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ARTICLE INFO ABSTRACT

Keywords: In this work, we study the Cauchy problem of integrable nonlocal Lakshmanan-Porsezian-
Riemann-Hilbert problem Daniel equation with rapid attenuation of initial data. The basic Riemann-Hilbert problem
Integrable nonlocal of integrable nonlocal Lakshmanan-Porsezian-Daniel equation is constructed from Lax pair.

Lakshmanan-Porsezian-Daniel equation

. : Using Deift-Zhou nonlinear steepest descent method, the explicit long-time asymptotic formula
Long-time asymptotics

of integrable nonlocal Lakshmanan-Porsezian-Daniel equation is derived, which is different
from the local model. Besides, compared to the nonlocal nonlinear Schrédinger equation, since
the increase of real stationary phase points, the long-time asymptotic formula for nonlocal
Lakshmanan-Porsezian-Daniel equation becomes more complex.

1. Introduction

In 2013, a PT symmetric nonlocal integrable nonlinear Schrédinger (NLS) equation was introduced by Ablowitz and Mussli-
mani [1]. After that, some other nonlocal integrable equations and their related properties are studied extensively [2,3]. In this
work, we are committed to the long-time asymptotic behavior of the nonlocal Lakshmanan-Porsezian- Daniel (LPD) equation taking
the following form [4]

g+ %"qxx(x, 1) = ig?(x, 0" (=x,1) = S H[q(x, )] = 0, (x,1) € RX (0, +c0), a.n
with

H[q(x, D] = —iqyy (.1 + 6iq" (=X, g2 (x, 1) + 4ig(x, g (=X, g, (x, 1)
+ 8ig* (=x, Dq(x, )G, (X, 1) + 2ig*(x, gL (=X, 1) = 6i(q* (—x. )2 (x, 1),

where § is arbitrary positive real parameter. The symbol “+” means the complex conjugation. The initial data is given by g(x,0) =
go(x) which belongs to the Schwartz space. The classical LPD equation was first proposed by Lakshmanan, Porsezian, and Daniel
through studying the integrable properties of a classical 1-dimensional isotropic biquadratic Heisenberg spin chain in its continuum
limit [5,6]. For the nonlocal LPD equation, its rational soliton solutions, periodic waves, nonsingular solution, time-periodic pure
soliton solutions have been derived [4,7-9]. Recently, Rybalko and Shepelsky employed the Deift-Zhou method to analyze the long-
time behavior of solutions for the Cauchy problem of nonlocal NLS equation [10]. Besides, this method was also used to discuss the
long-time asymptotics for the solution of the nonlocal mKdV equation [11] and nonlocal short pulse equation [12]. In this paper,
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we focus on the long-time asymptotic behavior of the nonlocal LPD Eq. (1.1) with the initial data gy(x) rapidly decaying to 0 as
|x| = 0.

Organization of the paper: In Section 2, the fundamental Riemann-Hilbert(RH) problem is constructed by the direct scattering
analysis. In Section 3, through a series of deformations, we derive a model RH problem. Then, the long-time asymptotics of the
solution for the nonlocal LPD equation is presented via solving the model RH problem.

2. Inverse scattering transform and the RH problem

In this section, we aim to construct the fundamental RH problem through the direct scattering analysis. The nonlocal LPD
equation admits the following spectral problem

Y. =LY, L=iJ+U¥, =MV, M512J+/1U+%V+6V1, (2.1)
with
i 0 0 q(x,1)
J= , U= .
< 0 —i > < q*(=x,1) 0 >
_( iaCx,0)g"(—x,1) —ig (x,1) _( iACD  B(x,p)
V= < iqi(=x,1) —ig(x,Ng* (=x,1) )’ "= —C(x,1)  —iA(x,1) 2.2)

where 1 is a spectral parameter. A = —8A% — 4¢*(-x,)gA? — 2i(qq*(—x,1) — ¢*(—x, g, )4 — 3¢%(q* (—x,)* = q*(—x,1)q, + qq* (—x,1) +
q*(=x,1)q,, B = —8q1% + 4iq A% + 2q,, A — 4q7(—x,0)q° A — iq,, + 6iqq*(=x,1)q,, C = 8q%(—x,04% + 4ig*(—=x, A% = 2q* (—x,1)4 +
A(q*(—x,1))*qA — iqr  (=x,1) + 6ig*(=x,1)qq%(=x,1), and ¥ = ¥ (x.1, 1) denotes the eigenfunction. Defining the Jost solutions ¥, =
M+ei[/1x+(42—8544)x]a3’ and we have

X
po=1I+ / MDY (' )y (1, D]

o
uy=1- / TS (X, Dy (x, 1, A))dX.
X

Suppose ¢ € L'(R*), then u,(x,t,4) have the following properties: u,(x,t,4) and u_,(x,t, 1) are analytical and bounded in
{Ae C|ImA> 0}, u_i(x,1,4) and u ,(x,1, 1) are analytical and bounded in {4 € C | ImA < 0}. p,(x,1,4) - I as A - . There also
are det u,(x,t, 4) = 1 for all x,t and k. As the simultaneous solutions of spectral problem (2.1), ¥, satisfy the following linear relation
via defining a scattering matrix S(4), 4 € R, given by ¥_(x,1, ) = ¥, (x,1, ))S(4), A € R, where S(1) = ( o1 (‘(il) j”iﬁ ) ,AER,
and the scattering data s,;(4), s5,(4) meet s,,(4) = s (S5, sp(A) = Szz( A*). Similarly, according to e analyt%éity of u,, we
know that s,,(4) is analytic in the half-plane {1 € (C | ImA < 0} and continuous in {4 € C | ImA < 0}, s,,(4) is analytic in the
half-plane {4 € C | ImA > 0} and continuous in {4 € C | ImA > 0}, and S(4) — I as 4 — oo. Furthermore, det S(1) =1 for 1 € R.

Supposing that s;;(4) and s,,(4) have no zeros in {4 € C | ImA < 0} and {4 € C | ImA > 0}, respectively. Then, we can
construct a fundamental RH problem by defining M, (x,t,4) = (£, u_ 2) M_(x,t,4) = (u_y, ’:ﬁ), where + stand for analyticity in
{2€C|Ima >0} and {4 € C | ImA < 0}, respectively. "

Riemann-Hilbert Problem M (x,t, 1) satisfies the following RH problem:
M (x,t, A) is analytic in C \ R,
M, (x,t,2) = M_(x,t, )J(x,1, 1), AER, (2.3)
M(x,t,A) - I, A= oo,
with the jump matrix J(x,1, A) being
L=ri(Dra(d)  ry(A)e0td
—r (ﬂ)e—2i9(x,t,i) 1 ’

where r (1) = ‘SZ((:)), ra(4) = z"g; 0(x,1,4) = Ax + (A* — 864*)r. The solution g(x,) of the nonlocal LPD Eq. (1.1) is expressed as
22

q(x,t) = =2ilim,_ A[M(x,1, /1)]]2

J(x,t,A) = ( 2.4

3. The long-time behavior for the nonlocal LPD equation

In this section, we aim to transform the associated original RH problem (2.3) to a solvable RH problem and then find
the explicitly asymptotic formula for the nonlocal LPD Eq. (1.1). Let & = ’t—‘, f(&,4) can be defined by f(£,1) = A&+ A2 —
854*. Then, we take —\/% < & < ‘/%, it follows that there are three different real solutions for % = 0, given by

£ y_(Ly Sl _ )£y _ 3 — 2 _ (L3 £ Ly 3 _
\/646 G — () + \/646 (o) 486) dy = “’\/645 640) () t @ \/645 vl 486) Ay =
1+f¢

£y _( Ly N 2 _(Ly3 —
\/ VG (&) +m\/ % (& 5) (35 b) where w = . In this situation, the signature distribution for Re(if) is

shown in Fig. 1. The following analysis of this paper restricts ¢ to region & € (— m +e,1/ 7= 27 — ¢) for any positive constant e.
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Re(if) < / Re(if) > 0

Re(if) <0

Fig. 1. The signature table for Re(if) in the complex A-plane.

A3 Ao A1

Fig. 2. The jump contour R.

It is necessary to define the RH problem about the function §(1), given by 6, (1) = (1 —r(A)ry(4))6_(4), A € (43, 4,) U (4, +0), and
6(4) = 1, as 4 — oo. Using the Plemelj formula, we get

—i9(A1)
6(A) = exp { /oo In(1 _rl(s)rZ(S)) } —(A-1 )—18(/13) (u) o ex1()

27rt(s -A) A=A

i 2

—i9(A) —i9(43)
=(A- Al)_il"(ll) <ﬁ> ! 2 = () — Al)—il"(h) <ﬁ> : AOR
A= 4y A—4,
where

)=

e L= r(ry(s) \ ds © ]
2m Al In <—1 — "1(/11)"2(/11)> =7 - //13 In (A = s)dIn(1l = r(s)ry(s))

AR e N ds o ~
;(2(1)—2”i /13 ln<1—r1(32)"2(/12)> ~ /11 In(4 = s)dIn(l — r;(s)ry(s))

RN AR OO RN T A _
/'(3(1)—% _A3 ln<m>s_l Al 11’1()» s)dln(l rl(s)rz(s))_

(A = —i In(1 = ry(ADry(A),  1=1,2,3, (3.1)

so that Im9(4,) = —i /f; darg(l — r{(s)ry(s)), | = 1,2,3. Assuming that ff;o darg(l — ry(s)ry(s)) € (—g,g), one has |Imd(1)| <
é,/l € R, which indicates that In(1 — r1(~1)r2(ﬁ)) is single-valued, and the singularity of 6(4,&) at 4 = 4, is square integrable.
Let M(x,1,A) = M(x,t,A)67°3(A), then M is the solution of RH problem on the jump contour R shown in Fig. 2, given by
M, (x,1,4) = M_(x,t, )J (x,1,4), A € R, and M(x,t,4) — I, as A — co, where

1 ry(A)82e2i/! 1 0
. ( 0 ’ 1 —r (A2 1 ) A € (g, 4D U (=00, 43),
t = .
s ! 0 I p(se! A€ (43, ) U (A, +o0)
—p ()27t ] 0 1 ’ 372 et
. __n® _ W
with p,(2) = |—rl(,1)r2(/1)’p2(/1) I ENTINT

Next, we perform the first RH problem transformation by defining M (x,t, 4) as follows (see Fig. 3):

1 0

; . AE L,
r()s=2e=2/t | €

_pz(;t)5282ift )
1

M%), A€ Q5UQq M(A) (
1 rp(h)s2e? !
0 1

_ 1 0
M(A')( _pl(/l)a—Ze—Zift 1 >’ '1693’

Eu

= M(A)( ),/1594,1\“4(,1)((1) , L€ Q,,
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Fig. 3. The jump contour ¥ and domains 2;(j = 1,...,6).

1 X
Qo
0 Qs
R
0 ONQ;
Qo
4 X3

Fig. 4. The jump contour X and domains ;(j =0,...,4).

Then, the RH problem on the contour X is obtained 1\§I+(x, tA)= Ail,(x, t, /I)f(x, t,A),A € X, and AZ(x, t,A) = I, as A - oo, where the
jump matrix become

1 0 1 py(R)s2e?ft
i , A , , A ,
< rl(/‘l)é—ze—Zt/I 1 > €En < 0 1 €En

1 0 1 —ry(A)82e2 /!
( —p(HE-2e2ST ] ) A€ T3 < o 1 - AE s

To separate the time ¢ from the jump matrix, a scaling transformation is introduced by z = T;(4) = \/41(485/12 - D=4, z=TQA) =

\J41(1 = 48512)(A—Ay), z = T3(A) = 1/41(4854% — 1)(4—45). Hence, one has T, (e"/ 6(4)) = 50 5 (@), Ty(e"f 8(2)) = 50 s L@, Ty 6(4) =
523 5/113(z). Let t — oo, we can derive the following RH problem MX!(I = 1,2,3) in the z plane related to X = XI u X2 U X3 U X, (see
Fig. 4), M}'(&,2) = MX1(&,2)J%1(&,2),z € X, and MXI(£,2) — I, as z — oo, of which

1 0 2
2 . ,zE€X,, 1 py(A))e 2 (=2) 2i9(41) ZE Xy,
ri(Ae z (=2)¥00 1 0 1

1 0 I
iz? _ zexy( 1 —nGpe T ) ey
—p(Ape 7 (=z)¥8CG0 1 0 1

2
iz 1 0
1 —pz(/lz)e 7 z219(4) zE€ X, 2 ,ZE€ X,,
o) \o —ryUp)e T 0

kH
I

(3.2)

JXI =

P1(/12)€_% Z-2002)

1 0
1 "2(}»2)e p Zz"wz) > z € X3, 2 ),z € X,.
0

0 iz
zEX,, 1 py(Az)e” 7 (=z)" 003 .ZE€X,,
rl(/13)e p ( z)muﬂ 0 1

1 0 _iz? o
2 zexy| 1 Tnlye TR ) oy
—p1(Ay)e T (=z)¥9) 1 0 1

For | = 1,2,3, defining D,.(4,) as the open disk of radius e centered at 4, for a small ¢ > 0 and using M*!, we introduce
M* for 4 € D (4)) M*(x,t, 1) = (52’)"3 MXI(Z)((SO) %, which is analytic function in region 4 € D.(4;) \ X e where Xj] =
X,,ND(4), X, = X + 4, means the cross X centered at ;. It is not hard to find that M*(x,1, 1) solves following RH problem, given
by Mﬁ’ (x,1,4) = M*(x,t, ))J*. Next, we devote to derive the explicit expression of long-time asymptotic behavior for the nonlocal
LPD Eq. (1.1) on the line by introducing the approximate solution M“?(x,t, A) as follows

J% =

i A
e — { M*, A€ D,(A), M*, A€ D,(4), 3.3)

M*%, A€ D.(4y), I, elsewhere.
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Let M (x,1, A) = M(M“?)~1, then we have M, (x,t, 1) = M_(x,1, ))J(x,1, A), 4 € 5, where the jump contour £ = ZUdD,(A,)UdD,(4,)U
0D,(43), and the jump matrix J(x,1, ) arrives at

M (M@ A€ £ (D.(A) U D,(4y) U Do(43)),

(M@)~1 j€dD,(A)UdD,(Ay) UdD,(A3), (3.4)
T, A€ £\ (D.(2) U D, (2 U D (A3)).

<
Il

Let @ = J -1, for 1 < n < o0, £ = Ujr \ (De(d) U D(A) U D,(43) and ¢ € (=) 55 + €,/ 555 — €), we have
. _1
I8l zacz,) < Ce™, 10V 1rop, ) < €12
operator (Cf)(A) = %m s {i—“;ds,i € C\ 2, and the integral operator C; : L*(2) + L®(2) » L*(Z) by C,f = C_(f&). Moreover,
LA =Tl 205y < ClldI 25y, whereAﬁ = I + L%(2) satisfies the following integral equation 2 = I + C, /. Finally, the representation for
M admits M(x,t,4) = I + % Jx Wd& it follows that lim,_,  A(M(x.,1, 2)—I) = —sz, [5 ACx,t, Aéd(x, 1, A)dA. Finally, as t — oo,

we derive the following important result

I . D S SR Y . .
+=D +/Irn3u,)’ ”C?)(I)HLH(XZ ySCt 27 HEDH M) 1 3¢ s necessary to define the Cauchy
1

) S @M,
qCx.0) = =20 lim ALNI(x.1,4) = 15 = =2i D

I=1 A [4(=1)/(1 — 485A7)

+ R(¢, 1), (3.5)

where
O(,—1+2max(|lmsul>|,|Imlv<42)\,\lmsu3>|))’ (_1)11m19(/1[) >0,
O~ 1+2max{IIMIG)LIMIGN)  Img(A,) < 0,Im(4,) > 0,Im8(43) > O,
O~ 1+2max{IImIC) LMY Imy(A,) > 0,Im(4,) > 0,Im8(4;) < 0,
O~ 1+2max{IImeG)LIMIGHY  Imy(A,) < 0,Imd(4,) < 0,Im8(4;) < 0,

RE, N =1 o +2maal) Imd(4,) < 0,ImI(4,) < 0,ImI(4;) > 0, (3.6)

o~ 1+2Imsu)ly, Imd(4,) > 0,ImI(4,) > 0,ImI(4;) > 0,
o~ 1+2Imsu)ly, Im9(A,) > 0,Imd(4,) < 0,ImI(4;) < 0,
o(~1n¥), Im9(A;) = 0,(=1)'Imd(A,) < 0,s =1,2,3 and s #/,
o™, (=1'Tm3(4,) < 0.

and [M IX’ 1, can be explicitly solved by using the Liouville’s theorem and parabolic cylinder functions, given by [MIX T, =

3xi, 79(4)) xi, #9(4p) 3mi, 79(43)
Ve 4 Y2 X, _ N2miedt T2 X3 _ Ve it T2 N . . . .
m s [Ml le = m N [Ml ]12 = m . SubStltutlng them into (35), we flnally achieve the main

result of Theorem 3.1.

Theorem 3.1. Suppose that q(x, 1) be the solution of the Cauchy problem of the nonlocal LPD Eq. (1.1) with gy(x) lying in the Schwartz
space. Assume that the scattering data associated with g (x) satisfy: (i)s;;(4) and s,,(4) have no zeros in {A € C | ImA < 0} and
SR s1(4)

{4 € C|ImA > 0}, respectively. (ii)f_io darg(1 —r(s)ry(s) € (=5, 3) for all { € R(i.e. [ImI(A)] < é), where r(4) = o =2
K s11

Then, for any positive constants 5 > 0,e > 0, when t — o0, & = ),—‘ € (- 2;—5 +e,4/ 2]% — ¢), the long-time asymptotics of the solution q(x, t)
is

3
1 i 4 a2 I
Z 3D ImS(A,)Ple48§u1[ =213 1= DRI L pes gy

q(x,1) =
I=1
where

24/276 14 )= 1) In(1926434)=2i9(43) In(A; = 43)+2i9(Ap) In(Ay— A1 )42 (A )+ 5 8CA )= 3 7
Pr=- M GDT8(A,)) ’

2 \/Ee—(is(/lzﬂ%)ln(471925/1§)—2i19(11 )In(Ay—A1)—=2i8(Ay) In(Ap—A3)+2 12(12)%19(12)7%”;

b= G T (—i8(2,)) ’

» Z@e(i&(@)—%)ln(I925/1§—4)—2i19(/11)1n(/13—/11)+2i8(43)ln(lz—/13)+2)(3(/13)+%8(13)—%75[
3= )

r1(A3)I'(i9(43))
and I is Euler’s Gamma function, y,(4,),9(4;) are given in (3.1), and the error estimation R(&,1) is given in (3.6).

Data availability

Data will be made available on request.
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