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Abstract

Based on the idea of homogenous balance method and with the help of Mathematica, we obtain a new auto-
Bécklund transformation for modified nonlinear dispersive equation mK(m,n). Then based on the Backlund trans-
formation, some solitary patterns solution for mK (m,n) equation are derived. In addition, we also obtain the general
solutions for mK(n,n) in higher dimensional spatial domains, even in N dimensional space.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since the soliton phenomena was first observed by Scott Russell in 1834 and K dV” equation was solved by the inverse
scattering method by Garder et al. in 1972 [1,2], the study of solutions and the related issue of the construction of
solution to a wide of nonlinear equations has become one of the most exciting and extremely active areas of research
and investigation. In recent years, the homogenous balance method (HB) has been widely applied to derive the non-
linear transformation and exact solutions (especially the solitary wave solutions) [4,6,7,9,10], and auto-Backlund
transformations [5,7,8] as well as the similarity reductions [7,8] of nonlinear partial differential equations (PDEs) in
mathematical physics. The Béacklund transformations of nonlinear PDEs play an important role in solitary theory,
which is an efficient method to obtain exact solutions of nonlinear PDE. The nonlinear iterative principle from
Backlund transformations converts the problem of solving nonlinear PDE to purely algebraic calculations [1-3]. In
Refs. [7,8], Fan extended HB method to search for Béacklund transformation and similarity reductions of nonlinear
PDE. So more solutions can be obtained by the improved HB method. However, they only dealt with the cases whose
balance constants are positive integers. In this paper, we would further extend the HB method so that it can deal with
the other cases whose balance constant is fraction or negative integer. To illustrate the extended HB method, we
consider modified nonlinear dispersive equation mK (m,n). Rosenau and Hyman [11] investigated the role of nonlinear
dispersion in the formation of patterns in liquid drops by introducing and studying a family of nonlinear K dV like
equation of the form

u+aW"), + W), ,=0 m>1 1<n<3, (1.1)

they found that nonlinear dispersion can compactify solitary waves and generate compactions, and introduced a class of
solitary waves with compact support, which they called compactions, that collide elastically and vanish identically
outside a finite core region [11-15]. They discovered that solitary waves may compactify under the influence of non-
linear dispersion which is capable of causing deep qualitative changes in the native of genuinely nonlinear phenomena.
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Equations of this type with values of m and n are denoted by K (m,n), In [11], four cases m,n = 2,3 were studied
thoroughly. The studies continued in this direction and the general case where m = n was examined and a general
formula that satisfies (1.1)—(1.5) was derived. Several other paper by Rosenau [12-14] and by Rosenau and Hyman [11]
investigated the new discovery thoroughly. Olver and Rosenau [12] investigated the tri-Hamiltonian duality between
solitons and compactons. Ismail and Taha [16] implemented a finite difference method and a finite element method to
study the two type K (2,2) and K (3, 3) equations. Ludu and Draayer [17] introduced a useful work on patterns on liquid
surfaces where cnoidal waves compactons and sealing wave discussed. In [18], Dinda and Remoissenet demonstrated
the existence of a breacher with a compact support, i.e., a breather compacton, in a nonlinear Klein-Gordon lattice
with a soft on site substrate potential.

For more details about the role of nonlinear dispersion in pattern formation and for more insight through the
compacton behavior, the reader is advised to see the remarkable achievements in [11-17].

Wazwaz has devoted considerable effort to the study on K(n,n) equation and make new developments in this regard
[19-24]. In [23], two set of entirely new formulas that produce compactons and anticompacton for any integer n, n > 1
are established. Wazwaz present a general and unified approach for analyzing the genuinely nonlinear dispersive
mK (n,n) equation in one-, two- and three-dimensional spatial domain given by

u"u +aw™), + ("), =0, (1.2)
uu 4+ awm), + b, =0, (1.3)
"+ a(u™), + b, + k"), =0, (1.4)
W' u +a(), + b, + kW), + ("), =0, (1.5)

where a, b, k, r are constants. Egs. (1.2)—(1.5) differ from those studied in [11-22] only the addition of term #"~! that
multiplies u,. Wazwaz formally shows how to construct compact and noncompact solutions in one-, two- and three-
dimensional spatial domains. Two distinct general formulaes for each model, that are of substantial interest, are de-
veloped for all positive integers, n, n > 1.

The present work is motivated by the desire to extend the work made in [23] and with the use of some proper
transformations and the extend HB method, we consider the general modified nonlinear dispersive equation mK (m,n),
we obtain all of the general compacton solution of the nonlinear mK (n, n) equation in [23]. In particularly, we obtain a
new auto-Backlund transformation for Eq. (1.3). Based on the auto-Bécklund transformation , some solitary patterns
solution for Eq. (1.3) are derived.

This paper is organized as follows. In Section 2, we derive the general solutions for mK (n, n) equation. In Section 3, a
new Backlund for mK (m, n) is obtained, then based on the Backlund transformation, some solutions for mK(2n,n) and
mK (3n,n) equation are obtained. Conclusions are given in the last section.

2. Solutions for mK(n, n) equations

Let us consider the mK (m, n) equations, i.e. Eq. (1.3). According to the idea of HB method [4-10], by balancing the
highest order partial derivative term and the nonlinear term in Eq. (1.3), we obtain balance constant

p=— (mtn). @1

m-—n

Therefore we separate two cases to discuss the mK (m,n) equations, (i) m = n, (ii) m # n.
When m = n, Eq. (1.3) changes into

u"u +a(u), + b)), =0. (2.2)
We make transform

u(x, 1) = o'/ (x, 1), (2.3)
then substituting (2.3) into (2.2) yields

v, + navy + nbuy, = 0. (2.4)
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We consider the travelling solutions of Eq. (2.4). Setting

o(x, 1) =v(§), E=k(x—ct), (2.5)
then substituting (2.5) into Eq. (2.4) yields
(na — c)v' + nbk*v” =0, (2.6)

where prime denotes d/d¢.
The general solution of linear ordinary differential equation (2.6) is

kv/nc Ve—an k+/ncy Ve—an
- _ - 2.
0(0) = - o exp [ Y] PO e [V ()
where &, c1, ¢, c3 are arbitrary constants.Therefore from (2.3) and (2.7), we obtain a family of solutions of (1.2)
I a— I —— 1/n
u(x,t) = { - jc\/_};—iin exp [— cﬁan (x— Cf)] + j;/f—c;n exp { c\/r_lan (x— ct)} + 63} . (2.8)

When setting the constants ¢, ¢3, ¢; to be equal to various values, we obtain the following four families solutions for
mK (n,n) equations

SR TP e Y 25)

uy(x, 1) = { —%cos [\/’?

In view of the arbitrariness of the constants k, ¢, ¢, the solutions of (2.9) and (2.10) cover the solutions in [14].

(x—ct)]}]/n, ¢l =—c, c3=0. (2.10)

2% : = v
uz(x,1) = { \/c\/——% sinh {f cﬁan (xfct)}} , ¢g=c, ¢3=0, (2.11)
2% — 1/n
ug(x, 1) = { - \/c_\é;% cosh {— c\/ﬁan (x — ct)}} , =-c, c=0. (2.12)
We set the nonlinear dispersive equation in an N-dimensional space
N
a4 a(ut), + Z bi(u"), . = 0, (2.13)
=1
where x; = x, u = u(xy,xa,...,xy,1), and b; are constants.
We now consider the travelling wave solutions of Eq. (2.13) in the form
u(xy,x2, .oy Xy t) =u(&), E=k(x; +x2+ - +xy —ct). (2.14)

Proceeding as before, we obtain the following general solutions of Eq. (2.13)

1/n
k\/nZ?]: bicy [ k an\i bics Ve
u(x,t) =< — A exp | — — el + l exp — El + e . (2.15)
Ve —an HZL b, Ve —an /HZ;V:.bi
where £, ¢, ¢1, ¢, ¢3, bi(i = 1,--+,N) are arbitrary constants.

It is not difficult to verify that from the solution (2.15), when setting parameters to be equal to proper values, we can
obtain all of the general compacton solutions of the nonlinear mK (n,n) equation in [23].

3. Backlund transformation and solutions for mK(m, n) equations

When m # n, from (2.1), p may be arbitrary constants. In order to apply the HB method under this condition , we
firstly make the transformation

u(x, 1) = o(x, 1) ", (3.1)
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then substituting transformation (3.1) into Eq. (3.2) yields
am(m — n)v*v, + 2bn(m* — Smn + 6n2)vi — 3bn(m® — dmn 4 3n?) oo,y + (m — n)zvz(ut + bnvy,) = 0. (3.2)

Then by balancing the highest order partial derivative term and the nonlinear term in Eq. (3.2), we get the value of the
balance constant p = 1. Therefore we seek for the Backlund transformation of Eq. (3.2) in the form

U:f/wx+¢' (33)

Here and in the following context’ := d/dw, /) = & /dw’, and f = f(w), w = w(x,?) is undetermined function and
¢(x,1) is a special solution of Eq. (3.2).

With the help of Mathematica, substituting (3.3) into (3.2) yields (because the formula is so long, just one part of it is
shown here)

am(m — n)*ff" + 2bn(m* — Smn + 6n°) [ + 3bn(m*> — dmn + 302) 1" 1" £ + b(m — n)znf’%f(“)]w)f +---

=0. (3.4)
To simplify Eq. (3.4), setting the coefficient of w® to zero yields an ordinary differential equation for f
am(m — n)*f*f" 4 2bn(m* — Smn + 6n°) [ + 3bn(m®> — dmn + 302) 1" 1" fO + b(m — n) nf2f@ = 0. (3.5)
Solving (3.5) we obtain a solution
fox 2RI (3.6)
a(m —n)

Setting f = :l:\/ben(m +n)/a(m —n)* (note : in the rest of this paper f§ denotes + \/72bn(m +n)/a(m —n)?), then
substituting (3.6) into (3.4), formula (3.4) can be simplified to a polynomial of 1/w’ (i =0,...,5), then setting the
coefficients of 1/w' (i =0,...,5), to zero yields a set of partial differential equations for w(x, ¢)
am(m — n)*¢* b, + 2bn(m* — Smn + 6n>) > — 3bn(m* — 4mn + 3n2)pp. b + (m —n)’¢* (¢, + bng) =0, (3.7)
am(m — n)2¢4wxx + (m— n)2(l)2(wxl + bW,y ) + 4am(m — n)2¢3wx¢x + 3b(m — 3n)nd,(2(m — 2n)wy @,
+ (=m +n)wd.x) + (m — n)$(2(m — m)wed, + bn(=3(m — 3n)we, — 3(m — 3n)wi by,
2 = nweb) =0, (3.8)

am(m — n)*Bp*w? + 8abm(m — n) n(m + n) ¢ wowy + a(m — n)> ¢ ((m — n)’ pwow, + bn(3(m — n)” fw?,
+ 4(m — n) PwWee + 12m(m + mw2g,)) — b(m — n)nd(6bn(m* — 2mn — 30 )W Wy + (m — 1) w;y
X (—4(m 4 n)wy — 4bn(m + n) Wy + 9a(m® — dmn + 3n) pwecd,) + 3a(m — 3n)(m — n)* pur¢..)
+ 2bn((m — n)*(m + mW2 ¢, + 6bn(m’® — 4m*n + mn® + 60" )W ¢, — 3bn(m* — 3m*n — mn* + 3n*)
X Wy (Were @y + W) + (m — n)° w2 (3a(m® — 5mn + 6n%) B2 + bn(m +n),..)) = 0, (3.9)
— dam(m — n)*(m + n)¢*w’ + 6a(m — n)*(3m — n)npd*wrwe + (m — n)pw,(2(—m® + n®)w,wy
+ 3bn(m? — 6mn — Tn*)w?, — bn(5m* + 6mn + n*)w w4+ a(Tm® — 15m*n 4 1mn* — 9n°) pw?h,)
+ (m 4 n)(2bn(m* — Smn + 6n2)ﬂwix — 3bn(m® — dmn + 3n%) PWe W W + Wf((m — n)zﬁwx,

+ bn((m — n)* Pweeer — 3(m® — 8mn + 150> i) + 3bn(m> — 4mn + 3 )wie,,) =0, (3.10)
2bnw? ((m — n)*(m + n) pwow, + 3a(m — n)* (m® + 4mn — n?) Bd*w? + bn(—m* — 5m’n + 1Tmn® + 210°) pwow,,

+ bn(m + n) (1207 fw?, + (m* + dmn — 51%) fw W + 2(m* + dmn — I*)w?p,)) = 0, (3.11)
26%0% (m + n)* (m + 3n)w' 2w, + fwy) = 0. (3.12)

From (3.1), (3.3), (3.7) and (3.12), we obtain a desired Backlund transformation of Eq. (1.3)
2/(m—n)

_2bn(m+n) d 7 (3.13)

+ =
a(m —n)* ox

u=

Inw-+ ¢
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where w satisfies (3.7)—(3.12), ¢ is a solution of Eq. (3.7).
Now we use the Backlund transformation consisted of (3.13) and (3.7)—(3.12) to exploit some explicit exact solutions
for Eq. (1.3). If we take initial solution of Eq. (3.7) as constant A4, then (3.7)—(3.12) reduce to

Wy, 4 amA* Wy, + brnwy, = 0, (3.14)
a*m(m — n)’ BA>w? + 8abm(m — n)n(m + n)A>wow,, + a(m — n)’ BA(wwy + bn(3w, + dwwey))

— bn(6bn(m* — 2mn — 30* )Wy Wee — 4(m — n)(m 4 n)wy(wy + bnwyy)) = 0, (3.15)
— dam(m — n)*(m 4 n)A>w> + 6a(m — n)*(3m — n)npA>wrwy + (m — n)Aw,(2(—m* + n)ww,

+ bn(m + n)(3(m — Tn)w?, — (5m + n)w,wee)) + (m + n) B(2bn(m* — Smn + 6n*)w?,

— 3bn(m* — dmn + 3nP )W W Wy + (m — n)zw'f(wx, + bnwyy,)) = 0, (3.16)
2bnw?((m — n)?(m + n)pwow, + 3a(m — n)*(m* + dmn — n?)BA*W? + bn(—m?® — Smn + UTmn? + 210 ) Aw,w,

+ bn(m + n)(121* Bw?. + (m* + dmn — 50°) fw, Wy )) = 0, (3.17)
26202 (m + n)* (m + 3n)w? (24w, + pwy) = 0. (3.18)

Now we assume that w(x, ¢) is of the form

w(x,t) = C + Dexp'™*) (3.19)

where C # 0, D # 0, k and 1 are constants to be determined.
Substituting (3.19) into (3.14)—(3.18), we find that (3.19) satisfies Eqs. (3.14)—(3.18) under the following cases

Case 1
4 6b a
m=2n, M :§aA2n, b :j:\/f;, ki ::F2A1/f@, (3.20)
Case 2

m=73n, Jy=adn, P,= — F24,/— (3.21)

From (3.20), the equation, "'y, + a(u®), + b(u"),.. = 0, i.e., mK(2n,n) equation, has the following solutions

XXX

—24Dexp [qﬂ 24\/—&(x — %‘aAznt)]
u = + A4

C+ Dexp [$2A1 /—&(x f%aAznt)}

2/n

; (3.22)

where 4, C, D are arbitrary constants and ab < 0.
If setting C = £D, from (3.22) we can obtain the kink-profile solitary-wave solutions for mK (2n,n) equation

2/n
_ a 4
u—{$Atanh[¥A —6—b(x—§aA m‘)}} . (3.23)

From (3.21), the equation, u" 'u, + a(u®) + b(u"),. =0, i.e., mK(3n,n) equation, has the following solutions

—24Dexp [ F24./—&(x — aAznt)} v
Uy = +4 )

C + Dexp[F24,/— £&(x — ad’nt)]

(3.24)

where 4, C, D are arbitrary constants and ab < 0.
Setting C = D, from (3.24) we can obtain the kink-profile solitary-wave solutions for mK (3n,n) equation

1/n
u= { F Atanh [q: A —%(x - aAznt)] } . (3.25)
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4. Conclusions

The phenomena of compactons shows a rich variety of concepts and properties that should be addressed and,
therefore, more work should be invested in studying these newly developed structures [11-24]. Many scientific processes
[17] other than fluid, such as super deformed nuclei, preformation of cluster in hydrodynamic models and the fission of
liquid drops may be explained on the basis of the compacton concept. A general solutions for mK(n,n) equation are
obtained. At the same time, by use of the extended HB method, a new Backlund transformation for mK (m, n) equations
are obtained. To our knowledge, this type of Backlund transformation obtained has not been ever seen before in the
literature. Then based on the Bécklund transformation, some solutions for mK (2n,n) equation and mK (3n, n) equation
are obtained. This method can also apply to other PDEs. In addition, this method is also computerizable, which allow
us to perform complicated and tedious symbolic algebraic calculation on a computer.
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