dof - f) - (D3 f - f') +5D3(Def - f') - ff
~10D(D3f - f') - ff' = 30Du(Dy f - f') - (DaDof - f') = 10Dy(Dof - ') - ff'
+15D,[(D3 — Do) f - f'1- (D3 f - ') + 5D((D3 — Do) f - '] ff

M
+18) " Dulguf — g, f) -

pn=1
= 3D (Dyf - ') - ff +15Do(Dof - ) - (D3f - f') + 5[De(D3f - f') -
+3Dy(Dof - f') - (Dif - f)] = 10D(D3f - ') -

1750133-6
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=30D4(Dyf - f') - (DuDyf - ') = 10D(Def - f') - ff'

M
+5D3(DS = Do) f - £ ff' +18 Dalguf = gpf) - i

p=1

M
= —3D,((D3f - f') +5D2Dof - f' =6 (guf’ — duf)] -

e
+15D, (D3 = Do) f - f']- (D2f - f)) + 5D (D3 — Do) f - '] ff'
+10D:[(D; = Do) f - f]- 4

Py = ff'(Ds = D) gy - f' = gy - ) = (9uf" + 9, /) (D = DI)(F - )
+3D:[Dy(gy - ' = [ 9.)] - [Daf - f'].

Thus, one can have the following bilinear Backlund transformation

M
(D3f - ')+ 5D2Dof - f =63 (guf' — g f) =0, (45)
p=1
(Dt — D3)(gu- f' — g, - f) =0, (46)
(Dy—D3)(f-f)=0, (47)
Do(gu- ' = f9.) =MNDaof - f'. (48)

In order to find Lax pair for the vector Ramani equations (33)—(35), we let

f= ¢f/7 9u = %f' +¢g//u U = 2(1nf/)m; w,, = <gﬂ) ,

/
DD d (49)
C- W= % ,
and thus deduce the Lax pair
Vpae = —20p0 + Au@a s (50)
Yut = Ypzzz + gV + 6w, 2 b0 (51)

M
10 5
Duzaze = —DUsOrza — DUgzPra — <3uxxx - 5”3 - 3Ut> Go + E ¢u7 (52)
p=1

M
Ot = Gzaa + Uz bz, ¢, = Ziﬁw (53)
p=1

for p = 1,2,... M. One can check that the compatibility condition of (50)—(53)
gives Eqs. (33)—(35).

1750133-7
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4. Multi-Soliton Solution Expressed by Pfaffian

Using a perturbational method, we obtain a few soliton solutions to the vector
Ramani equations (33)—(35) for N = 3. These solutions contain one-soliton solution

f=1+exp(m), gu=cu(l)exp(m), (54)
two-soliton solution
f=1+exp(m) + exp(n2) + exp(nz) + co(1,2) exp(m + 12) , (55)
9u = cu(1) exp(m) + cu(2) exp(n2) + cu(3) exp(ns) + cu(1,2) exp(m +m2) . (56)
and three-soliton solution
f =1+ exp(m) + exp(n2) + exp(ns) + co(1, 2) exp(m + 12) + co(1, 3) exp(m1 + n3)
+co(2,3) exp(n2 + n3) + co(1,2,3) exp(m + 12 + 13), (57)
g = cu(1) exp(n1) + cu(2) exp(n2) + cu(3) exp(ns) + cu(1,2) exp(m + n2)
+cu(1,3) exp(m + n3) + cu(2,3) exp(n2 + n3)
+cu(1,2,3) exp(ni + n2 + n3). (58)
Here,

(pj — 1) (@] — P})
(pj +pr) (@5 + 1Y)’

n; =piT+pit+piz+n0, coljk) =

. _(pj—pk)c N e o —c c ¢
CH(.]?]C) - (pj +pk)[ /4(.7) M(k)]’ 0(17273) - 0(1’2) 0(173) 0(273)a

(Pl - P2)(P1 - P3)(P2 - P3)
B 7 72) o1+ p) (02 + P28 + 0% 4 ) 8 o) (23

AL(1,2,3) = cu(1) (P + p3) (0} + 3) (P53 — P3) + cu(2) (0T + P3) (03 — p})(P5 + p3)

+ . (3)(} — p3) (V5 + P3) (P35 + p3)

3
Zcﬂ(j) = p?7
p=1

where j,p,k = 1,2,3 and pj, c1(j), c2(4), e3(j) for j = 1,2,3 are free parameters.
Plots of w and w,, (1 = 1,2,3) defined by (39), (55) and (56) are shown in Fig. 1,
respectively, to illustrate the two solitons interaction.

In the following, we give N-soliton solution to Egs. (30)—(32) by pfaffians. In
fact, we find that

f = pf(d07a17a27' . 'aaN7b17b27' . ’7bN750> £ pf(d07.50)7 (59)
9u = pf(d07a17a27' . 'aaN7b17b27' . ~7bNaﬂu,) £ pf(dOa.ﬁu) (60)

C#(la 27 3) =

1750133-8
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-0.1

-0.2 1
-20

Fig. 1. (Color online) Two-soliton solution given by (39), (55) and (56) with the parameters p; =

1, p2 = %7 Cl(l) = %, 02(1) = 02(2) = %, 61(2) =1, 63(2) ;—% and 03(1) =n1,0 =7n2,0 =0 at

t=0.

for p=1,2,..., M, where the elements of the pfaffians are defined as follows:
pf(do, a;) = exp(n;), pfldo,b;) = —1, pfldo, Bo) =1,
pf(aj,ar) = —ajkexp(n; +m), pflaj,be) = dk,  pllaz, o) =0,
pf(b;,br) = bjk, pf(do,B.) =0, pf(b;,B) =1,
pf(a;, Bu) =0, pf(bs, Bu) = cu(j)
with
n; =pjT+pPit+piz+nj0,

5 5
g =P Pk g P TP
it Y 4y

where pj, n;0 and ¢,(j) are constant parameters, and c,(j) needs to satisfy the
constraint conditions

S euli) =2 (61)

1750133-9
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From the definition of the functions f and g,, we can derive the following

pfaffian’s rules:

fa
faa
fwzx

fwwzx
f[EIZI(E

fIZEIIZ(E

Ji
Jat
faat
faaat

e

f=
oz

and

where

pf(do,d1, e

(
(
pf(do, ds, ®
pf(do, dy, ®
pf(do, ds, ®

(

)
)
)
)
)

)

- pf(dOa d17 d2) o, 60) 3
- 2pf(d07 dla d3a o, BO) )
- Spf(d07 dla d47 o, BO) - 2pf(d0> d2a d37 o, 60)7

Pf d07 d67 .) - 4pf(d07d15 d57 o, BO)

— 5pf(do, da, dy, ®, Bo) + 2pt(do, d1,d2,ds, @),

—pf(do, d3, ®) + 2pf(do, di, dz, e, Bo) ,

—pf(do, ds, ®) + pf(do, d1,d3, ®, 5)

—pf(do, ds, ®) + pf(dy, da, ds, ®, Bo) ,

—pf(do, dg, ®) — pf(do, d1,ds, 8, Bo) + pf(do, d2, ds, e, o)
—pf(do, d1,dz,d3, ),

—pf(dy, ds, ®) + 2pf(dy, di1,ds, e, Bo) — 2pf(do, da, dy, e, Bo)
—4pf(dy,dy,da,ds,e),

—pf(do, ds, ®) + 2pf(do, dy, ds, e, By) — 2pf(do, d2, d3, ®, o),

_pf(d07 d67 .) + pf(d07 dlv d5a o, /30) + 2pf(d07 dla d27 d37 .) 9

I,z = pf(do, d1, e, B, Bo) s

I,z = Pi(do, d2, ®, B, Bo) s

Iu,zzz = PE(do, ds, ®, B, Bo) — pf(do, d1, dz, e, B,),
9ut = pi(do, d3, e, By, Bo) + 2pf(do, di1, d2, e, By) ,

pf(d07 dk) = Oa

pf(dk7 a]) = péc eXP(Uj)7 pf(dk7 60) =0 ’ pf(dka ﬁ;t) =0 5

pf(dy,d;) =0, pf(di,b;) =0,

for k,1=1,2,3,4,5,6 and j = 1,2,...,N.

1750133-10
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Substituting Eqs. (32), (62)—(78) into the bilinear equations (30) and (31) yields
M
(DS = 5D3D; = 5D7)f - f +18 ) Dagyu- f
p=1
= (DS —5D3Dy — 5D} + 9D, D.)f - f
= 90pf(do, d2, ®)pf(dy, d1, ds, e, Bo) — 90pt(do, ds, ®)pf(doy, d1,da, e, o)
+ 90pf(do, e, Bo)pf(do, d1, da, d3, ®) — 90pi(dy, d1, ®)pf(do, d2, d3, ®, 5o),
and
(D = D3)gu - f
= 3pf(do, ®, Bo)pf(do, d1,dz, e, 3,,) — 3pf(do, e, B,)pf(do, d1,d2, e, Bo)
— 3pf(do, d2, ®, B, Bo)pf(do, d1, ) + 3pf(do, d1, e, B, Bo)pi(do, da, ®)

which vanish by the pfaffian identities.
Next, we prove that f and g, satisfy the linear equation (32).
In order to utilize the expansion formulae in Ref. 1 as follows:

pf(a17a27 C1,C2y ..., ch)
= Z (=17 pf(ay, ag, ¢, ek )DE(CL, Cay e v oy &y vy Chy o vy Can),s
1<j<k<2n
if pf(ar,az) =0, (79)
pf(aq, as,c1, 62, .., Con)
—Z pf (o, a0, c1,¢5)pf(ca, ..., &5, ..., Can)
+pf(cr, ¢j)pf(ar, o, ¢, ..., &5, ... can)], i pflar, a2) =0, (80)

we introduce a new character /3, defined by
pi(do, By) =0,  (pf(do, Bo) = 1), (81)
pf(a;, B0) =0, pf(b;; B0) =1, (pf(a;,f0) =0, phb;, o) =1)  (82)
for j=1,2,...,N. Then
f =pf(do, Bo,a1,az2,...,an,b1,ba,...,bN)
= pf(do, Bo, c1,¢c2; - - -, C2N)

= pf(do, Bo)pf(c1, ca, ..., con)
IN 2N

+ ZZ 1) pf(do, c;)pf(Bos ek )PE(C1, Cay e ooy Ejyevry Chiyev sy CaN)

j=1k=1

1750133-11
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= pf(er, ca,. .., can)
+ Z (—=1)7*[pf(do, ¢;)pf(Bo, cx) — pf(do, cx)pE(Bo, ¢5)]
1<j<k<2N
x pf(er,co, .0 €5y Chynny CoN)
= pf(c1,ca,...,Can)
+ > (17 FDf(do, ¢)pf(By, ) — pf(do, ci)E(By, ;)]
1<j<k<2N
x pf(ei,ca, ..., &j, ooy Chye vty CaN)
= pf(c1,ca,...,Con)

+ Z (=17 1pf(dy, BY, cjy ck)PE(C1y €y ooy Ey ey Chyee s

1<j<k<2N
= pf(ey, e, ..., can) + pl(do, Bh,c1,ca, ..., CoN) -
Thus, f can be expressed as
f=f+f,
fo=rpfla1,a2,...,an,b1,ba,...,bN),
1 = pf(do, By, a1,az,...,an,b1,ba,...,bxn).

We note that fy and f’ are invariant under the transformation

aj — a; (= ajexp(—ny)),
by = b (=bjexp(n;)),

so that

fo=pf(ay, ay,. .. ay, by, b5, ... by),
[ = pf(do, Bl a’, ab, ... aN, by, b5, ... by)

with the entries

CzN)

pf(a},a;) = —ajk, pf(aj,by) = 05, DI}, b)) = bjx exp(ny + k),

pf(do, By) =0, pf(do,a}) =1, pf(do,b;) = —exp(n;),
pf(Bg,a5) =0, pf(Bg,b5) = —exp(n;).
Furthermore, we introduce another character d(= do — 8), so that
pf(dy, aj) = pt(do, a}) — pf(B5, af) =1,
pi(dp, b;) = pf(do, b;) — pf(By, ;) = 0

1750133-12
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Therefore, we can find the following differential formulae:

9 .
&pf(aja a;s) =0= pf(Oé57 Béa a;‘a a;f) )

0 Y] A
@pf(ajwbk) =0= pf(afnﬁOa aj7 bk) )

0
5, P0G k) = (b = pR) exp(n; + i) = p(as, By, bj, bi)
and

0]
&pf(d()»ﬁ(/)v a;’v a;c) =0= pf(a5a d67 a;’v (L;C) )

0
&pf(d07 ﬁéa a;7 b;g) = p? eXP(n]) = pf(Oés, 6) a;‘7 b;c) )

0
%pf(d(),ﬂ(l)? b;7 b;g) =0= pf(Oé5, d67 b;’ b;e) 9

where the new entries are defined by
pf(as, B)) =0, pf(as,b;) = p) exp(n;),
pf(as,do) =0, pf(as,a}) =0.

By defining ¢; = aj and ¢y ; = b for j =1,2,..., N, fo, f’ and the differential

formulae are written as
fo=pf(c},chy ... ChN) s
f/ = pf(d()vﬁ(/)a C/lv 6/2’ L) CI2N) )

0
&pf(cgv C;g) = pf(O[5, B(/)v C}v C;c) )

0
&pf(d07ﬁ67cllj7c;{}) = pf(af)a levcg'ac;g) .

Following the procedures described in Ref. 8, we can derive

&fo = pf(0[5, 6(/)7 Cll? 0/27 RN} CIQN) )
a / U / / /
@f - pf(a5, do, 017 027 ey C2N) .
In fact, by expanding fy with respect to ¢}, we can obtain
0 0
@fO = %pf(cllv 0/27 cee ,C/QN)
2N g
= 3 (e, ) (1P Bk, & o)
j=2

1750133-13
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2N
— Z{ [pf(cy,c ! (1) pf(cg,...,éf o)

/ / j 8 / ~1 /
+pf(cl,cj)(—1)-7£[pf(02, N ,CQN)]} ) (92)

Next, we consider an induction. If N = 1, the formula (90) is nothing but the
differential formula (88). Assuming the differential formula (90) holds for n =n—1
and utilizing Eq. (88), one has

9 2N
afo :Z{[pf(a&ﬁ(/)ac/hc;)]( 1)? pf(CQ,...,A/ C2N)
=2

—|—pf(c’17c;-)(—l)jpf(ag,,ﬂ('], Chyyes @y ,Chn) - (93)

With the help of the expansion formula (80), the differential formula (90) is ob-
tained.

In order to derive the differential formula (91), we expand f’ and use the the
expansion formula (79),

7f 2 pf(d0760701a02""7c/2N)>
0

j+k—1 5 A
=3 Z (—1)7* pf(do, By, ¢, i )PE(c, €y oo E)y oo Ey vy Cay)
1<j<k<2N

L o R R
= Z (_1)J+k 1{&Z[pf(do,ﬁé,c},c;)]pf(cll,cé,...,c;,...,c%,...,c’QN)

1<j<k<2N
/ / / 8 / / Al ~ /
—|—pf(do,ﬁo,cj,ck)a[pf(cl,c%...,cj,...,ck,...,c2N)} ) (94)

Considering the differential formulae (89) and (90) and the expansion formula (79),
we have

0 )
5 1 — Z (—1)3+k—1{pf(045,d67c;-,c§€)pf(c’1,c’2,...,63-7...,627...,0’21\[)
1<j<k<2N
+ pf(do, By, ¢}, i )pf(as, By, €1y €y ooy €y Eye o Coy) )
= Y (=) Npf(as, dy, &), GIPE(C s e &y )}
1<j<k<2N
:pf(a5ad67cl17cl27~-'7cl2N)' (95)
Subsequently,
a a / / / /
227 = &(fo-#f ) = pl(as,do, ¢1, ¢, ... con) - (96)

1750133-14
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Expanding (96) with respect to as leads to

N

0 ; R

%f = Zp?(—l)N'“ exp(n;)pf(do, ¢}, ¢h, .. s iy - - ,c’Nﬂ-, ey Ch)
=1

N
= Zp?(—l)N+jpf(do,a1,a2, .. .,CLN,bl,bQ, .. .,bj, .. .,bN) . (97)
j=1

On the other hand,

9u = pf(d07a17a27"'7a/N7b1>b27"' JbN7ﬂ}L)
N . ~
= Zcu(j)(_l)N+]pf(d0>a17a27 e ,GN,bl,bg, .. '7bj7 e 7bN)a (98)
j=1

then the sum of g, over p gives

M N
Zg# = Zp?(—l)N“pf(dmahag, coan, by ba, by, b)) (99)
p=1 7j=1

which is equal to Eq. (97). Accordingly, we have shown that f and g, satisfy the
linear equation (32).

5. Conclusion and Summary

In this paper, we study a vector Ramani equation based on its bilinear form. By
means of the bilinear exchange formulae, bilinear Bécklund transformation for the
vector Ramani equation is given. It is also shown that the bilinear Bécklund trans-
formation can be linearized into the corresponding Lax pair. Moreover, multi-soliton
solution expressed by pfaffian can be obtained and proved by pfaffian techniques.
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