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Abstract

The extended nonlinear Schrödinger (ENLS) equation with third-order term
and fourth-order term which describe the wave propagation in the optical fibers
is more accurate than the NLS equation. A study of high-order soliton matrix
is presented for an ENLS equation in the framework of the Riemann-Hilbert
problem (RHP). Through a standard dressing procedure and the generalized
Darboux transformation (gDT), soliton matrix for simple zeros and elementary
high-order zeros in the RHP for the ENLS equation are constructed. Then the
N-soliton solutions and high-order soliton solutions for the ENLS equation can
be determined. Moreover, collision dynamics along with the asymptotic behav-
ior for the two-solitons and long-time asymptotic estimations for the high-order
one-soliton are concretely analyzed. For the given spectral parameters, we can
control the propagation direction, velocity, width and other physical quantities
of solitons by adjusting the free parameters of ENLS equations.

1 Introduction

The phenomenon of the solitary wave, which was discovered by the famous British
scientist John Scott Russell in 1834. He thought that this kind of wave should be a
stable solution of fluid motion and named it “solitary wave”, but he had not con-
firmed the existence of solitary wave in theory. In 1895, Diederik Korteweg and his
student Gustav de Vries pointed out that such waves could be approximated as long
waves with small amplitude, and thus established the KdV equation. The existence
of solitary waves is explained theoretically by the KdV equation. In 1955, Enrico
Fermi, John Pasta and Stanislaw Ulam published Studies of Nonlinear Problems,
so that the study of solitary waves is active again. Ten years later, Martin Kruskal
and Norman Zabusky, two American mathematicians, studied the whole process of
the interaction between two waves of the KdV equation in detail through numerical
calculation using advanced computers. The result indicated that the solitary waves
have the property of elastic collision, which is similar to the colliding property of
particles. Therefore, Kruskal and Zabusky named them “solitons” [47]. From then
on, the research on solitons began to flourish.
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The inverse scattering transform (IST) method was discovered by Gardner,
Greene, Kruskal and Miura (GGKM) [17] in 1967 as a method to solve the ini-
tial value problem that decay sufficiently rapidly at infinity for the KdV equations.
In 1968, Lax gave Lax pair of KdV equations [23] and pointed out that this IST
was general and could solve the initial value problem of multiple equations, and
established the general framework of the solving theory of the IST. Zakharov and
Shabat [50] promoted IST by using Lax’s thought, and gave the solution of the
higher-order KdV equation and cubic Schrödinger equation in 1972, which is the
first time to give an example to prove the generality of the IST. In 1973, the ini-
tial value problem for the sine-Gordon equation was solved by the IST [3]. In the
same year, Ablowitz, Newell, Manakov and Shabat et al. studied the long-time
behavior of KdV equation and NLS equation according to the IST [2, 26, 30]. In
1975-1976, the continuation method (W-E method) of nonlinear PDE, with only
two independent variables, was proposed by Wahlquist and Estabrook [14, 37], and
an important application of which was to obtain Lax pairs of the equation with the
help of Lie algebra, providing a necessary condition for solving the equation with
IST. However, obtainment of the solution by the W-E method is more complicated.
IST is one of the important discoveries in the field of mathematical physics in the
20th century.

The IST method was originally solved by using the Gel’Fand-Levitan-Marchenko
(GLM) integral equation, although GLM equation can be used to obtain the solution
of the equation, the solution process is very complex. The RHP, derived by two
famous mathematicians Riemann and Hilbert, was first introduced by Riemann in
his doctoral thesis in 1851, and then generalized by Hilbert to a more formal form
in 1900, and presented at the international congress of mathematicians in Paris.
In 1976, Zakharov and Manakov used precise steps to give a long-time asymptotic
formula for the solution of NLS equation that explicitly depends on the initial value
[51]. In the 1980s, Jimbo et al. [22] applied the IST to the long-time properties of
a quantum solvable model. In essence, these methods in [51, 22] requiring a priori
judgment on the asymptotic form of the solution have implied the ideas of classical
RHP. RHP as a more general method than the IST began to be applied to integrable
systems since the 1980s. For example, GLM theory is equivalent to the RHP for
second-order spectral problems, while since there is no GLM theory for the high-
order spectral problems, inverse scattering problems need to be transformed into
RHP. Most importantly, the exact long-time asymptotic property of the solution
can be obtained through RHP.

Inspired by the work of Zakharov and Manakov, Its [21] developed the isomon-
odromy method and converted the long-time behavior of the initial value problems
for the NLS equation into a small neighborhood of the local RHP in 1981, providing
a set of practical and strict approaches for analyzing the long-time behavior of in-
tegrable equations. However, this method still cannot get rid of the prior judgment
on the asymptotic form of the solution. In 1989, Zhou [52] studied the connection
between the Riemann-Hilbert factorization on self-intersecting contours and a class
of singular integral equations with a pair of decomposing algebras, providing an
effective way to treat the IST problem of first-order systems. Deift and Zhou [10]
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perfected Its’s methods and proposed nonlinear steepest descent method in 1993.
The RHP corresponding to the initial value problem of mKdV equation was studied
directly by using the nonlinear steepest descent method, and the long-time behavior
of the exact solution of mKdV was obtained. In 1997 and 2003, using the nonlin-
ear steepest descent method, long-time behavior of the initial value problem of
small dispersion KdV equation [12] and the solutions of NLS equation for weighted
Sobolev space initial data [13] were studied successively by Deift and Zhou. In 2002,
Vartanian [35] studied the long-time behavior of solutions of NLS equations with
finite dense initial values. Tovbis et al. [33] studied the asymptotic properties of
the first term of the solution to the semi-classical limit initial value problem of NLS
equation in 2006. In 2009, Monvel, Its and Kotlyarov [27] studied the long-time
properties of solutions of focusing NLS equation under periodic boundary condi-
tions on a half-line. In 2010, Yang and other collaborators used RHP to study the
initial value problems of nonlinear integrable system long-time asymptotic behavior
of soliton solution [45, 32]. In 2011, Deift and Park [11] studied the solution of the
focused NLS equation with Robin boundary conditions at the origin on a half line
long-time behavior. Fokas [15, 24, 25] published three papers in 2012 on solving
the RHP in integrable systems. Since 2013, Fan’s group began to study the RHP
[39, 40], and they have studied the long-time asymptotic behavior of Fokas-Lenells
equation under zero boundary conditions based on the nonlinear steepest descent
method. The initial boundary value problems of Sasa-Satsuma equations and three
wave equations with more complex spectral problems were studied by using the
Fokas method. In the last five years, many papers have been published on solving
the initial boundary value problem and long-time behavior of integrable equations
under the RHP framework. For example, according to the Deift-Zhou nonlinear
steepest descent method, Biondini [7] studied the long-time asymptotics for the fo-
cusing NLS equation with nonzero boundary conditions at infinity and asymptotic
stage of modulational instability. Miller et al. [9] investigated rogue waves of in-
finite order and the Painléve-III hierarchy by using the nonlinear steepest descent
method. Bilman [8] gave the large-order asymptotics for multiple-pole solitons of
the focusing NLS equation.

It is well known that the classical method of IST shows that the poles of the scat-
tering coefficients (or zeros of the RHP) can produce soliton solutions. The soliton
solutions are usually derived by using one of the several well-known techniques,
such as the dressing method or the RHP approach. However, in most literatures
only soliton solutions from simple poles are considered. It is usually assumed that a
multiple-pole solution can be obtained in a straightforward way by coalescing sev-
eral distinct poles [28] which describe multi-soliton solutions. Indeed, the soliton
dressing matrix corresponding to a multi-soliton solution is a rational matrix func-
tion which has distinct simple poles, while the coalescing procedure must produce
multiple poles. Soliton solutions corresponding to multiple poles, i.e., the high-order
solitons, have been investigated in the literatures [31, 56]. As described in [16], this
high-order soliton can be used to describe the weak bound state of a soliton solu-
tion and may appear in the study of line-propagation solitons with nearly the same
speed and amplitude height. High-order soliton solutions of some equations, such
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as sine-Gordon, Schrödinger, Kadomtsev-Petviashvili I, N-wave system, derivative
NLS and Landau-Lifshitz equations have been studied in the following literatures
[1, 6, 18, 32, 34, 36].

Recently, we have also done some research related to the RHP and high-order
soliton, in [44] we studied the high-order soliton matrix for Sasa-Satsuma equation in
the framework of the RHP. It is noted that pairs of zeros are simultaneously tackled
in the situation of the higher-order zeros, which is different from other NLS-type
equations. Moreover, collision dynamics along with the asymptotic behavior for the
two solitons were analyzed, and long-time asymptotic estimations for the higher-
order soliton solution were concretely calculated. In this case, two double-humped
solitons with nearly equal velocities and amplitudes can be observed. In the same
year, we also studied the generalized NLS equation by IST [53]. In this chapter,
the high-order rogue wave of generalized NLS equation with nonzero boundary was
given based on the robust IST method. This method is more convenient than
before because we do not have to take a limit. A study of high-order solitons
in three nonlocal NLS equations including the PT-symmetric, reverse-time, and
reverse-space-time was presented in 2018 [43]. General high-order solitons in three
different equations were derived from the same Riemann-Hilbert solutions of the
AKNS hierarchy, except for the difference in the corresponding symmetry relations
on the “perturbed” scattering data. Dynamics of general high-order solitons in these
equations were further analyzed. It was shown that the high-order fundamental-
soliton is moving on different trajectories in nearly equal velocities, and they can be
nonsingular or repeatedly collapsing, depending on the choices of the parameters.
It was also shown that the high-order multi-solitons could have more complicated
wave structures and behaviors which are different from higher-order fundamental
solitons.

There is also a wide range of literature concerning the behavior of solitons and
their interactions in various integrable systems such as soliton scattering, breather
solutions, and soliton bound states have been published recently [38, 41, 42, 54]. As
is known to all, some integrable nonlinear PDEs in mathematical physics have rich
mathematical structures and extensive physics applications [29, 46]. In particular,
it is always possible to find explicit solutions to these equations, such as they often
have multi-soliton solutions. Among these integral PDEs, the NLS equation

iut + uxx + 2|u|2u = 0, (1.1)

has been considered as the most important mathematical model. Eq.(1.1) can be
used to describe wave evolution in scientific fields such as water waves [5, 48], plasma
physics [49], condensed matter physics, fluids, arterial mechanics and fiber optics
[19, 20]. However, several phenomena observed in the experiment cannot be ex-
plained by NLS equation, as the short soliton pulses get shorter, some additional
effects become important. The NLS-type equations with high-order terms have im-
portant effects in fiber optics, Heisenberg spin chain and ocean waves. In order to
describe the dynamics of a one-dimensional continuum anisotropic Heisenberg ferro-
magnetic spin chain with the octuple-dipole interaction or the alpha helical protein
with higher-order excitation and interaction under the continuum approximation, an
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ENLS equation with higher-order odd (third-order) and even (fourth-order) terms
has been studied [4]. The ENLS equation is as follows:

iut + 1
2uxx + |u|2u− iα

(
uxxx + 6ux|u|2

)
+γ
(
uxxxx + 6u2

xu
∗ + 4u |ux|2 + 8uxx|u|2 + 2u∗xxu

2 + 6u|u|4
)

= 0.
(1.2)

Here, t is the propagation variable and x is the retarded time in the moving
frame, with the function u(x, t) being the envelope of the wave field. The notation
is standard in the theory of nonlinear waves. Sometimes x and t are interchanged
in optics and water wave theory. All coefficients in this equation are fixed except
for the α and γ. The coefficients α and γ are two real parameters which control
independently the values of third-order dispersion uxxx and that of fourth-order
dispersion uxxxx. When coefficients α and γ are equal to zero, the remaining part
is the standard normalized NLS equation. If α 6= 0, γ = 0, the equation is inte-
grable and is known as the Hirota equation. Furthermore, when α = 0, γ 6= 0 the
equation is also integrable and known as the Lakshmanan-Porsezian-Daniel (LPD)
equation. Ankiewicz and Akhmediev [4] have indicated the integrability and derived
the soliton solutions of (1.2) by DT, which motivates us to search and analyze more
exact solutions. To the best of our knowledge, the high-order solitons of the ENLS
equation have never been reported.

The main subject of the present chapter is to research the high-order solitons
of the ENLS equation in the framework of the RHP. Through a standard dressing
procedure, we can find the soliton matrix for the nonregular RHP with simple
zeros. Then combined with gDT, soliton matrix for elementary high-order zeros
in the RHP for the ENLS equation are constructed. Moreover, the influence of
free parameter (α, γ) in soliton solutions of ENLS equation on soliton propagation,
collision dynamics along with the asymptotic behavior for the two solitons and long-
time asymptotic estimations for the high-order one soliton are concretely analyzed.
The propagation direction, velocity, width and other physical quantities of solitons
can be modulated by adjusting the free parameters of ENLS equation. Our work
may be helpful to observe the light pulse waves in optical fibers and guide optical
experiments.

This chapter is organized as follows. In Section 2, the inverse scattering theory
is established for the 2 × 2 spectral problems, and the corresponding matrix RHP
is formulated. In Section 3, the N-soliton formula for ENLS equation is derived by
considering the simple zeros in the RHP. In Section 4, the high-order soliton matrix
and the generalized DT is constructed and the explicit high-order N-soliton formula
is obtained, which corresponds to the elementary high-order zeros in the RHP. The
final section is devoted to conclusion and discussion.

2 Inverse scattering theory for ENLS equation

In this section, we consider the scattering and inverse scattering problem for ENLS
equation.
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2.1 Scattering theory of the spectral problem

Considering the spectral problem of the ENLS Equation (1.2):

Yx = LY, (2.1)

Yt = BY, (2.2)

with 2× 2 matrices L and B in the forms of:

L = −iζΛ +Q,

B = (−iζ2 + 4iαζ3 + 8iγζ4)Λ + V1,

V1 = (ζ − 4αζ2)Q+ (
1

2
− 2αζ)V − αK + γVp.

Where

Λ =

(
1 0
0 −1

)
,

Q =

(
0 u
−u∗ 0

)
, (2.3)

V =

(
i|u|2 iux
iu∗x −i|u|2

)
,

K =

(
uu∗x − u∗ux −

(
2|u|2u+ uxx

)
2|u|2u∗ + u∗xx − (uu∗x − u∗ux)

)
,

Vp =

(
iAp(x, t) Bp(x, t)
−B∗p(x, t) −iAp(x, t)

)
,

with

Ap(x, t) = 3|u|4 − |ux|2 + uu∗xx + u∗uxx − 2iζ (u∗ux − uu∗x)− 4ζ2|u|2,
Bp(x, t) = 6i|u|2ux + iuxxx + 2ζuxx + 4ζ|u|2u− 4iζ2ux − 8ζ3u.

Here, ζ is a spectral parameter, Y (x, t, ζ) is a vector function, and the superscript
“*” represents complex conjugation. The spatial linear operator (2.1) and the tem-
poral linear operator (2.2) are the Lax pair of the ENLS Equation (1.2). Supposing
u(x) = u(x, 0) → 0 sufficiently fast as x → ±∞. For a prescribed initial condition
u(x, 0), we seek the solution u(x, t) at any later time t. That is, we solve an initial
value problem for the ENLS equation.

Notation

E1 = e−iζΛx−(iζ2−4iαζ3−8iγζ4)Λt, (2.4)

J = Y E−1
1 , (2.5)

so that the new matrix function J is (x, t)-independent at infinity. Inserting (2.5)
into (2.1)-(2.2), we find that the Lax pair (2.1)-(2.2) becomes

Jx = −iζ[Λ, J ] +QJ, (2.6)
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Jt = −(iζ2 − 4iαζ3 − 8iγζ4)[Λ, J ] + V1J, (2.7)

where [Λ, J ] = ΛJ − JΛ is the commutator. Notice that both matrices Q and V1

are anti-Hermitian, i.e.,

Q† = −Q, V †1 = −V1, (2.8)

where the superscript “†” represents the Hermitian of a matrix. In addition, their
traces are both equal to zero, i.e., trQ = trV1 = 0.

Now we let time t be fixed and a dummy variable, and thus it will be suppressed
in our notation. In the scattering problem, we first introduce matrix Jost solutions
J±(x, ζ) of (2.6) with the following asymptotic at large distances:

J±(x, ζ)→ I, x→ ±∞. (2.9)

Here, I is the 2 × 2 unit matrix. Now we will delineate Jost solutions J±(x, ζ)
analytical properties first.

Introducing the notation E = e−iζΛx, Φ ≡ J−E and Ψ ≡ J+E. (Φ,Ψ) satisfy
the scattering Equation (2.1), i.e.,

Yx + iζΛY = QY. (2.10)

When we treat the QY term as an inhomogeneous term, E is the solution to the
homogeneous equation Yx+iζΛY = 0, then using the method of variation of param-
eters as well as the boundary conditions (2.9), we can turn (2.10) into the following
Volterra integral equations:

J±(x, ζ) = I +

x∫
±∞

e−iζΛ(x−y)Q(y)J±(y, ζ)e−iζΛ(y−x)dy, (2.11)

Thus J±(x, ζ) allow analytical continuations off the real axis ζ ∈ R as long as
the integrals on the right sides of the above Volterra equations converge. Due to
the structure (2.3) of the potential Q, we can easily get the following proposition.

Proposition 1. The first column of J− and the second column of J+ can be ana-
lytically continued to the upper half-plane ζ ∈ C+ , while the second column of J−
and the first column of J+ can be analytically continued to the lower half-plane C−.

Proof. The integral Equation (2.11) for the first column of J− , say (ϕ1, ϕ2)T , is

ϕ1 = 1 +

x∫
−∞

u(y)ϕ2(y, ζ)dy, (2.12)

ϕ2 = −
x∫

−∞

u∗(y)ϕ1(y, ζ)e2iζ(x−y)dy. (2.13)

When ζ ∈ C+, since e2iζ(x−y) in (2.13) is bounded, and u(x) decays to zero suf-
ficiently fast at large distances, both integrals in the above two equations converge.
Thus the Jost solution (ϕ1, ϕ2)T can be analytically extended to C+. The analytic
properties of the other Jost solutions J+ can be obtained similarly. �
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From Abel’s identity, we find that |J(x, ζ)| is a constant for all x. Then using
the boundary conditions (2.9), we see that

|J±(x, ζ)| = 1, (2.14)

for all (x, ζ). Since Φ(x, ζ) and Ψ(x, ζ) are both solutions of the linear Equation
(2.1), they are linearly related by a scattering matrix S(ζ) = (sij)2×2:

Φ(x, ζ) = Ψ(x, ζ)S(ζ), ζ ∈ R. (2.15)

R is the set of real numbers.

Because we need to use scattering matrix S(ζ) to reconstruct the potential u(x, t),
now we need to delineate the analytical properties of S(ζ). If we express (Φ,Ψ) as
a collection of columns

Φ = (φ+
1 , φ

−
2 ), Ψ = (ψ−1 , ψ

+
2 ). (2.16)

Where the superscripts “±” indicate the half-plane of analyticity for the underlying
quantities. Since

S = Ψ−1Φ =

(
ψ̂1

+

ψ̂2
−

)
(φ+

1 , φ
−
2 ), (2.17)

S−1 = Φ−1Ψ =

(
φ̂1
−

ψ̂2
+

)
(ψ−1 , ψ

+
2 ). (2.18)

We see immediately that scattering matrices S and S−1 have the following ana-
lyticity structures:

S =

(
s+

11, s12

s21, s
−
22

)
, S−1 =

(
ŝ−11, ŝ12

ŝ21, ŝ
+
22

)
. (2.19)

Elements without superscripts indicate that such elements do not allow analytical
extensions to C± in general. Because S is 2× 2 matrix with unit determinant, then
we can get

ŝ11 = s22, ŝ22 = s11, ŝ12 = −s12, ŝ21 = −s21. (2.20)

Hence analytic properties of S−1 can be directly read off from analytic properties
of S.

In order to construct the RHP, we define the Jost solutions

P+ = (φ1, ψ2)eiζΛx = J−H1 + J+H2 (2.21)

are analytic in ζ ∈ C+, here

H1 ≡ diag(1, 0), H2 ≡ diag(0, 1). (2.22)



i
i

“1A7-Zhou” — 2021/9/18 — 12:35 — page 179 — #9 i
i

i
i

i
i

A7. Soliton matrix and extended nonlinear Schrödinger equation 179

In addition, from the Volterra integral Equations (2.11), we see that the large ζ
asymptotics of these analytical functions are

P+(x, ζ)→ I, ζ ∈ C+ →∞, (2.23)

If we express Φ−1 and Ψ−1 as a collection of rows

Φ−1 =

(
φ̂1

φ̂2

)
, Ψ−1 =

(
ψ̂1

ψ̂2

)
. (2.24)

Then by techniques similar to those used above, we can show that the adjoint Jost
solutions

P− = e−iζΛx
(
φ̂1

ψ̂2

)
= H1J

−1
− +H2J

−1
+ (2.25)

are analytic in ζ ∈ C−. In addition,

P−(x, ζ)→ I, ζ ∈ C− →∞. (2.26)

The anti-Hermitian property (2.8) of the potential matrix Q gives rise to invo-
lution properties in the scattering matrix as well as in the Jost solutions. Indeed,
by taking the Hermitian of the scattering Equation (2.6) and utilizing the anti-
Hermitian property of the potential matrix Q† = −Q, we get

J†±(ζ∗) = J−1
± (ζ). (2.27)

From this involution property as well as the definitions (2.21) and (2.25) for P±,
we see that the analytic solutions P± satisfy the involution property as well:

(P+)†(ζ∗) = P−(ζ). (2.28)

In addition, in view of the scattering relation (2.15) between J+ and J−, we see
that S also satisfies the involution property:

S†(ζ∗) = S−1(ζ). (2.29)

2.2 Matrix Riemann-Hilbert problem

Hence we have constructed two matrices functions P±(x, ζ) which are analytic
for ζ in C±, respectively. On the real line, using (2.15), (2.21) and (2.25), we easily
get

P−(x, ζ)P+(x, ζ) = G(x, ζ), ζ ∈ R, (2.30)

where

G = E(H1 +H2S)(H1 + S−1H2)E−1 = E

(
1 ŝ12

s21 1

)
E−1. (2.31)
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Equation (2.30) forms a matrix RHP. The normalization condition for this RHP
can be obtained from (2.23) and (2.26) as

P±(x, ζ)→ I, ζ →∞, (2.32)

which is the canonical normalization condition.

Recalling the definitions (2.21) and (2.25) of P± as well as the scattering relation
(2.15), we see that

|P+| = ŝ22 = s11, |P−| = s22 = ŝ11. (2.33)

We consider the solution of the regular RHP first, i.e., : |P±| 6= 0, i.e. :ŝ22 =
s11 6= 0 and s22 = ŝ11 6= 0 in their respective planes of analyticity. Under the canon-
ical normalization condition (2.32), the solution to this regular RHP is unique [45].
This unique solution to the regular matrix RHP (2.30) defines explicit expressions.
But its formal solution can be given in terms of a Fredholm integral equation.

To use this Plemelj-Sokhotski formula on the regular RHP (2.30), we first rewrite
(2.30) as(

P+
)−1

(ζ)− P−(ζ) = Ĝ(ζ)
(
P+
)−1

(ζ), ζ ∈ R,

where

Ĝ = I −G = −E
(

0 ŝ12

s21 0

)
E−1.

(P+)
−1

(ζ) is analytic in C+, and P−(ζ) is analytic in C−. Applying the Plemelj-
Sokhotski formula and utilizing the canonical boundary conditions (2.32), the solu-
tion to the regular RHP (2.30) is provided by the following integral equation:

(
P+
)−1

(ζ) = I +
1

2πi

∞∫
−∞

Ĝ(ξ) (P+)
−1

(ξ)

ξ − ζ
dξ, ζ ∈ C+.

In the more general case, the RHP (2.30) is not regular, i.e., |P+(ζ)| and |P−(ζ)|
can be zero at certain discrete locations ζk ∈ C+ and ζ̄k ∈ C−, 1 ≤ k ≤ N , where
N is the number of these zeros. In view of (2.33), we see that

(
ζk, ζ̄k

)
are zeros of

the scattering coefficients ŝ22(ζ) and s22(ζ). Due to the involution property (2.29),
we have the involution relation

ζ̄k = ζ∗k . (2.34)

For simplicity, we assume that all zeros
{(
ζk, ζ̄k

)
, k = 1, . . . , N

}
are simple zeros of

(ŝ22, s22) which is the generic case. In this case, both ker(P+ (ζk)) and ker(P−
(
ζ̄k
)
)

are spanned by one-dimensional column vector |vk〉 and row vector 〈vk|, respectively.

P+ (ζk) |vk〉 = 0, 〈vk|P−
(
ζ̄k
)

= 0, 1 ≤ k ≤ N. (2.35)
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Taking the Hermitian of the first equation in (2.35) and utilizing the involution
properties (2.28) and (2.34), we see that eigenvectors (|vk〉 , 〈vk|) satisfy the involu-
tion property 〈vk| = |vk〉†, vectors |vk〉 and 〈vk| are x dependent, our starting point
is (2.35) for |vk〉 and 〈vk|. Taking the x derivative to the |vk〉 equation and recalling
that P+ satisfies the scattering Equation (2.6), we get

|vk(x)〉 = e−iζkΛx |vk0〉 , (2.36)

where |vk0〉 = |vk(x)〉 |x=0.

Following similar calculations for v̄k, we readily get

〈vk(x)| = 〈v̄k0| eiζkΛx.

These two equations give the simple x dependence of vectors |vk(x)〉 and 〈v̄k(x)|.
The zeros

{(
ζk, ζ̄k

)}
of |P±(ζ)| as well as vectors |vk〉 , 〈vk| in the kernels of P+ (ζk)

and P−
(
ζ̄k
)

constitute the discrete scattering data which is also needed to solve
the general RHP (2.30).

Now we construct a matrix function which could remove all the zeros of this
RHP. For this purpose, we will introduce the rational matrix function:

Γj = I +
ζ̄j − ζj
ζ − ζ̄j

|vj〉 〈vj |
〈vj |vj〉

,

and its inverse matrix

Γ−1
j = I +

ζj − ζ̄j
ζ − ζj

|vj〉 〈vj |
〈vj |vj〉

,

where

|vi〉 ∈ Ker
(
P+Γ−1

1 · · ·Γ
−1
i−1 (ζi)

)
, 〈vj | = |vj〉† .

Therefore, if one is introducing the matrix function:

Γ = ΓNΓN−1 · · ·Γ1,

Γ(ζ) = I +
N∑

j,k=1

|vj〉
(
M−1

)
jk
〈vk|

ζ − ζ̄k
,

Γ−1(ζ) = I −
N∑

j,k=1

|vj〉
(
M−1

)
jk
〈vk|

ζ − ζj
.

M is an N ×N matrix with its (j, k) th element given by

Mjk =
〈vj |vk〉
ζ̄j − ζk

, 1 ≤ j, k ≤ N, (2.37)
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then Γ(x, ζ) cancels all the zeros of P±, and the analytic solutions can be represented
as

P+(ζ) = P̂+(ζ)Γ(ζ),

P−(ζ) = Γ−1(ζ)P̂−(ζ).

Here, P̂±(ζ) are meromorphic 2 × 2 matrix functions in C+ and C−, respectively,
with finite number of poles and specified residues. Therefore, all the zeros of RHP
have been eliminated and we can formulate a regular RHP

P̂−(ζ)P̂+(ζ) = Γ(ζ)G(ζ)Γ−1(ζ), ζ ∈ R,

with boundary condition: P̂±(ζ) = P±(ζ)Γ−1 → I as ζ → ∞. As a result, when
ζ →∞ we have P+(ζ) = Γ.

2.3 Solution of the Riemann-Hilbert problem

In this subsection, we discuss how to solve the matrix RHP (2.30) in the complex
ζ plane. This inverse problem can be solved by expanding P± at large ζ as

P±(x, ζ) = I + ζ−1P±1 (x) +O(ζ−2), ζ →∞, (2.38)

and inserting (2.38) into (2.6), then by comparing terms of the same power in ζ−1,
ζ0. We found that

diag(P+
1 )x = diag(QP+

1 ). (2.39)

Q = i[∧, P+
1 ] = −i[∧, P−1 ]. (2.40)

Hence the solution u can be reconstructed by

u = 2i(P+
1 )12 = −2i(P−1 )12. (2.41)

This completes the inverse scattering process. How to solve the matrix RHP (2.30)
will be discussed in the next subsection.

2.4 Time evolution of scattering data

In this subsection, we determine the time evolution of the scattering data. First
we determine the time evolution of the scattering matrices S and S−1. Our starting
point is the definition (2.15) for the scattering matrix, which can be rewritten as

J−E = J+ES, ζ ∈ R.

Since J± satisfies the temporal Equation (2.7) of the Lax pair, then multiplying
(2.7) by the time-independent diagonal matrix E = e−iζΛx, we see that J−E, i.e.,
J+ES, satisfies the same temporal Equation (2.7) as well. Thus, by inserting J+ES
into (2.7), taking the limit x→ +∞, and recalling the boundary condition (2.9) for
J+ as well as the fact that V → 0 as x→ ±∞, we get

St = −(iζ2 − 4iαζ3 − 8iγζ4)[Λ, S].
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Similarly, by inserting J−ES
−1 into (2.7), taking the limit x→ −∞, and recalling

the asymptotics (2.9) for J−, we get(
S−1

)
t

= −(iζ2 − 4iαζ3 − 8iγζ4)
[
Λ, S−1

]
.

From these two equations, we get

∂ŝ22

∂t
=
∂s22

∂t
= 0, (2.42)

and

∂ŝ12

∂t
= −(iζ2 − 4iαζ3 − 8iγζ4)ŝ12,

∂s21

∂t
= (iζ2 − 4iαζ3 − 8iγζ4)s21. (2.43)

The two equations in (2.42) show that ŝ22 and s22 are time independent. Recall
that ζk and ζ̄k are zeros of |P±(ζ)|, i.e., they are zeros of ŝ22(ζ) and s22(ζ) in view
of (2.33). Thus ζk and ζ̄k are also time independent. The two equations in (2.43)
give the time evolution for the scattering data ŝ12 and s21, which is

ŝ12(t; ζ) = ŝ12(0; ζ)e−(iζ2−4iαζ3−8iγζ4)t, s21(t; ζ) = s21(0; ζ)e(iζ2−4iαζ3−8iγζ4)t.

Next we determine the time dependence of the scattering data |vk〉 and 〈vj |. We
start with (2.35) for |vk〉 and 〈vj |. Taking the time derivative to the |vk〉 equation
and recalling that P+ satisfies the temporal Equation (2.35), we get

P+ (ζk;x, t)

(
∂ |vk〉
∂t

+ (iζ2 − 4iαζ3 − 8iγζ4)Λ |vk〉
)

= 0,

thus

∂ |vk〉
∂t

+ (iζ2 − 4iαζ3 − 8iγζ4) |vk〉 = 0.

Combining it with the spatial dependence (2.36), we get the temporal and spatial
dependence for the vector |vk〉 as

|vk〉 (x, t) = e−iζΛx−(iζ2−4iαζ3−8iγζ4)Λt |vk0〉 , (2.44)

where |vk0〉 is a constant. Similar calculations for 〈vk| give

〈vk| (x, t) = 〈vk0| eiζ̄kx+(iζ̄2−4iαζ̄3−8iγζ̄4)t.

We see that the scattering data needed to solve this non-regular RHP is{
s21(ξ), ŝ12(ξ), ξ ∈ R; ζk, ζ̄k, |vj〉 , 〈vk| , 1 ≤ k ≤ N

}
. (2.45)

This is called minimal scattering data. From this scattering data at any later time,
we can solve the non-regular RHP (2.30) with zeros (2.35), and thus reconstruct the
solution u(x, t) at any later time from the formula (2.41). So far, the IST process
for ENLS Equation (1.2) has been completed.



i
i

“1A7-Zhou” — 2021/9/18 — 12:35 — page 184 — #14 i
i

i
i

i
i

184 H J Zhou and Y Chen

3 N-soliton solutions

It is well known that when scattering data ŝ12 = s21 = 0, the soliton solutions
correspond to the reflectionless potential. Then jump matrix G = I, Ĝ = 0. Due
to P+(ζ) = Γ, ζ →∞. Recall to (2.41), we can get

u(x, t) = 2i(
N∑

j,k=1

|vj〉 (M−1)jk 〈vk|)12. (3.1)

Here vectors |vj〉 are given by (2.44), 〈vk| = |vk〉†, and matrix M is given by (2.37).
Without loss of generality, we let |vk0〉 = (ck, 1)T . In addition, we introduce the
notation

θk = −iζkx− (iζ2
k − 4iαζ3

k − 8iγζ4
k)t. (3.2)

Then the above solution u can be written out explicitly as

u(x, t) = 2i

N∑
j,k=1

cje
θj−θ∗k(M−1)jk, (3.3)

where the elements of the N ×N matrix M are given by

Mjk =
1

ζ∗j − ζk
[e−(θk+θ∗j ) + c∗jcke

θk+θ∗j ]. (3.4)

Notice that M−1 can be expressed as the transpose of M ′s cofactor matrix divided
by |M |. Also recall that the determinant of a matrix can be expressed as the sum of
its elements along a row or column multiplying their corresponding cofactor. Hence
the solution (3.3) can be rewritten as

u(x, t) = −2i
|F |
|M |

, (3.5)

where F is the following (N + 1)× (N + 1) matrix:

0 e−θ
∗
1 ... e−θ

∗
N

c1e
θ1 M11 ... MN1

. . . .

. . . .

. . . .
cNe

θN M1N ... MNN

 . (3.6)

Let N = 1, ζ1 = ξ + iη, c1 = 1 the solution (3.5) is

u =
2 ic1 (ζ∗1 − ζ1 )e−θ

∗
1+θ1

(|c1|)2eθ
∗
1+θ1 + e−θ

∗
1−θ1

= 2η sech(2 η A) e2 i((8 η4γ−48 η2γ ξ2+8 ξ4γ−12αη2ξ+4 ξ3α+η2−ξ2)t−xξ),

(3.7)
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where

A = ((32 η2γ ξ − 32 γ ξ3 + 4αη2 − 12α ξ2 + 2 ξ)t+ x).

This solution is a solitary wave. Its amplitude function |u| has the shape of a
hyperbolic secant with peak amplitude 2η, and its velocity is −(32 η2γ ξ− 32 γ ξ3 +
4αη2 − 12α ξ2 + 2 ξ). The phase of this solution depends linearly on both space x
and time t. The spatial gradient of the phase is proportional to the speed of the
wave. This solution is called a single-soliton solution of the ENLS Equation (1.2).

Solve the equation |u|2 = b, 0 < b < 4η2, we can get

x1 =
−128γη3tξ + 128γηtξ3 − 16αη3t+ 48αηtξ2 − 8ηtξ + ln(

8η2+4
√

4η4−bη2−b
b )

4η
,

x2 =
−128γη3tξ + 128γηtξ3 − 16αη3t+ 48αηtξ2 − 8ηtξ + ln(

8η2−4
√

4η4−bη2−b
b )

4η
.

(3.8)

Notice d is the width of the wave and

d =
ln

8η2−4
√
−η2(−4η2+b)−b

b − ln8η2+4
√
−η2(−4η2+b)−b

b )

4η
. (3.9)

This means that the wave width is only related to the imaginary part of the spectral
parameter and is not affected by the coefficients α and γ. The dispersion term and
the non-linear term in the higher order term of the ENLS equation play a good
balance, which makes the system energy conservation.

Further, we can derive the center trajectory of the single-soliton solution

x = −(32γξ(η2 − ξ2) + 4α(η2 − (
√

3ξ)2) + 2ξ)t. (3.10)

The angle between the center trajectory and the t-axis is arctan(−32η2γξ+32γξ3−
4αη2+12αξ2−2ξ). Generally speaking, the third-order and fourth-order coefficients
(α, γ) affect both the velocity of the soliton and the slope of the central trajectory.
But when the spectral parameter has only an imaginary part (ξ = 0) or |η| = |ξ|, the
fourth-order coefficient γ no longer affects the above quantities. When |η| = |

√
3ξ|,

the third-order coefficient α no longer affects the above quantities. Without loss of
generality, it can be divided into the following cases:
case 1: η = ξ = 1. The velocity of the soliton and the slope of the central trajectory
are equal to 8α− 2; take three special cases: α = 1/8, α = 1/4, α = 1/2.
case 2: ξ = 0, η = 1. The velocity of the soliton and the slope of the central
trajectory are equal to −4αη2; take three special cases: α = −1, α = 0, α = 1.
case 3: η = 1, ξ = 1√

3
. The velocity of the soliton and the slope of the central

trajectory are equal to −(64
√

3
9 γ + 2

√
3

3 ); take three special cases: γ = −3/64, γ =
−3/32, γ = −3/16.
case 4: η = 1, ξ = 1

2 . The velocity of the soliton and the slope of the central
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trajectory are equal to −(12γ + α + 1), fix α = −1; take three special cases: γ =
−1, γ = 0, γ = 1.
We can control the propagation direction and speed of solitons by adjusting the
parameters. The images of the central trajectory under different parameters is
shown in Figure 1.

1 2

3 4

Figure 1. Central trajectory for the single-soliton solution of cases 1, 2, 3 and 4.

When N = 2, the two-soliton solutions of ENLS equation can be written out
explicitly as follows:

u =
h1 e

Θ′
1+Θ1 + h2 e

Θ′
2−Θ2 + h3 e

Θ1−Θ′
1 + h4 e

Θ′
2+Θ2

d1 eΘ′
1−Θ2 + d2 eΘ′

1+Θ2 + d3 e−Θ′
1+Θ2 + d4 eΘ′

1−Θ1 + d5 e−Θ′
1−Θ2 + d6 e−Θ′

2+Θ1
, (3.11)

where

d1 = (ζ∗1 − ζ∗2 )(ζ2 − ζ1),

d2 = |c2|2(ζ∗1 − ζ2)(ζ∗2 − ζ1),

d3 = |c1
2c2

2|(ζ∗2 − ζ∗1 )(ζ1 − ζ2),

d4 = c1c2
∗(ζ∗1 − ζ1)(ζ2 − ζ2

∗),

d5 = |c1|2(ζ∗2 − ζ1)(ζ∗1 − ζ2),

d6 = c∗1c2(ζ∗2 − ζ2)(ζ1 − ζ∗1 ),

h1 = 2ic2 (ζ2 − ζ∗1 )(ζ∗2 − ζ∗1 )(ζ∗2 − ζ2),

h2 = −2ic1 (ζ1 − ζ∗1 )(ζ∗2 − ζ∗1 )(ζ∗2 − ζ1),

h3 = −2ic2|c1|2(ζ∗2 − ζ2)(ζ1 − ζ2)(ζ∗2 − ζ1),

h4 = 2ic1 |c2|2(ζ1 − ζ2)(ζ2 − ζ∗1 )(ζ1 − ζ∗1 ),

Θ1 = θ2 − θ∗2, Θ′1 = −θ1 − θ∗1, Θ2 = θ∗2 + θ2, Θ′2 = θ1 − θ∗1.
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Let ζ1 = ξ1 + η1, ζ2 = ξ2 + η2.

Starting with a simple case, when the spectral parameters ζ1, ζ2 are pure imag-
inary numbers, i.e., ξ1 = ξ2 = 0

Re(θ1) = η1(4 tα η1
2 + x), Re(θ2) = η2(4 tα η2

2 + x). (3.12)

When α = 0, the two constituent solitons have equal velocities, thus they will stay
together and form a bound state. In a frame moving at this speed, this bound
state will be spatially localized, and its amplitude function |u(x, t)| will oscillate
periodically with time. Let ζ1 = 0.7i, ζ2 = 0.4i, c1 = c2 = 1, such a bound state is
illustrated in Figure 2 with Case A and Case D. It can be seen that the “width” of
this solution changes periodically with time, thus this solution is called a “breather”
in literature. When α 6= 0, two solitons do not form bound states, but the attraction
ability between solitons will change with the change of parameters, see the figures
of Case A and Case D at below.
In the following figures we notice:
Case A: α = 0, γ = 1. In this case the ENLS equation will be decayed to LPD
equation, and u(x, t) is the soliton solution of LPD equation.
Case B: α = 1, γ = 1. This is the ENLS equation.
Case C: α = 1, γ = 0. In this case the ENLS equation will be decayed to Hirota
equation, and u(x, t) is the soliton solution of the Hirota equation.
Case D: α = 0, γ = 0. In this case the ENLS equation will be decayed to NLS
equation, and u(x, t) is the soliton solution of the NLS equation.

A B

C D

Figure 2. 3-D plot for the 2-soliton solution evolution of cases A, B, C and D. ζ1 =

0.7i, ζ2 = 0.4i.
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A B

C D

Figure 3. The plot for the 2-soliton solution evolution of cases A, B, C and D. ζ1 =

0.7i, ζ2 = 0.4i.

Except for the case where both spectral parameters are purely imaginary, let’s
consider the more complex case.
Let ζ1 = 0.1 + 0.7i, ζ2 = −0.1 + 0.4i, c1 = c2 = 1. We see from Figure 4 that
as t → −∞, the solution consists of two single solitons which are far apart and
moving toward each other. When they collide, they interact strongly. But when
t → ∞, these solitons re-emerge out of interactions without any change of shape
and velocity, and there is no energy radiation emitted to the far field. Thus the
interaction of these solitons is elastic (see Figure 6). This elastic interaction is a
remarkable property which signals that the ENLS equation is integrable. There
is still some trace of the interaction, however. Indeed, after the interaction, each
soliton acquires a position shift and a phase shift (see Figure 5). The position of
each soliton is always shifted forward (toward the direction of propagation), as if
the soliton accelerates during interactions.

Figure 4 is typical of all two-soliton solutions (3.11) except ξ1 = ξ2 = 0, we can
easily find that (α, γ) will change the velocity phase of the soliton figure. We analyze
the asymptotic states of the solution (3.11) as t→ ±∞ and (α, γ) is non-negative.
Without loss of generality, Let ζk = ξk+iηk and assume that |ξ1| > |ξ2|. This means
that at t = −∞, soliton-1 is on the right side of soliton-2 and moves slower. Note
also that ηk > 0 and η2 > η1, since ζk ∈ C+. In the moving frame with velocity
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-(32 η1
2γ ξ1−32 γ ξ1

3 + 4αη1
2−12α ξ1

2 + 2 ξ1), so (α, γ) will influence the velocity.

Re(θ1) = η1

(
32 tγ ξ1 η1

2 − 32 tγ ξ1
3 + 4 tα η1

2 − 12 tα ξ1
2 + 2 tξ1 + x

)
= O(1),

Re(θ2) = η2

(
32 tγ ξ2 η1

2 − 32 tγ ξ1
3 + 4 tα η1

2 − 12 tα ξ1
2 + 2 tξ1 + x

)
+ η2((32 tγ ξ2 η2

2 − 32 tγ ξ2 η1
2) + (32 γ (ξ1

3 − ξ2
3) + 4α (η2

2 − η1
2)

+ 12α (ξ1
2 − ξ2

2) + 2 (ξ2 − 2 ξ1)))t.

(3.13)

When t→ −∞,Re (θ2)→ +∞. When t→ +∞,Re (θ2)→ −∞. In this case, simple
calculations show that the asymptotic state of the solution (3.5) is

u(x, t)→


2i (ζ∗1 − ζ1)

c−1 e
θ1−θ

∗
1

e
−(θ1+θ∗1)+|c−1 |

2
eθ1+θ∗1

, t→ −∞,

2i (ζ∗1 − ζ1)
c+1 e

θ1−θ
∗
1

e
−(θ1+θ∗1)+|c+1 |

2
eθ1+θ∗1

, t→ +∞,

(3.14)

where c−1 = c1(ζ1−ζ2)

(ζ1−ζ∗2)
, c+

1 =
c1(ζ1−ζ∗2)

(ζ1−ζ2) . Comparing this expression with (3.11), we

see that this asymptotic solution is a single-soliton solution with peak amplitude
2η1 and velocity 32 η1

2γ ξ1 − 32 γ ξ1
3 + 4αη1

2 − 12α ξ1
2 + 2 ξ1. This indicates that

if we fix the parameters, this soliton does not change its shape and velocity after
collision.

A B

C D

Figure 4. 3-D plot for the 2-soliton solution evolution of cases A, B, C and D. ζ1 =

0.1 + 0.7i, ζ2 = −0.1 + 0.4i.
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A B

C D

Figure 5. The plot for the 2-soliton solution evolution of cases A, B, C and D. ζ1 =

0.1 + 0.7i, ζ2 = −0.1 + 0.4i.

Figure 6. The plot for the 2-soliton solution evolution of cases A, B, C and D. ζ1 =

0.1 + 0.7i, ζ2 = −0.1 + 0.4i.
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4 Soliton matrix for high-order zeros

In this case, following the discussion of simple zeros, we consider the high-order
zeros in RHP of ENLS equation. First of all, we let functions P+(ζ) and P−(ζ)
from the above RHP have only one pair of zero of order n, i.e., ζ1, ζ̄1.

|P+(ζ)| = (ζ − ζ1)nϕ(ζ), |P−(ζ)| = (ζ − ζ̄1)nϕ̄(ζ), (4.1)

where |ϕ(ζ1)| 6= 0 and |ϕ̄(ζ̄1)| 6= 0.
Following the idea proposed in [31], we first consider the elementary zero case

under the assumption that the geometric multiplicity of ζ1 and ζ̄1 has the same
number. Hence, one needs to construct the dressing matrix Γ(ζ) whose determinant

is (ζ−ζ1)n

(ζ−ζ̄1)n
. As a special case, we first consider the elementary zeros which have

geometric multiplicity 1. In this case, Γ is constituted of n elementary dressing
factors, i.e., Γ = χnχn−1 . . . χ1, where

χi(ζ) = I + ζ̄1−ζ1
ζ−ζ̄1

Pi, Pi = |vi〉〈v̄i|
〈v̄i|vi〉 , |vi〉 ∈ Ker(P+χ

−1
1 · · ·χ

−1
i−1(ζ1)).

In addition, if we let P̂+(ζ) = P+(ζ)χ−1
1 (ζ) and P̂−(ζ) = χ1(ζ)P−(ζ), then it is

proved that matrices P̂+(ζ) and P̂−(ζ) are still holomorphic in the respective half-
plane of C. Moreover, ζ1 and ζ̄1 are still a pair of zeros of |P̂+(ζ)| and |P̂−(ζ)|,
respectively. Thus, Γ(ζ)−1 cancels all the high-order zeros for |P+(ζ)|. Moreover, it
is necessary to reformulate the dressing factor into summation of fractions, then we
derive the soliton matrix Γ(ζ) and its inverse for a pair of an elementary high-order
zero. The results can be formulated in the following lemma.

Lemma 1. Consider a pair of an elementary high-order zero of order n : {ζ1} in
C+ and

{
ζ̄1

}
in C−. Then the corresponding soliton matrix and its inverse can be

cast in the following form

Γ−1(ζ) = I+(|p1〉 , · · · , |pn〉)D(ζ)

 〈qn|...
〈q1|

 , Γ(ζ) = I+(|q̄n〉 , · · · , |q̄1〉) D̄(ζ)

 〈p̄1|...
〈p̄n|

 ,

(4.2)

where D(ζ) and D̄(ζ) are n× n block matrices,

D(ζ) =


(ζ − ζ1)−1 (ζ − ζ1)−2 · · · (ζ − ζ1)−n

0
. . .

. . .
...

...
. . . (ζ − ζ1)−1 (ζ − ζ1)−2

0 · · · 0 (ζ − ζ1)−1

 ,

D̄(ζ) =


(ζ − ζ1)−1 0 · · · 0

(ζ − ζ1)−2 (ζ − ζ1)−1 . . .
...

...
. . .

. . . 0
(ζ − ζ1)−n · · · (ζ − ζ1)−2 (ζ − ζ1)−1

 .



i
i

“1A7-Zhou” — 2021/9/18 — 12:35 — page 192 — #22 i
i

i
i

i
i

192 H J Zhou and Y Chen

This lemma can be proved by induction as in [31]. Besides, we notice that
in the expressions for Γ−1(ζ) and Γ(ζ), only half of the vector parameters, i.e.,
|p1〉 , · · · , |pn〉 and 〈p̄1| , · · · , 〈p̄n| are independent. In fact, the rest of the vector
parameters in (4.2) can be derived by calculating the poles of each order in the
identity Γ(ζ)Γ−1(ζ) = I at ζ = ζ1

Γ (ζ1)

 |p1〉
...
|pn〉

 = 0,

where

Γ(ζ) =


Γ(ζ) 0 · · · 0

d
dζΓ(ζ) Γ(ζ)

. . .
...

...
. . .

. . . 0
1

(n−1)!
dn−1

dζn−1 Γ(ζ) · · · d
dζΓ(ζ) Γ(ζ)

 .

Hence, in terms of the independent vector parameters, results (4.2) can be for-
mulated in a more compact form as in [31] and here we just avoid these overlapped
parts. In the following, we derive this compact formula via the method of gDT
[18]. We intend to investigate the relation between dressing matrices and DT for
ENLS equation in the high-order zero case. The essence of DT is a kind of gauge
transformation. Following the project proposed in [6], we can construct the gDT
for ENLS equation as well.

The elementary form of DT has already been constructed in [44], then it is

obvious to notice that: G1 (ζ1 + ε) |v1 (ζ1 + ε)〉 = 0. Denoting
∣∣∣χ[0]

1 (ζ1)
〉

= |v1 (ζ1)〉,
and considering the following limitation:

∣∣∣χ|1|1 (ζ1)
〉
, lim

ε→0

G1 (ζ1 + ε)
∣∣∣χ|0|1 (ζ1 + ε)

〉
ε

=
d

dζ

[
G1(ζ)

∣∣∣χ[0]
1 (ζ)

〉]
ζ=ζ1

,

then
∣∣∣χ(1)

1

〉
can be used to construct the next step DT, i.e.,

G
[1]
1 (ζ) =

(
I +

ζ̄1 − ζ1

ζ − ζ̄1
P[1]

1

)
, P[1]

1 =

∣∣∣χ[1]
1

〉〈
χ

[1]
1

∣∣∣〈
χ

[1]
1 |χ

[1]
1

〉 .
Generally, continuing this process we obtain:

∣∣∣χ[N ]
1

〉
= lim

ε→0

G
[N−1]
1 . . . G

[1]
1 G

[0]
1 (ζ1 + ε)

∣∣∣χ[0]
1 (ζ1 + ε)

〉
εN

.

The N-times generalized Darboux matrix can be represented as:

TN (ζ) = G
[N−1]
1 . . . G

[1]
1 G

[0]
1 (ζ),



i
i

“1A7-Zhou” — 2021/9/18 — 12:35 — page 193 — #23 i
i

i
i

i
i

A7. Soliton matrix and extended nonlinear Schrödinger equation 193

where

G
[i]
1 (ζ) =

(
I +

ζ̄i − ζi
ζ − ζ̄i

P[i]
1

)
, P[i]

1 =

∣∣∣χ[i]
1

〉〈
χ

[i]
1

∣∣∣〈
χ

[i]
1 |χ

[i]
1

〉 .
In addition, the transformation between different potential matrices is:

Q(N) = Q+ i

Λ,

N−1∑
j=0

(
ζ̄1 − ζ1

)
P[j]

1

 .
In this expression, P

[i]
1 is rank 1 matrix, so G

[i]
1 (ζ) can be also decomposed into the

summation of simple fraction; that means the multiple product form of TN can be
directly simplified by the conclusion of Lemma 1. In other words, the above gener-
alized Darboux matrix for ENLS equation can be given in the following theorem:

Theorem 1. In the case of one pair of elementary high-order zero, the generalized
Darboux matrix for ENLS equation can be represented as [44]:

TN = I − YM−1D̄(ζ)Y †,

where D̄(ζ) is N×N block Toeplitz matrix which has been given before, Y is a 2×N
matrix:

Y =
(
|v1〉 , . . . , |v1〉(N−1)

(N−1)!

)
,

|v1〉(j) = limε→0
dj

dεj
|v1 (ζ1 + ε)〉 ,

and M is N ×N matrix:

M =
(
M [ij]

)
, M [ij] =

(
M

[i,j]
l,m

)
N×N

,

with

M
[i,j]
l,m = lim

ε,ε̄→0

1

(l − 1)!(m− 1)!

∂m−1

∂εm−1

∂l−1

∂ε̄l−1

[
〈yi|yj〉

ζj − ζ̄i + ε− ε̄

]
.

Theorem 1 can be proved via direct calculation as in [6].
Therefore, if Φ|N | = TNΦ, then Φ[N ] indeed solves spectral problem (2.1). Sub-

stituting TN into the above relation and letting spectral ζ go to infinity, we have
the relation:

Q[N ] = Q− i

Λ,

(
|v1〉 , . . . ,

|v1〉(N−1)

(N − 1)!

)
M−1


〈v1|

...
〈v1|(N−1)

(N−1)!


 .

Moreover, the transformations between the potential functions are

Q
[N ]
j,l = Q

[0]
j,l + 2i

|Aj,l|
|M |

, Aj,l =

[
M Y [l]†

Y [j] 0

]
, 1 ≤ j, l ≤ 2. (4.3)

Here the subscript j,l denotes the j th row and l th column element of matrix A,
and Y [l] represents the j th row of matrix Y .
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5 Dynamics of high-order solitons in the ENLS
equation

For simple, we consider the second-order fundamental soliton, which corresponds
to a single pair of purely imaginary eigenvalues, ζ1 = iη1 ∈ iR+, and ζ̄1 = iη̄1 ∈ iR−,
where η1 > 0 and η̄1 = −η1 < 0. In this case, taking v10(ε) =

[
1, eiθ10−θ11ε

]T
and

v̄10(ε̄) =
[
1, eiθ̄10−θ̃11ε̄

]T
, where θ10, θ11, θ̄10, θ̄11 are real constants. Substituting

these expressions into high-order soliton formula (4.3) with N = 2, Q
[0]
1,2 = 0. Then

we obtain an analytic expression for the second-order fundamental soliton solution
of (1.2)

u(x, t) =

2(η1 − η̄1)
t11e

2η1x+(2iη2
1+8αη3

1+16iγη4
1)t+iθ̄10 + t12e

2η̄1x+(2iη̄2
1+8αη̄3

1+16iγη̄4
1)t−iθ10

4 cosh2(w) + F
,

(5.1)

w = (η1 − η̄1)x+ [i(η̄2
1 − η2

1) + 4α(η̄3
1 − η3

1) + 8iγ(η̄4
1 − η4

1)]t− i

2
(θ10 + θ̄10),

t11 = (η̄1 − η1)((64η̄3
1γ − 24iη̄2

1α+ 4η̄1)t− 2ix)− 2i,

t12 = (η1 − η̄1)((64η3
1γ − 24iη2

1α+ 4η1)t− 2ix)− 2i,

F (x, t) = (t11 + 2i)(t12 + 2i).

Let η̄1 = −η1, θ̄10 = −θ10, u(x, t) can be written in the form of a traveling solitary
wave:

u(x, t) = ψ(x, t)ei(2η
2
1+16γη4

1−θ10), (5.2)

ψ(x, t) = 4η1
(t11e

2η1x+8αη3
1t + t12e

−2η1x−8αη3
1t)

4 cosh2(2η1x− 8αη3
1t) + F

, (5.3)

|ψ(x, t)|2 = 16η2
1

(t211e
4η1x+16αη3

1t + t212e
−4η1x−16αη3

1t + 2t11t12)

(4 cosh2(2η1x− 8αη3
1t) + F )2

. (5.4)

The center trajectory Σ+ and Σ− for this solution can be approximately described
by the following two curves:

Σ+ : (η1 − η̄1)x+ 4α(η̄3
1 − η3

1)t+
1

2
ln|F | = 0,

Σ− : (η1 − η̄1)x+ 4α(η̄3
1 − η3

1)t− 1

2
ln|F | = 0.

Moreover, regardless of the effect brought by the logarithmic part when t → ±∞,
two solitons separately move along each curve at nearly the same velocity, which is
approximate to 4α(η̄2

1 + η1η̄1 + η2
1).

Due to η1 − η̄1 > 0, with simple calculation, it is found that |u(x, t)| possesses
the following asymptotic estimation:

|u(x, t)| → 0, x→ ±∞.
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However, with the development of time, a simple asymptotic analysis with estima-
tion on the leading-order terms shows that when soliton (5.1) is moving on Σ+ or
Σ−, its amplitudes |u| can approximately vary as

u(x, t) ∼


2|η1−η̄1|e(η1+η̄1)x∣∣∣e(4i(η̄2

1−η
2
1)+32iγ(η̄4

1−η
4
1))t−i(arg[F(x,t)]+2kπ)+i(θ10+θ̄10)+1

∣∣∣ , t ∼ +∞,

2|η1−η̄1|e−(η1+η̄1)x∣∣∣e−(4i(η̄2
1−η

2
1)+32iγ(η̄4

1−η
4
1))t−i(arg[F(x,t)]+2kπ)−i(θ10+θ̄10)+1

∣∣∣ , t ∼ −∞,
(5.5)

k ∈ Z.
Let η1 = i

2 , η̄1 = − i
2 , θ10 = θ̄10 = θ11 = θ̄11 = 0. Because of the effect brought by

the logarithmic part, two solitons separately move along each curve with different
velocity, direction and shape with the different values of (α, γ) (see Figure 7).

A B

C D

Figure 7. 3-D plot for the high-order solution evolution of cases A, B, C and D.

6 Conclusion

In the present chapter, we research the ENLS equation which can be used to describe
the wave propagation in the optical fibers more accurately than the NLS equation.
We find the soliton matrix corresponds to simple zeros for the ENLS equation in
the framework of the RHP firstly. Then combined with gDT, soliton matrix for
elementary high-order zeros in the RHP for the ENLS equation is constructed.

By analyzing the single-soliton solution, we found the wave width is only related
to the imaginary part of the spectral parameter ζ and is not affected by the co-
efficients α or γ. However, the propagation direction and velocity of solitons can
be controlled by adjusting the free parameters (α, γ). The special case is when the
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spectral parameter ζ has only an imaginary part (ξ = 0) or |η| = |ξ|, the fourth-
order coefficient γ no longer affects the above quantities. When |η| = |

√
3ξ|, the

third-order coefficients α no longer affect the above quantities.

Further, the asymptotic behavior for the two-solitons and the influence of free
parameter (α, γ) in soliton solutions of ENLS equation on collision dynamics are
studied. For the two-solitons, when the spectral parameters ζ1, ζ2 are pure imagi-
nary numbers and α = 0, the two constituent solitons will form a bound state and
its amplitude function |u(x, t)| will oscillate periodically with time. When α 6= 0,
two solitons do not form bound states, but the attraction ability between solitons
will change with the change of parameters (α, γ).

Finally, for two-order one soliton, long-time asymptotic estimations for the high-
order one-soliton are concretely analyzed. Obviously, because the effect brought
by the logarithmic part of center trajectory Σ+ and Σ− , two solitons separately
move along each curve with different velocity, direction and shape with the different
values of (α, γ).

The above analysis uncovers the dynamic behaviors of solitons and high-order
solitons clearly and can be used to guide optical experiments. In this paper, we
research the high-order solitons of the ENLS equation with zero boundary by RHP.
Inspired by [55], we will further explore the high-order soliton problem of integrable
equations with non-zero boundary which is more complex but more pervasive in
future study.
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