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ABSTRACT

Due to the dynamic characteristics of instantaneity and steepness, employing domain decomposition techniques for simulating rogue wave
solutions is highly appropriate. Wherein, the backward compatible physics-informed neural network (bc-PINN) is a temporally sequential
scheme to solve PDEs over successive time segments while satisfying all previously obtained solutions. In this work, we propose improvements
to the original bc-PINN algorithm in two aspects based on the characteristics of error propagation. One is to modify the loss term for ensuring
backward compatibility by selecting the earliest learned solution for each sub-domain as pseudo-reference solution. The other is to adopt
the concatenation of solutions obtained from individual subnetworks as the final form of the predicted solution. The improved backward
compatible PINN (Ibc-PINN) is applied to study data-driven higher-order rogue waves for the nonlinear Schrödinger (NLS) equation and
the AB system to demonstrate the effectiveness and advantages. Transfer learning and initial condition guided learning (ICGL) techniques
are also utilized to accelerate the training. Moreover, the error analysis is conducted on each sub-domain, and it turns out that the slowdown
of Ibc-PINN in error accumulation speed can yield greater advantages in accuracy. In short, numerical results fully indicate that Ibc-PINN
significantly outperforms bc-PINN in terms of accuracy and stability without sacrificing efficiency.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0191283

The geometric structure of higher-order rogue waves can be clas-
sified into fundamental, triangular, pentagonal shapes, and even
more complex patterns. Rogue wave solutions have been widely
analytically studied but the research studies by using deep learn-
ing methods are still relatively scarce. It is suitable to simulate
high-order rogue waves by using domain decomposition tech-
niques, considering their complicated dynamic characteristics.
In this paper, we put forward the improved backward compat-
ible physics-informed neural network (Ibc-PINN) method with
the aim of reducing error accumulation based on the tradi-
tional bc-PINN, a temporally sequential algorithm to solve PDEs.
According to the characteristics of error propagation, we pro-
pose improvements in two aspects, namely, the loss function and
the final form of the predicted solution. Moreover, Ibc-PINN is

applied to obtain data-driven higher-order rogue wave solutions
of the nonlinear Schrödinger equation and the AB system. The
numerical results demonstrate that the Ibc-PINN algorithm con-
tributes to the mitigation of error accumulation speed, exhibiting
significant advantages in terms of accuracy and stability com-
pared to the bc-PINN.

I. INTRODUCTION

Rogue waves (also known as monster waves, killer waves,
giant waves, and abnormal waves) have always been an important
research direction in the field of nonlinear science. Due to the com-
plexity of the rogue wave phenomenon, it is currently difficult to
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provide a precise definition. Usually, in oceanography, people refer
to a type of abnormally steep wave that suddenly appears on the
sea level as the rogue wave. This type of wave has the characteristic
of “coming without a shadow, going without a trace.” The concept
of rogue waves was first proposed by British scientist Draper in
1964, who described a huge, sudden appearance of monster waves
that overturned ships in Ref. 1. The rogue wave is a very tall and
strong solitary wave, and its wave height is usually more than twice
that of the highest wave around it. Due to the sudden onset and
immense power, it can sometimes cause serious damage to ships
and offshore structures. Naturally, rogue wave phenomena are not
confined to the field of oceanography. In 2007, Solli et al.2 utilized
a new real-time detection technique to observe abnormally steep,
massive, and rare optical rogue waves for the first time in nonlinear
optical systems. Afterward, rogue wave phenomena have emerged
in numerous research fields, such as Bose–Einstein condensation,3

plasma physics,4 fluid mechanics,5 meteorology,6 and finance.7

Scientists aspire to elucidate the ancient and enigmatic phe-
nomenon of rogue waves through the application of nonlinear
models. Research has revealed that the rational solution for the
Nonlinear Schrödinger (NLS) equation can aptly describe rogue
waves. This solution, first discovered by the British physicist Pere-
grine in 1983,8 is consequently referred to as the Peregrine soliton.
In terms of mathematical expression, the first-order rational solu-
tion for the NLS equation is composed of a second-order rational
polynomial and an exponential function. Physically, it describes a
localized, steep wave in both spatial and temporal dimensions, with
an amplitude three times higher than the background field. The evo-
lution of this solution precisely aligns with the two fundamental
characteristics of rogue waves: suddenness and steepness. Up to this
point, utilizing existing soliton theories to investigate various rogue
wave solutions has become one of the focal issues capturing the
attention of scientists across diverse fields worldwide. Commonly
employed research methods include the Hirota bilinear method,9

the Kadomtsev-Petviashvili (KP) hierarchy reduction method,10 the
generalized Darboux transformation,11 and the inverse scattering
transformation,12 among others.

With the rapid development of computer technology and
the explosive growth of available data, methods for solving par-
tial differential equations have expanded from traditional numer-
ical approaches to data-driven methods. The physics-informed
neural network (PINN) method13 has demonstrated extraordinary
prospects among various data-driven techniques for solving PDEs.
The main idea of PINN is to incorporate information from phys-
ical equations into the training of neural networks, rather than
relying solely on given data. This enables it to provide accurate pre-
dictions even in situations where data are scarce or corrupted by
noise. In response to various application scenarios and precision
requirements, numerous variations and extensions of PINNs have
emerged, such as fPINN14 for solving fractional differential equa-
tions, hPINN15 for inverse design, B-PINN16 to solve both forward
and inverse nonlinear problems involving PDEs and noisy data,
NN-aPC17 for solving stochastic PDEs, and so on. In the field of inte-
grable systems, algorithms based on excellent properties including
conserved quantities,18 Miura transformation,19 and symmetries.20

Moving forward, there is anticipation for the synergistic integra-
tion of deep learning methods with other integrable theories, such

as Darboux transformation, Riemann–Hilbert method, and Lax
pair.

Despite promising prospects, PINN has encountered diffi-
culties in accurately and efficiently tackling challenges associated
with large domains and multiscale problems. This motivates us to
explore additional techniques for enhancing accuracy. Multiple rea-
sons drive the integration of region decomposition technology into
PINNs. First, it can decompose the scale of the original problem,
dividing a complex problem into equivalent smaller parts accord-
ing to a certain decomposition method, and then solving them one
by one. Second, locality can be highlighted. The experience shows
that neural networks tend to approximate smooth and continu-
ous functions. This may lead to poor local prediction performance
in complex situations, such as approaching steep or discontinu-
ous solutions. Furthermore, in terms of the algorithm design, we
can combine traditional numerical algorithms with neural network
methods. Finally, parallel computing can also be used to improve
efficiency. The cPINN method21 performs domain decomposition
in space and the conserved quantities like fluxes are preserved by
enforcing their continuity in the strong form at the common inter-
faces of neighboring sub-domains. The extended PINN (XPINN)22

is a space–time domain decomposition based deep learning frame-
work and is an extension of the cPINN method. XPINN replaces the
continuity of flux on the interface of adjacent regions with the more
general condition of residual continuity, which can be extended
to solve any type of PDEs. On this basis, a parallel algorithm for
cPINNs and XPINNs is also proposed.23 With regard to innova-
tion in the algorithm design, FBPINN24 is an overlapping domain
decomposition framework inspired by classical finite element meth-
ods, and hp-VPINNs25 are designed by combining variational prin-
ciples. In addition to manual decomposition of the computational
domain, Stiller et al. put forward an adaptive domain decompo-
sition method called Gated PINN.26 This study suggests that the
decomposition of the computational domain can be learned by
utilizing the mixture of expert approach.27 Specifically, the decom-
position method of time domain is also a hot research topic due
to the particularity of time variables compared to spatial ones. Two
time-adaptive approaches, adaptive sampling in time, and adaptive
time marching strategy are introduced in Ref. 28. To ensure back-
ward compatibility of the solution, the bc-PINN scheme29 re-trains
the neural network over successive time segments while satisfying
the solution for all previous time segments. Given that the exist-
ing PINN formula cannot respect the inherent spatiotemporal causal
structure of the evolution of physical systems, Wang et al.30 put forth
a general casual training algorithm for explicitly respecting physical
causality during model training. In contrast to previously mentioned
methods using hard constraints, causal PINN adjusts the initiation
of training in subsequent time domains based on the magnitude of
weights, employing a soft constraint approach. Moreover, the idea of
ensemble learning is adopted in Ref.31, and the computational region
can be automatically expanded without artificially dividing the time
domain.

In recent years, the use of deep learning methods to simu-
late rogue wave solutions has attracted widespread attention and
sparked a new research trend. Since Chen proposed the concept
of integrable deep learning,32,33 his team has conducted extensive
research in the field of data-driven rogue waves with the aid of
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the PINN algorithm and its variants. The dynamic behaviors of the
rogue wave solution34 for the nonlinear Schrödinger equation and
the rogue periodic wave solution35 for the Chen–Lee–Liu equation
have been reproduced for the first time. Miao and Chen36 also stud-
ied the data-driven resonance rogue wave solution for the (2+1)-
dimensional KP equation, which is the first practice of deep learning
methods in high-dimensional integrable systems. Later, Pu et al.
also successfully simulated vector rogue waves for the Manakov37

and Yajima-Oikawa systems.38 In addition, other scholars have also
made rich achievements and progress in this area of research.39–43

Considering the complexity of the dynamics of rogue wave
solutions (instantaneity and steepness), it is a good application sce-
nario for using domain decomposition techniques. In this paper,
in order to capture the complex dynamic behavior of higher-order
rogue waves, we treat the integrable equation considered here as a
time evolution model and adopt a time-phased training approach.
The bc-PINN method draws inspiration from the traditional numer-
ical format and employs a training approach that advances layer by
layer in the temporal domain, while satisfying all obtained solutions
of the previous time periods to ensure backward compatibility of
the solution. For algorithms that perform time piecewise training to
solve PDEs, error propagation is an unavoidable problem. There-
fore, based on the characteristics of error propagation, we propose
improvements to the original bc-PINN algorithm in the design of
the loss function and the final form of the predicted solution. Then,
the improved algorithm is applied to study the data-driven high-
order rogue waves for the NLS equation8 and the AB system,44 while
analyzing the effectiveness of these improvements in reducing error
accumulation by calculating the errors in each sub-domain.

The structure of the article is as follows. Section II gives a
brief review of the original PINN and bc-PINN algorithms and
puts forward the improved bc-PINN (Ibc-PINN) for reducing error
accumulation. In Sec. III, the Ibc-PINN method is utilized to learn
abundant dynamic behaviors of the first-order and higher-order
rogue waves for the NLS equation and the AB system. Then, we con-
duct an analysis of error accumulation to disclose the necessity of
proposing an Ibc-PINN method and analyze the errors across the
entire spatiotemporal region to explore the role of each aspect of
improvement in Sec. IV. In addition, numerical experiments are car-
ried out to discuss the impact of changes in the network structure on
both algorithm stability and accuracy. Finally, the conclusion and
expectation are given in Sec. V.

II. METHODOLOGY

A. A brief review of PINN and bc-PINN

Consider the general form of a N + 1-dimensional partial dif-
ferential equation (PDE)

f

(

x, t;
∂u

∂x1

, . . . ,
∂u

∂xN

,
∂u

∂t
;
∂2u

∂x2
1

, . . . ,
∂2u

∂x1∂xN

,
∂2u

∂x1∂t
; . . .

)

= 0,

(1)

x = (x1, . . . , xN) ∈ �, t ∈ [T0, T],

where � is a subset of R
N, and f is a nonlinear function of the solu-

tion u(x, t) and partial derivatives of space coordinate x and time
coordinate t. Then, the initial and boundary conditions are given as

follows:

u(x, T0) = u0(x), x ∈ �,

u(x, t) = B(x, t), (x, t) ∈ 0 × [T0, T],
(2)

and 0 denotes the boundary of spatial region�.
In this paper, our emphasis lies on the forward problems of

partial differential equations where PINN encounters challenges in
achieving precise solutions.

• PINN:

The physics-informed neural network (PINN) method is an
effective tool in solving forward problems of PDEs, i.e., the initial-
boundary value problem considered here.

Construct a feedforward neural network with a depth of L,
which consists of one input layer, L − 1 hidden layers, and one
output layer. The lth (l = 0, 1, . . . , L) layer has Nl neurons, which
represents that it transmits Nl-dimensional output vector xl to
the (l + 1)th layer as the input. The connection between layers is
achieved by the following affine transformation A and activation
function σ(·):

xl = σ
(

Al

(

xl−1
))

= σ
(

wlxl−1 + bl
)

, (3)

where wl ∈ R
Nl×Nl−1 and bl ∈ R

Nl denote the weight matrix and bias
vector of the lth layer, respectively. Thus, the relation between input
x0 and output u

(

x0, 2
)

is given by

u
(

x0, 2
)

= (AL ◦ σ ◦ AL−1 ◦ · · · ◦ σ ◦ A1)
(

x0
)

(4)

and here 2 =
{

wl, bl
}L

l=1
represents the trainable parameters of

PINN. For the N + 1-dimensional PDE mentioned in (1), the input
x0 is the combination of spatial and temporal coordinates (x, t).

Assume we can obtain the training data, including the initial

dataset
{

x
i
k, T0, u

i
k

}Ni

i=1
and boundary dataset

{

x
b
k, t

b
k, u

i
b

}Nb

i=1
via simple

random sampling method, and the set of collocation points
{

x
r
k, t

r
k

}

of the PDE residual

R := f

(
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∂ û
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,
∂2û
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; . . .

)

(5)

by Latin hypercube sampling approach.45 Then, the loss function
that reflects the initial-boundary conditions and the PDE residual
is defined as follows:

MSE = wi MSEI

(

x
i
k, T0

)

+ wb MSEB

(

x
b
k, t

b
k

)

+ wr MSER

(

x
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r
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)

,

(6)
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x
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= 1
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= 1
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(
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r
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2
.

(7)
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It measures the difference between the predicted values and the
true values of each iteration. Here, we use û to represent the pre-
dicted solution and its partial derivatives of each order with respect
to spatial and the temporal variables can be derived by automatic
differentiation.46 The neural network is trained to update weights
and biases, and they need to be properly initialized before training.
The bias vector is usually initialized to 0 and weight matrices can be
initialized by some effective methods, like Xavier initialization,47 He
initialization,48 and so on. Then, the trainable parameters of the neu-
ral network are iteratively updated to minimize the value of the loss
function. There are many commonly used optimization algorithms,
such as stochastic gradient descent (SGD), Adam, and L-BFGS.49

• bc-PINN:

The backward compatible PINN (bc-PINN) is proposed for
application scenarios where the accuracy of the PINN method sig-
nificantly decreases, such as strong nonlinearity and high-order
time-varying partial differential equations. This scheme uses a sin-
gle neural network to sequentially solve PDE over successive time
segments by retraining the same neural network, while satisfying all
previously obtained solutions. It is, henceforth, referred as backward
compatible PINN since this method ensures backward compatibility
of the solution.

The sequential scheme of bc-PINN is shown in Fig. 1 and the
specific steps are as follows.

First, the time domain [T0, T] is divided into nmax segments

[T0, T1] , [T1, T2] , . . . , [Tn−1, Tn] , . . . ,
[

Tnmax−1, Tnmax = T
]

, (8)

and then we represent the nth time interval as1Tn = [Tn−1, Tn] and
obtain nmax sub-domains �×1Tn. Therefore, the neural network
needs to be repeatedly trained for nmax times, and we record the

solution obtained each time as û(n) , û(n)(2∗
n), (n = 1, . . . , nmax).

For the first sub-domain �× [T0, T1], the PINN method is
applied to minimize the following loss function:

MSE1T1 = wi MSEI

(

x
i
k, T0

)

+ wb MSEB

(

x
b
k, t

b
k

)

+ wr MSER

(

x
r
k, t

r
k

)

,

(9)

x
i
k ∈ �,

(

x
b
k, t

b
k

)

∈ 0 × [T0, T1] ,
(

x
r
k, t

r
k

)

∈ �× [T0, T1]

FIG. 1. Illustration of the bc-PINN for the one-dimensional scenario.

to obtain the solution û(1) , û(1)(2∗
1) of PDE, where 2

∗
1 = arg min

MSE1T1(21). The trained neural network is named subnet-1.
MSEI

(

x
i
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)

, MSEB

(
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b
k, t

b
k

)

, and MSER

(

x
r
k, t

r
k

)

represent the errors
of initial condition, boundary condition, and PDE constraints,
respectively. The calculation formulas of which are similar to (7)
except for replacing û with û(1) and 2 with 21.

For all subsequent sub-domains �×1Tn, (n = 2, . . . , nmax), a
new loss function is proposed, which differs in that it is enforced to
satisfy the solution obtained from previous training

MSE1Tn = wi MSEI
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+ wb MSEB
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where
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− û(n−1)
(

x
s
k, t

s
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∣

∣

2
,

û(n−1) , û(n−1)
(

2
∗
n−1

)

, (11)

2
∗
n−1 = arg min MSE1Tn−1 (2n−1) .

Specifically, the solution û(n) obtained by the nth trained network
(subnet-n) is constrained to satisfy the predicted values of û(n−1)

obtained from the previous training at all previous time segments
[T0, Tn−1]. MSES

(

x
s
k, t

s
k

)

measures departure between the current
predicted solution and the one from the previous training, and the
introduction of this term ensures backward compatibility.

Finally, the result of bc-PINN is the predicted solution of the
neural network trained for the last time in the entire spatiotemporal
region, i.e.,

û(x, t) = û(nmax)(x, t), (x, t) ∈ �× [T0, T] (12)

where û(nmax) is obtained by training subnet-nmax.

B. The improved bc-PINN (Ibc-PINN) for reducing

error accumulation

For schemes like bc-PINN that perform time piecewise train-
ing to sequentially solve PDEs, error accumulation is inevitable.
Here, we propose an improved bc-PINN method to alleviate this
phenomenon.

In the sequential scheme, the neural network training of the
posterior sub-domain is based on the training results of the anterior
ones, which is reflected in the initial constraint MSEI and the con-
straint MSES that ensures backward compatibility. Regarding MSEI,
except for the initial values of the first sub-domain being accurate,
those of all other regions are the predicted values of the previous
trained neural network at the end of the time domain, known as
the “pseudo-initial values.” However, this part of the error cannot
be eliminated and can only be reduced by training the previous
sub-domains with sufficient accuracy. However, for MSES, we can
modify its form to reduce error accumulation. This term enforces
the current predicted solution to approximate the solution obtained
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FIG. 2. Illustration of the improved bc-PINN for the one-dimensional scenario.

from the previous training at all previous time segments. Take n = 3
as an example and the corresponding MSES is

MSES

(

x
s
k, t

s
k

)

= 1

Ns

Ns
∑

k=1

∣

∣û(3)
(

x
s
k, t
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− û(2)
(

x
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k, t

s
k

)
∣

∣

2
,

(13)
(

x
s
k, t

s
k

)

∈ �× [T0, T2] ,

where the acquisition of û(2) is based on the predicted values of û(1)

in [T0, T1], rather than the exact solution of PDE. Therefore, there
is unavoidable error propagation in the process from û(1) to û(2),
and it is reasonable to believe that the accuracy of û(2) in [T0, T1]
is lower than that of û(1) in the high probability. Thus, it is advisable
to make some modifications to the form of MSES so that the cur-
rently trained solution û(3) approaches the predicted values of û(1)

in [T0, T1] and û(2) in (T1, T2]. Similarly, for the subsequent sub-
domains, the prediction accuracy of û(n) is probably higher than
that of û(j), j = n + 1, . . . , nmax in �× (Tn−1, Tn]. Accordingly, the
improved bc-PINN makes the following modifications to MSES, and
its sequential scheme is shown in Fig. 2.

Define the following set of subscripts:
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(

Tj−1, Tj

]}

, j = 2, 3, . . . , nmax − 1,
(14)

and then when n = 2, . . . , nmax , MSES is modified into

MSES

(

x
s
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s
k

)

= 1

Ns
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∑

j=1
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)
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k

)∣

∣

2
, (15)

where û(j) , û(j)(2∗
j ), 2

∗
j = arg min MSE1Tj

(2j).

To summarize, the loss function for the first sub-domain
�× [T0, T1] is given

MSE1T1 = wi MSEI

(

x
i
k, T0

)

+ wb MSEB

(

x
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)

+ wr MSER
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)

,

(16)
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k

)

∈ 0 × [T0, T1] ,
(

x
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r
k

)

∈ �× [T0, T1] ,

where
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,
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∣
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)
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2
,

(17)

and that for subsequent sub-domain �×1Tn(n = 2, . . . , nmax) is
changed into

MSE1Tn = wi MSEI
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)
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)
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(
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)
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)

,

x
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MSES

(

x
s
k, t

s
k

)

= 1

Ns

n−1
∑

j=1

∑

k∈τj

∣

∣û(n)(xs
k, t

s
k, 2n)− û(j)(xs

k, t
s
k)

∣

∣

2
,

τ1 =
{

k|
(

x
s
k, t

s
k

)

∈ �× [T0, T1]
}

, τj =
{

k|
(

x
s
k, t

s
k

)

∈ �× (Tj−1, Tj]
}

,

j = 2, 3, . . . , nmax − 1.

For the loss term MSEI

(

x
i
k, Tn−1

)

, û(n−1) serves the role of pseudo-

initial values at t = Tn−1, and for MSES

(

x
s
k, t

s
k

)

, û(1), û(2), . . . , û(n−1)

act as pseudo-reference solutions of the previous region
�× [T0, Tn−1]. The aforementioned weights wi, wb, wr, ws are used
to scale the differences in the amplitude of each loss term. Note
that the loss functions of bc-PINN and Ibc-PINN in the first two
sub-domains are the same, leading to identical training outcomes.

What is more, the final form of the predicted solution has also
been improved

û(x, t) =
nmax
∑

n=1

û(n)(x, t) · 1Dn(x, t), (x, t) ∈ �× [T0, T], (20)

where

Dn =
{

�× [T0, T1] if n = 1,

�× (Tn−1, Tn] if n = 2, 3, . . . , nmax.
(21)

That is, we adopt the concatenation of solutions obtained from indi-
vidual subnetworks as the final form of the predicted solution, rather

Chaos 34, 033139 (2024); doi: 10.1063/5.0191283 34, 033139-5

Published under an exclusive license by AIP Publishing

 28 M
arch 2024 08:46:28

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

than relying solely on the solution learned by the last subnetwork
like bc-PINN.

Finally, the workflow of Ibc-PINN can be briefly summarized
in Fig. 3, where the evolution equation is taken as an example,
and N [·] represents the nonlinear operator involving various order
derivatives with respect to spatial variables.

C. Comparison between bc-PINN and Ibc-PINN

We compare the methods theoretically before and after
improvement from the following perspectives and the specific effects
of two methods in practical applications are shown based on the
numerical experimental results in the following two sections.

• Accuracy Ibc-PINN is an improved methodology building upon
the foundation of bc-PINN with the aim of enhancing accuracy.
In bc-PINN, the loss term MSES is introduced to ensures back-
ward compatibility of the solution. Its reference baseline is the
predicted solution obtained in the previous time segment, which

can be considered as a pseudo-reference solution across all prior
regions with some margin of error. In addition, error propagation
is unavoidable for algorithms performing time piecewise training
to solve PDEs. Therefore, based on the characteristics of error
propagation, we modify the loss term by selecting the earliest
learned solution for each sub-domain as pseudo-reference solu-
tion. It not only reduces the error of the pseudo-reference solution
used by Ibc-PINN in calculating the loss term MSES compared to
bc-PINN but also helps to decelerate the speed of error accumula-
tion, which contributes to improving the accuracy of the solution
in subsequent training.

• Efficiency The main differences between Ibc-PINN and bc-PINN
are reflected in two aspects: one is the data of pseudo-reference
solution used in computing MSES, and the other is the final
form of the predicted solution. All the data used originate from
the training outcomes of intermediate subnetworks. Therefore,
the improved method does not introduce almost any additional
computational burden, and the impact on the efficiency of
algorithm can be considered negligible.

FIG. 3. Schematic diagram of Ibc-PINN.
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• Stability By adopting the concatenation of solutions obtained
from individual subnetworks as the final form of the predicted
solution, the Ibc-PINN is more stable since insufficient training
in a specific subdomain only affects the accuracy of the predicted
solutions from that subregion onward. The successful prediction
results in previous sub-domains remains unaffected and will not
be rendered futile. However, the results of bc-PINN rely entirely
on the success or failure of training in the last sub-domain. This
will result in an immediate severe deterioration of accuracy across
all trained regions if the network training performs poorly in a
specific subdomain.

• Storage requirement of data Unless there are additional analy-
sis requirements, bc-PINN only needs to store the final weight
matrices and bias vectors of the subnetwork from the last train-
ing. In contrast, Ibc-PINN needs to store the training results of all
subnetworks, leading to larger data storage requirements.

III. NUMERICAL EXPERIMENTS

Rogue wave is a steep wave that is localized in both spatial and
temporal directions, with an amplitude of three times the height
of the background field. Due to the complexity of the shape and
structure, many rogue wave solutions, such as high-order rogue
waves, are always difficult to obtain by using standard PINN. Gen-
erally speaking, the geometric structure of high-order rogue wave
solutions can be categorized into fundamental, triangular, pentag-
onal, heptagonal shapes, and even more complex patterns. Since
high-order rogue waves may exhibit multiple peaks in a certain spa-
tiotemporal region, it is appropriate to use domain decomposition
methods to capture their intricate dynamic behaviors.

In this section, we applied the Ibc-PINN method to numerically
simulate the first-order and higher-order rogue waves of the non-
linear Schrödinger equation (NLS) equation and the AB system and
compared the results with bc-PINN to demonstrate the effectiveness
of the improved method.

A. The nonlinear Schrödinger equation

The nonlinear Schrödinger equation is one of the most clas-
sical and well-known integrable equations, which contains many
excellent properties. It can be employed to characterize the quantum
behavior exhibited by microscopic particles in quantum mechanics50

as well as nonlinear phenomena in other physical domains.51,52

Numerous commonly employed techniques,8,53,54 including the Dar-
boux transformation, the Riemann Hilbert method, and so on
have been utilized to acquire localized wave solutions for the NLS
equation.

1. Data-driven first-order rogue waves

In this subsection, we consider the nonlinear Schrödinger
equation

iqt + qxx + 2|q|2q = 0, (22)

where q(x, t) is a complex-valued solution regarding spatial coor-
dinate x and temporal coordinate t. In optics, the nonlinear term
arises from the material’s intensity-dependent index. This equation
can be reduced from the extended nonlinear Schrödinger equation

by setting β to 0,

iUt + Uxx + 2|U|2U + 2iβ
(

|U|2Ux − U2U∗
x

)

− 2βU

∫

(

|U|2
)

t
dx = 0.

(23)

Through the generalized Darboux transformation, the Nth-order
rogue wave U[N] for the extended nonlinear Schrödinger equation is
derived in Ref. 55, and thus, we can get the corresponding arbitrary-
order rogue wave solution q[N] of the standard NLS equation by
taking β = 0.

• β = 0

By constructing the first-step generalized Darboux transfor-
mation, the first-order rogue wave solution for the extended NLS
equation is presented as

U[1] = exp[iθ]
F1 + iG1

D1

, (24)

where

θ = −2βx + (4β2 + 2)t,

F1 = −4x2 − 32βtx − 16
(

4β2 + 1
)

t2 + 3, G1 = 16t, (25)

D1 = 4x2 + 32βtx + 16
(

4β2 + 1
)

t2 + 1.

After choosing β = 0, we arrive at the explicit expression of the
corresponding first-order rogue wave q(x, t) for the NLS equation.

The computational domain is taken as � = [x0, x1] = [−2, 2]
and [T0, T] = [−1, 1]. Then, the initial and boundary conditions are
obtained based on the above exact solution. For all the examples
showcased here, we choose a straightforward approach by uniformly
dividing the time domain. Recognizing that an excessively fine par-
tition might escalate computational costs, while an overly coarse
partition could compromise accuracy, we adopt a moderate division
based on the size of the selected time domain and the complexity of
the solution. The time domain is divided into nmax = 4 segments,

[T0, T1] = [−1, −0.5], [T1, T2] = [−0.5, 0],
(26)

[T2, T3] = [0, 0.5], [T3, T] = [0, 0.5].

We divide the whole spatial and time region into 512 and 201
discrete equidistance points, respectively. Then, the solution is dis-
cretized into 512 × 201 data points in the grid points to generate
the discretized dataset. In each sub-domain, Ni = 128 and Nb = 50
training points are randomly selected from the initial-boundary
dataset. To reiterate, only the initial values of the first sub-domain
are taken from the exact solution, while those of the other sub-
domains are the predicted values of the solution obtained from the
previous training. In addition, Nr = 20 000 collocation points are
generated by means of the Latin hypercube sampling method. It
should be noted that as the trained sub-domain gradually move
backwards, Ns will increase since the range of previously trained
regions expands. Here, we set Ns = 128 × 50 × (n − 1) for the nth
sub-domain (n = 2, 3, 4).

In view of the complexity of the structure of complex-valued
solution q(x, t), it is decomposed into real and imaginary parts, i.e.,
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q(x, t) = u(x, t)+ iv(x, t), which correspond to the two outputs of
the neural network. After substituting it into (22), the PDE residual
R can be divided into two corresponding parts,

Ru := −vt + uxx + 2
(

u2 + v2
)

u,

(27)

Rv := ut + vxx + 2
(

u2 + v2
)

v.

We choose the weights wi = wb = wr = ws = 1 for all the exam-
ples presented in this paper to facilitate the analysis of the effect of

the improvements. For the first sub-domain, the PINN method is
applied to minimize the following loss function:

MSE1T1 = MSEI

(

xi
k, T0

)

+ MSEB

(

xb
k, t

b
k

)

+ MSER

(

xr
k, t

r
k

)

,

(28)

T0 = −1, xi
k ∈ [−2, 2],

(

xb
k, t

b
k

)

∈ {−2, 2} × [−1, −0.5] ,
(

xr
k, t

r
k

)

∈ [−2, 2] × [−1, −0.5] ,

where
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,

and û(1) and v̂(1) denote the predicted solutions by training subnet-1.
{

xi
k, T0, u

i
k, v

i
k

}128

k=1
and

{

xi
b, t

i
b, u

i
b, v

i
b

}50

k=1
denote the initial and boundary

data, respectively. For subsequent three sub-domains (n = 2, 3, 4), MSES is added into the loss function

MSE1Tn = MSEI

(

xi
k, Tn−1

)

+ MSEB

(
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k, t
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k

)
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(
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k

)
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(
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k, t

s
k

)

,
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(
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k

)
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(
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k

)
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(
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k

)
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∣û(n)
(

xi
k, Tn−1, 2n

)
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∣

2
,

û(n) and v̂(n) are the predicted solutions by training subnet-n in the
nth sub-domain.

Here, we construct a seven-layer feedforward neural network
with 128 neurons per hidden layer and use the tanh activation
function to learn the first-order rogue wave solution for the NLS
equation. The loss functions of subnet-1 and subnet-n (n = 2, 3, 4)
have been given in (28) and (30), respectively. For subnet-1, the
weights are initialized with Xavier initialization method and the

biases is initialized to 0. For the subsequent subnetworks, we adopt
transfer learning56 and weight freezing techniques. To be specific,
the latter subnet inherits the saved weight matrixes and bias vec-
tors of the previous subnet at the end of the iteration process as the
initialization parameters, and thus the subsequent training is based
on the previous results by leveraging the transfer learning technique
instead of training from scratch. In addition, we use weight freezing
to freeze the parameters of the first two layers to prevent them from
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updating in subsequent training, while only training the weights
and biases of the subsequent layers. The advantage of this technique
is that it can retain the features learned by the pre-trained model,
reduce the training time, and prevent the model from overfitting.

In this study, the first-order optimization algorithm (Adam) is
first adopted to train the neural network with a certain number of
iterations and then proceed by using the second-order algorithm
(L-BFGS) to reach the ideal local optimal solution. This training
strategy that combines first-order and second-order optimization
algorithms can balance efficiency and accuracy. The number of iter-
ations for the Adam optimizer is taken as 10 000 here. Meanwhile,
the initial condition guided learning (ICGL) technique29 is used
here in order to better learn the initial conditions. The core idea
is to employ a fraction of the overall iterations to train the neural
network, focusing solely on matching the initial conditions of that
specific time interval. Specifically, the loss function for ICGL in the
first sub-domain is as follows:

MSESI = 1

NSI

NSI
∑

k=1

∣

∣û(1)
(

xsi
k , tsi

k , 21

)

− usi
k

∣

∣

2

+ 1
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∣v̂(1)
(

xsi
k , tsi

k , 21

)
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k

∣

∣

2
,

(32)
(

xsi
k , tsi

k

)

∈ �× [T0, T1],

while that in nth sub-domain (n ≥ 2) is defined as
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∣
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− v̂(n−1)
(

xsi
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)
∣

∣

2
,

(33)
(

xsi
k , tsi

k

)

∈ �× [Tn−1, Tn],

where
{

usi
k , vsi

k

}

is the initial data at the point
(

xsi
k , T0

)

and

û(n−1)
(

xsi
k , Tn−1

) (

v̂(n−1)
(

xsi
k , Tn−1

))

denotes the value of the pre-

dicted solution û(n−1) (v̂(n−1)) at t = Tn−1. The neural network is
trained using 10% of the total number of iterations of the Adam

optimizer, and we choose NSI = 128 ∗ 51 to match only the initial
condition of that time segment. The dynamic behavior of first-order
rogue wave has been successfully learned by Ibc-PINN and the rela-
tive L2 error of |q(x, t)| is 4.843×10−4. The density plot, the absolute
error and the 3d plot of the data-drive rogue wave solution are dis-
played in Fig. 4. It can be seen that there is one peak and two valleys,
with the highest value of the peak roughly appearing near the point
(0, 0).

• β = 1
3

The NLS equation is a special case when β = 0 of the
Kundu–Eckhaus (KE) equation57,58

iqt + qxx + 2|q|2q + 4β2|q|4q − 4iβ
(

|q|2
)

x
q = 0, (34)

which contains quintic nonlinearity and the Raman effect in non-
linear optics. The Kundu–Eckhaus equation can be converted to the
extended NLS equation above by means of a gauge transformation.
Therefore, the following formula:

q[N] = U[N] exp

[

2iβ

∫

|U[N]|2dx

]

(35)

gives rise to the corresponding Nth-order rogue waves for the
Kundu–Eckhaus equation after deriving the rogue wave solutions
for the extended NLS equation through the generalized Darboux
transformation.55

Here is the explicit first-order rogue wave solution of the
Kundu–Eckhaus equation

q[1] = U[1] exp

[

2iβ

∫

|U[1]|2dx

]

, (36)

where U[1] = exp[iθ] F1+iG1
D1

,
∫

|U[1]|2dx = H1
D1

with θ , F1, G1, D1

shown in (25) and

H1 = 4x3 + 16
(

4β2 + 1
)

t2x + 9x + 32β
(

x2 + 1
)

t. (37)

We select the spatiotemporal region as �× [T0, T] = [−1.5, 1.5]
× [−0.5, 0.5], β = 1

3
and divide the whole spatiotemporal region

FIG. 4. Data-driven first-order rogue wave (β = 0) by Ibc-PINN: (a) the density diagram of the predicted solution |q(x, t)|; (b) the density diagram of absolute error;
(c) the three-dimensional plot of the data-driven wave solution |q(x, t)|.
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FIG. 5. Data-driven first-order rogue wave (β = 1
3
) by Ibc-PINN: (a) the density diagram of the predicted solution |q(x, t)|; (b) the density diagram of absolute error;

(c) the three-dimensional plot of the data-driven rogue wave solution |q(x, t)|.

into nmax = 4 sub-domains,

[−1.5, 1.5] × [−0.5, −0.25], [−1.5, 1.5] × [−0.25, 0],

[−1.5, 1.5] × [0, 0.25], [−1.5, 1.5] × [0.25, 0.5].
(38)

Then, the PDE residuals are changed into

Ru := −vt + uxx + 2
(

u2 + v2
)

u + 4β2
(

u2 + v2
)2

u

+ 4β(2uux + 2vvx)v,
(39)

Rv := ut + vxx + 2
(

u2 + v2
)

v + 4β2
(

u2 + v2
)2

v

− 4β(2uux + 2vvx)u.

Other details are similar to that of β = 0 except for changing the
number of nodes in each hidden layer to 64, so we omit them here.

The relative L2 error of the data-driven solution |q(x, t)| for
the KE equation obtained by Ibc-PINN is 3.789×10−3. Although
the network structure and other parameter selection of above two
first-order rogue wave solutions are consistent on the whole, the
data-driven solution with β = 1

3
has lower precision even with

smaller selected training domain. The reason behind this is that the
form of the governing function is more complex, thereby increasing
the difficulty of training when β 6= 0, which involves quintic and
Raman-effect nonlinear terms. According to Fig. 5, the shape of the
rogue wave does not change drastically but it rotates a certain angle
in a clockwise direction as β changes from zero to non zero.

Finally, relative L2 errors generated by bc-PINN and Ibc-PINN
are summarized in Table I for intuitive comparison. The Ibc-PINN
method has improved accuracy, especially for the case when β = 0.

2. Data-driven second-order rogue waves

Based on the above derivation, the second-order rogue wave
solution of the extended NLS equation naturally takes the form

U[2] = exp[iθ]
F2 + iG2

D2

, (40)

where the concrete expressions of F2, G2, D2 are not detailed here
due to space limitations, and they contain free parameters (m1 and
n1) and were given in Ref. 55. After taking β = 0, we obtain the

corresponding second-order rogue wave solution q(x, t) for the NLS
equation.

Once the spatiotemporal region is selected, the correspond-
ing initial and boundary conditions can be derived from the exact
solution. After acquiring the initial-boundary data obtained by tak-
ing two different sets of free parameters (m1 and n1), the Ibc-PINN
method is utilized to learn second-order rogue wave solutions.

• m1 = 0, n1 = 0

Here, the spatiotemporal region �× [T0, T] = [−2, 2]
× [−0.8, 0.8] are also equally divided into four sub-domains. The
loss function (28) is employed for optimizing subnet-1 in the
first time segment [−0.8, −0.4], while the loss (30) for subnet-n
(n = 2, 3, 4) in subsequent ones ([−0.4, 0], [0, 0.4], [0.4, 0.8]).

We establish a neural network with the depth of 7 and
width of 128. Other parameters are selected as Ni = 128, Nb = 50,
Nr = 20 000, and incremental Ns = 128 × 50 × (n − 1) for the
nth sub-domain. The effective techniques mentioned above have
also been adopted, including the initial condition guided learning
(ICGL), transfer learning and weight freezing, and specific details
are consistent with Subsection III A 1.

When m1 = 0, n1 = 0, we successfully simulate the fundamen-
tal second-order rogue wave solution by Ibc-PINN shown in Fig. 6.
The maximum value of |q(x, t)| is approximately 5, reaching at point
(0, 0).

• m1 = 10, n1 = 0

Under this set of parameter values, the morphology of the
rogue wave solution becomes more complex. Thus, we will divide

TABLE I. Relative L2 errors of the data-driven first-order rogue waves for the NLS

and KE equations by bc-PINN and Ibc-PINN.

Relative L2 error of |q(x, t)|
� [T0, T] bc-PINN Ibc-PINN

β = 0 [−2, 2] [−1, 1] 1.062 × 10−3 4.843 × 10−4

β = 1

3
(KE) [−1.5, 1.5] [−0.5, 0.5] 4.471 × 10−3 3.789 × 10−3
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FIG. 6. Data-driven second-order rogue wave (m1 = 0, n1 = 0) by Ibc-PINN: (a) The density diagram of the predicted solution |q(x, t)|; (b) The density diagram of absolute
error; (c) The three-dimensional plot of the data-driven rogue wave solution |q(x, t)|.

the selected time domain [T0, T] = [−1.5, 1.5] into nmax = 6 equal
parts to apply the Ibc-PINNs. Take the space range as � = [−4, 4]
and choose Ni = 256 due to the expansion of the spatial region.
Accordingly, Ns is changed to 256 × 50 × (n − 1) and we select
NSI = 256 ∗ 51 for the nth sub-domain. Other parameter settings,
including network structure, are consistent with m1 = n1 = 0.

By means of Ibc-PINN, data-driven second-order rogue wave is
displayed in Fig. 7. It vividly illustrates that the fundamental second-
order rogue wave is separated into three first-order rogue waves:
a single and a double spatial hump. We also observe that the sin-
gle hump appears at t ≈ −1 and rapidly decays while two spatial
humps rise up simultaneously at t ≈ 0.6. The spatial coordinates
corresponding to the three peaks are x = 0, x ≈ ±2 separately.

Comparing the performance of the two methods shown in
Table II, the error of bc-PINN is reduced to approximately half of
its original value after improvement.

3. Data-driven third-order rogue waves

Similarly, after denoting

91[l] = 9
[0]
1 +

l
∑

j=1

T1[j]9
[1]
1 +

l
∑

j=1

j−1
∑

k=1

T1[j]T1[k]9 [2]
1

+ . . .+ T1[l]T1[l − 1] . . .T1[1]9 [l]
1 , (41)

the Nth-step generalized Darboux transformation results in

9[N] = T[N]T[N − 1] . . .T[1]9 , (42)

T[l] = ζ I − H[l − 1]3lH[l − 1]−1, (43)

U[N] = U[0] − 2i
(

ζ1 − ζ ∗
1

)

N−1
∑

l=0

ψ1[l]φ1[l]
∗

(

∣

∣ψ1[l]
∣

∣

2 +
∣

∣φ1[l]
∣

∣

2
) , (44)

where
(

ψ1[l],φ1[l]
)T = 91[l], (45)

H[l − 1] =
(

ψ1[l − 1] −φ1[l − 1]∗

φ1[l − 1] ψ1[l − 1]∗

)

, (46)

3l =
(

ζ1 0
0 ζ ∗

1

)

, 1 6 l 6 N (47)

and can derive the N-order rogue wave solution U[N] for the
extended NLS equation. The specific details of the parameters
involved have been presented in Ref. 55 and will not be elaborated
here. Then, we choose β = 0, N = 3 and simulate the third-order
rogue wave solution q(x, t) for the NLS equation by Ibc-PINN.

FIG. 7. Data-driven second-order rogue wave (m1 = 10, n1 = 0) by Ibc-PINN: (a) the density diagram of the predicted solution |q(x, t)|; (b) the density diagram of absolute
error; (c) the three-dimensional plot of the data-driven rogue wave solution |q(x, t)|.
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TABLE II. Relative L2 errors of the data-driven second-order rogue waves for the

NLS equation by bc-PINN and Ibc-PINN.

Relative L2 error of |q(x, t)|
� [T0, T] bc-PINN Ibc-PINN

m1 = 0 [−2, 2] [−0.8, 0.8] 6.368 × 10−3 3.690 × 10−3

m1 = 10 [−4, 4] [−1.5, 1.5] 6.580 × 10−3 3.543 × 10−3

• m1 = 10, n1 = 0, m2 = 0, n2 = 0

We divide the spatiotemporal region �× [T0, T] = [−5, 5]
× [−2, 1.5] into nmax = 7 sub-domains with a time step of 0.5.
The parameters of each dataset in the loss function are taken as
Ni = 128, Nb = 50, Nr = 20 000 and Ns = 128 × 50 × (n − 1) for
the nth sub-domain. Afterward, a neural network with a depth of
7 and a width of 64 is established to learn dynamic behaviors of
the solution in each subregion. We opt for a blend of the Adam
and L-BFGS optimizers, commencing with 10 000 iterations using
the Adam optimization algorithm, followed by subsequent iterations
employing the L-BFGS algorithm until convergence. Additionally,
during the initial training phase in each subregion, we leverage ICGL
technology to match the initial conditions. This step accounts for
10% of the Adam iteration count and NSI is taken as 128 × 51. Sim-
ilarly, techniques such as transfer learning and weight freezing are
employed to accelerate the training speed of the network, and the
number of frozen weight layers is set to 2.

The density diagrams of the predicted |q(x, t)| obtained by
bc-PINN and Ibc-PINN as well as the curve plots to show

comparison between the predicted and exact solutions at the three
temporal snapshots are depicted in Fig. 8. Under this parame-
ter selection of m1 = 10, n1 = 0, m2 = 0, n2 = 0, the fundamental
third-order rogue wave splits into a triangular arrangement of six
first-order rogue waves. A single hump forms at t ≈ −1.75, followed
by the symmetric appearance of two rogue waves around t ≈ −0.5,
and a triple spatial hump rapidly rises at t ≈ 1.1 and t ≈ 1.2. We
notice that the contour lines of the density plot for the third-order
rogue wave obtained by bc-PINN are irregular and lack smoothness.
Moreover, as shown in Fig. 8(b), there is a certain gap between the
predicted solution and the exact solution curve. In contrast, the pre-
dictive outcomes of Ibc-PINN demonstrate a notable concordance
with the reference solution. The absolute error plots in Fig. 9 also
reveals the difference in accuracy between these two methods.

• m1 = 0, n1 = 0, m2 = 50, n2 = 0

Here, we take the number of sub regions nmax as 6 and each
subnet contains six hidden layers, with 128 neurons per hidden
layer. Other than this, all other configurations remain consistent
with the previous example. Ultimately, Fig. 10 illustrates third-order
rogue wave of pentagonal pattern reconstructed by using Ibc-PINN.
Table III summarizes the relative errors of data-driven third-order
rogue waves for these two patterns, with Ibc-PINN maintaining
higher accuracy compared to the unimproved method.

B. The AB system

The AB system, initially proposed by Pedlosky44 using singular
perturbation theory, serves as model equations to depict marginally

FIG. 8. Data-driven third-order rogue wave (m1 = 10, n1 = m2 = n2 = 0): the density diagrams of the predicted solution |q(x, t)|: (a) by bc-PINN and (c) by Ibc-PINN;
comparison between the predicted and exact solutions at the three temporal snapshots of |q(x, t)|: (b) by bc-PINN and (d) by Ibc-PINN.

Chaos 34, 033139 (2024); doi: 10.1063/5.0191283 34, 033139-12

Published under an exclusive license by AIP Publishing

 28 M
arch 2024 08:46:28

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 9. Data-driven third-order rogue wave (m1 = 10, n1 = m2 = n2 = 0): the density diagrams of absolute error: (a) by bc-PINN and (b) by Ibc-PINN;
(c) the three-dimensional plot of the data-driven rogue wave solution |q(x, t)| by Ibc-PINN.

unstable baroclinic wave packets59,60 and ultra-short pulses in non-
linear optics.61 The study of the dynamic properties of the AB system
has yielded rich results, including the envelope solitary waves and
periodic waves,62 the Lax pair,63 the conservation laws, modulational
instability and breather solutions via the Darboux transformation,64

the N-soliton solutions by using the dressing method,65 and rogue
wave solutions via the generalized Darboux transformation.66

1. Data-driven first-order rogue waves

We investigate the AB system in the canonical form63

Axt = AB, (48)

Bx = −1

2

(

|A|2
)

t
. (49)

Here, A and B are wave amplitudes satisfying the normalization
condition

|At|2 + B2 = 1, (50)

and x and t represent semi-characteristic normalized coordinates.
By using the generalized Darboux transformation, a unified formula

of Nth-order rogue wave solution for the AB system is given66

A[N] = A[0] − 4i
(

λ1 − λ∗
1

)

N−1
∑

j=0

ψ1[j]φ1[j]
∗

(

∣

∣ψ1[j]
∣

∣

2 +
∣

∣φ1[j]
∣

∣

2
) , (51)

B[N] = B[0] − 4i
(

λ1 − λ∗
1

)

×
N−1
∑

j=0

[

∣

∣ψ1[j]
∣

∣

2
(

∣

∣φ1[j]
∣

∣

2
)

t
−

∣

∣φ1[j]
∣

∣

2
(

∣

∣ψ1[j]
∣

∣

2
)

t

]

(

∣

∣ψ1[j]
∣

∣

2 +
∣

∣φ1[j]
∣

∣

2
)2

. (52)

Specifically, the following plane wave solutions are taken as
seed solutions:

A[0] = eiθ , B[0] = − 1√
1 + a2

, (53)

with the real constant a and θ = a
√

1+a2x+t√
1+a2

, and after substituting

them into the Lax pair of the AB system, the first-order rogue wave
is derived based on formulas (51) and (52) with N = 1 and the fixed
spectral parameter λ1 = − a

2
+ i

2
,

A[1] = eiθ

(

1 + F1 + iH1

D1

)

, B[1] = 1√
1 + a2

G1

D2
1

, (54)

FIG. 10. Data-driven third-order rogue wave (m1 = n1 = n2 = 0,m2 = 50) by Ibc-PINN: (a) The density diagram of the predicted solution |q(x, t)|; (b) The density diagram
of absolute error; (c) The three-dimensional plot of the data-driven rogue wave solution |q(x, t)|.
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TABLE III. Relative L2 errors of the data-driven third-order rogue waves for the NLS equation by bc-PINN and Ibc-PINN.

Relative L2 error of |q(x, t)|
� [T0, T] bc-PINN Ibc-PINN

m1 = 10, m2 = 0 [−5,5] [−2,1.5] 1.932 × 10−2 6.953 × 10−3

m1 = 0, m2 = 50 [−4.5,4.5] [−1.6,1.6] 6.419 × 10−3 2.985 × 10−3

where

F1 =
(

2a4 + 4a2 + 2
)

x2 − 4
√

1 + a2axt + 2t2 − 2a4 − 4a2 − 2,

H1 = 4
√

1 + a2t,

D1 = −
(

a4 + 2a2 + 1
)

x2 + 2a
√

1 + a2xt − t2 − a4 − 2a2 − 1,

G1 = −a
(

a2 + 1
)4

x4 + 4a2
(

a2 + 1
)5/2

tx3 − 2a
(

a2 + 1
) ((

3a2 + 1
)

t2 + a6 + 5a4 + 7a2 + 3
)

x2

+ 4
√

1 + a2
(

a2t2 + a6 + 4a4 + 5a2 + 2
)

xt − at4 −
(

2a5 + 8a3 + 6a
)

t2 − a9 + 6a5 + 8a3 + 3a.

After selecting a = 1
10

and the spatiotemporal region �× [T0, T] = [−4, 4] × [−4, 4], we can obtain the corresponding initial and
boundary data. Then, we divide the time domain into nmax = 4 segments and utilize the Ibc-PINN method to simulate the dynamic behavior
of first-order rogue wave. The entire region is divided into 512 × 201 equidistant grid points, and the number of initial data points, bound-
ary data points and residual configuration points is taken as Ni = 128, Nb = 50 and Nr = 20 000 separately. The increasing Ns is selected as
Ns = 128 × 50 × (n − 1) for the nth sub-domain.

Decomposing the complex-valued solution A(x, t) into real part u(x, t) and imaginary part v(x, t) and substituting them into the AB
system can derive three PDE residuals

R1 := uxt − uB,

R2 := vxt − vB,

R3 := Bx + uut + vvt.

(55)

Then, the loss function of the first sub-domain is given

MSE1T1 = MSEI

(

xi
k, T0

)

+ MSEB

(

xb
k, t

b
k

)

+ MSER

(

xr
k, t

r
k

)

,

(56)

T0 = −4, xi
k ∈ [−4, 4],

(

xb
k, t

b
k

)

∈ {−4, 4} × [−4, −2] ,
(

xr
k, t

r
k

)

∈ [−4, −4] × [−4, −2] ,

where

MSEI

(

xi
k, T0

)

= 1

Ni

Ni
∑

k=1

∣

∣û(1)
(

xi
k, T0, 21

)

− ui
k

∣

∣

2 + 1

Ni

Ni
∑

k=1

∣

∣v̂(1)
(

xi
k, T0, 21

)

− vi
k

∣

∣

2 + 1

Ni

Ni
∑

k=1

∣

∣

∣
B̂(1)

(

xi
k, T0, 21

)

− Bi
k

∣

∣

∣

2

,

MSEB

(

xb
k, t

b
k

)

= 1

Nb

Nb
∑

k=1

∣

∣û(1)
(

xb
k, t

b
k, 21

)

− ub
k

∣

∣

2 + 1

Nb

Nb
∑

k=1

∣

∣v̂(1)
(

xb
k, t

b
k, 21

)

− vb
k

∣

∣

2 + 1

Nb

Nb
∑

k=1

∣

∣

∣
B̂(1)

(

xb
k, t

b
k, 21

)

− Bb
k

∣

∣

∣

2

, (57)

MSER

(

xr
k, t

r
k

)

= 1

Nr

Nr
∑

k=1

∣

∣R1

(

xr
k, t

r
k, 21

)
∣

∣

2 + 1

Nr

Nr
∑

k=1

∣

∣R2

(

xr
k, t

r
k, 21

)
∣

∣

2 + 1

Nr

Nr
∑

k=1

∣

∣R3

(

xr
k, t

r
k, 21

)
∣

∣

2
,

and the PINN is applied to learn the real and imaginary parts (û(1) and v̂(1)) of Â(1) and B̂(1). In order to ensure the backward compatibility
of the solution and simultaneously reduce the accumulation of errors, the modified loss term MSES is introduced into the loss function for
subsequent three sub-domains (n = 2, 3, 4)

MSE1Tn = MSEI

(

xi
k, Tn−1

)

+ MSEB

(

xb
k, t

b
k

)

+ MSER

(

xr
k, t

r
k

)

+ MSES

(

xs
k, t

s
k

)

,

xi
k ∈ [−4, 4],

(

xb
k, t

b
k

)

∈ {−4, 4} × [Tn−1, Tn] ,
(

xr
k, t

r
k

)

∈ [−4, 4] × [Tn−1, Tn] ,
(

xs
k, t

s
k

)

∈ [−4, 4] × [−4, Tn−1] , (58)

τ1 = {k|(xs
k, t

s
k) ∈ [−4, 4] × [−4, T1]}, τj = {k|(xs

k, t
s
k) ∈ [−4, 4] × (Tj−1, Tj]} (j = 2, . . . , n − 1),
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where

MSEI

(
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= 1
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.

Here, Â(n) = û(n) + iv̂(n) and B̂(n) are the predicted solutions by
training subnet-n in nth sub-domain.

For each subnetwork, the width and depth are taken as 7 and
128, respectively. The selection of optimizers and the application of
ICGL and transfer learning techniques are similar to those used in
the nonlinear Schrödinger equation, and are not further elaborated
upon here. The dynamic behaviors of the first-order rogue wave for

FIG. 11. Data-driven first-order rogue wave by Ibc-PINN: the density diagrams of the predicted solutions: (a) |A(x, t)| and (d) |B(x, t)|; the density diagrams of absolute
error: (b) |A(x, t)| and (e) B(x, t); the three-dimensional plots of the data-driven wave solutions: (c) |A(x, t)| and (f) |B(x, t)|.

the AB system are successfully reproduced by using Ibc-PINN, as
displayed in Fig. 11. The waveform of A component is the standard
eye-shaped Peregrine soliton whereas the B component exhibits the
characteristic shape of four peaky-shaped rogue wave. Moreover, the
results in Table IV indicate that under this network structure con-
figuration, the network training of bc-PINN fails and there is still a
considerable error compared to the exact solution.
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TABLE IV. Relative L2 errors of the data-driven rogue waves for the AB system by

bc-PINN and Ibc-PINN.

bc-PINN Ibc-PINN

First-order |A(x, t)| 2.083 × 10−1 4.238 × 10−3

B(x, t) 5.070 × 10−1 1.442 × 10−2

Second-order |A(x, t)| 3.309 × 10−3 2.671 × 10−3

B(x, t) 1.212 × 10−2 9.891 × 10−3

2. Data-driven second-order rogue waves

Naturally, the second-order rogue wave solution for the AB
system with free parameters a1, m1, and n1 can be derived66 by per-
forming the second-step generalized Darboux transformation (DT).
Here, we refrain from providing the explicit expressions in this con-
text due to the intricate nature of their representation. The value of
a1 is fixed at 1

10
, and once the spatiotemporal domain is chosen and

the remaining two free parameters are determined, we can acquire
the corresponding initial and boundary conditions.

The time domain [−4, 4] is divided into nmax = 6 equidis-
tant segments. For the nth sub-domain, we choose Ni = 128,
Nb = 50, Nr = 2000, and Ns = 128 × 50 × (n − 1) and establish a
sub network with six hidden layers, each consisting of 64 neurons.

The selection of free parameters m1 = 0, n1 = 0 corresponds
to the fundamental second-order rogue wave, which is simulated by
Ibc-PINN shown in Fig. 12. Obviously, the maximum amplitude of
predicted |A(x, t)| occurs at the center (0,0), and it is roughly five
times the amplitude of the background wave. For B component,

there are twelve peaks with a peak value of 1 around the center.
Finally, Table IV provides the relative error of solutions obtained
by using two methods, and the accuracy of Ibc-PINN still remains
higher.

IV. ANALYSIS AND DISCUSSION

A. Analysis of error accumulation

In this part, we take the second and third-order rogue waves
for the nonlinear Schrödinger equation as examples to analyze the
cumulative effect of errors by calculating the relative L2 errors of
bc-PINN and Ibc-PINN in each sub-domain.

For the second-order (m1 = 0, n1 = 0) and third-order rogue
waves (m1 = n1 = n2 = 0, m2 = 50), the entire regions were
divided into four and six sub-domains, respectively, and a total of
four and six subnets were trained. We calculate the relative L2 errors
on Nx × Nt = 512 × 51 grid points for each sub-domain to eval-
uate the accuracy of models and the specific results are listed in
Tables V–VIII.

According to Tables V and VII, we first analyze the error accu-
mulation phenomenon of bc-PINN. Obviously, the relative L2 error
of subnet-2 on sub-domain 1 has been almost an order of magnitude
larger than that of subnet-1, and as the sequential number of sub-
nets increases, the error on sub-domain 1 roughly shows an upward
trend. There is also a similar phenomenon of error accumulation in
other sub-domains. The values in the last column are the relative L2

errors of the solution by training the last sub network [i.e., the final
form of the predicted solution obtained by bc-PINN shown in (12)]
in each sub-domain. Those on the diagonal are the errors generated
by the predicted solution of the nth subnet on the nth sub-domain,

FIG. 12. Data-driven second-order rogue wave by Ibc-PINN: the density diagrams of the predicted solutions: (a) |A(x, t)| and (d) |B(x, t)|; the density diagrams of absolute
error: (b) |A(x, t)| and (e) B(x, t); the three-dimensional plots of the data-driven wave solutions: (c) |A(x, t)| and (f) |B(x, t)|.
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TABLE V. Relative L2 errors of the data-driven second-order rogue wave (m1 = 0, n1 = 0) for the NLS equation in each sub-domain by bc-PINN.a

subnet-1 subnet-2 subnet-3 subnet-4

Relative L2 error of u(x, t) sub-domain 1 1.015 × 10−4 2.543 × 10−3 1.026 × 10−2 8.885 × 10−3

sub-domain 2 \ 8.519 × 10−4 6.831 × 10−3 5.008 × 10−3

sub-domain 3 \ \ 7.742 × 10−3 7.764 × 10−3

sub-domain 4 \ \ \ 4.013 × 10−2

Relative L2 error of v(x, t) sub-domain 1 6.315 × 10−5 1.571 × 10−3 5.985 × 10−3 5.162 × 10−3

sub-domain 2 \ 1.260 × 10−3 1.018 × 10−2 7.282 × 10−3

sub-domain 3 \ \ 1.366 × 10−2 1.371 × 10−2

sub-domain 4 \ \ \ 1.382 × 10−2

Relative L2 error of |q(x, t)| sub-domain 1 5.543 × 10−5 1.307 × 10−3 5.293 × 10−3 4.656 × 10−3

sub-domain 2 \ 6.178 × 10−4 5.443 × 10−3 3.975 × 10−3

sub-domain 3 \ \ 3.868 × 10−3 3.990 × 10−3

sub-domain 4 \ \ \ 1.071 × 10−2

aThe boldface values on the diagonal indicate the error of the earliest learned predictive solution in each subregion, while the boldface values
in the last column denote the error of the solution obtained from training the final subnetwork.

while noting that the accuracy of this solution is the highest for this
sub-domain. In addition, by comparing the values in the last column
of the table with those on the diagonal, it can be intuitively seen that
subsequent training of the subnets will inevitably be affected by the
accumulation of errors, leading to a decrease in accuracy.

The performance of Ibc-PINN in various sub regions is shown
in Tables VI and VIII. When calculating MSES, we modified
the original form in bc-PINN to reduce error accumulation. To
reiterate, with regard to subnet-1 and subnet-2, the training results
of bc-PINN and Ibc-PINN are the same, and there are differences
in the results between the two methods starting from subnet-3.
By comparing the values on the diagonal and the last column,
we observe that the error accumulation speed of Ibc-PINN is
significantly slower than that of bc-PINN. After comparing the

errors on the diagonal in Tables V–VIII, the highest accuracy that
Ibc-PINN can achieve in each sub-domain is also higher than
that of bc-PINN attributed to the reduction of error accumula-
tion. Moreover, not to mention that bc-PINN is associated with
errors in the last column, which are even greater than those on the
diagonal.

In order to compare the performance of the two methods more
intuitively, we draw a line graph as shown in Fig. 13. The black
and red lines represent the relative L2 error of |q(x, t)| achieved
by bc-PINN and Ibc-PINN, respectively, while the blue dashed line
represents the minimum error of bc-PINN in each sub-domain,
namely, the diagonal values in Tables V and VII, annotated on the
graph as “best bc-PINN.” Note that the red line is always below the
blue dashed line and furthermore, the difference between the blue

TABLE VI. Relative L2 errors of the data-driven second-order rogue wave (m1 = 0, n1 = 0) for the NLS equation in each sub-domain by Ibc-PINN.a

subnet-1 subnet-2 subnet-3 subnet-4

Relative L2 error of u(x, t) sub-domain 1 1.015 × 10−4 2.543 × 10−3 7.961 × 10−3 2.167 × 10−3

sub-domain 2 \ 8.519 × 10−4 5.842 × 10−3 1.991 × 10−3

sub-domain 3 \ \ 6.108 × 10−3 6.465 × 10−3

sub-domain 4 \ \ \ 3.268 × 10−2

Relative L2 error of v(x, t) sub-domain 1 6.315 × 10−5 1.571 × 10−3 5.609 × 10−3 1.058 × 10−3

sub-domain 2 \ 1.260 × 10−3 9.123 × 10−3 2.894 × 10−3

sub-domain 3 \ \ 1.103 × 10−2 1.132 × 10−2

sub-domain 4 \ \ \ 1.020 × 10−2

Relative L2 error of |q(x, t)| sub-domain 1 5.543 × 10−5 1.307 × 10−3 4.602 × 10−3 9.862 × 10−4

sub-domain 2 \ 6.178 × 10−4 5.347 × 10−3 1.610 × 10−3

sub-domain 3 \ \ 2.684 × 10−3 3.189 × 10−3

sub-domain 4 \ \ \ 7.022 × 10−3

aThe boldface values on the diagonal indicate the error of the earliest learned predictive solution in each subregion, while the boldface values
in the last column denote the error of the solution obtained from training the final subnetwork.
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TABLE VII. Relative L2 errors of the data-driven third-order rogue wave (m1 = n1 = n2 = 0, m2 = 50) for the NLS equation in each sub-domain by bc-PINN.a

subnet-1 subnet-2 subnet-3 subnet-4 subnet-5 subnet-6

Relative L2 error of u(x, t) sub-domain 1 3.980 × 10−4 1.327 × 10−3 1.933 × 10−3 3.123 × 10−3 4.536 × 10−3 6.979 × 10−3

sub-domain 2 \ 5.857 × 10−4 1.670 × 10−3 3.097 × 10−3 3.270 × 10−3 5.652 × 10−3

sub-domain 3 \ \ 2.065 × 10−3 3.365 × 10−3 4.531 × 10−3 6.939 × 10−3

sub-domain 4 \ \ \ 4.830 × 10−3 5.716 × 10−3 8.763 × 10−3

sub-domain 5 \ \ \ \ 7.516 × 10−3 1.019 × 10−2

sub-domain 6 \ \ \ \ \ 1.990 × 10−2

Relative L2 error of v(x, t) sub-domain 1 3.917 × 10−4 1.085 × 10−3 2.179 × 10−3 3.199 × 10−3 4.393 × 10−3 6.568 × 10−3

sub-domain 2 \ 5.577 × 10−4 1.713 × 10−3 3.522 × 10−3 3.851 × 10−3 6.530 × 10−3

sub-domain 3 \ \ 2.333 × 10−3 3.738 × 10−3 4.244 × 10−3 7.770 × 10−3

sub-domain 4 \ \ \ 3.909 × 10−3 4.776 × 10−3 8.020 × 10−3

sub-domain 5 \ \ \ \ 1.284 × 10−2 1.521 × 10−2

sub-domain 6 \ \ \ \ \ 2.120 × 10−2

Relative L2 error of |q(x, t)| sub-domain 1 3.033 × 10−4 8.866 × 10−4 1.476 × 10−3 2.226 × 10−3 3.306 × 10−3 4.996 × 10−3

sub-domain 2 \ 4.405 × 10−4 1.183 × 10−3 2.204 × 10−3 2.521 × 10−3 3.904 × 10−3

sub-domain 3 \ \ 1.014 × 10−3 2.181 × 10−3 2.884 × 10−3 5.141 × 10−3

sub-domain 4 \ \ \ 1.243 × 10−3 2.510 × 10−3 5.460 × 10−3

sub-domain 5 \ \ \ \ 4.065 × 10−3 6.620 × 10−3

sub-domain 6 \ \ \ \ \ 1.045 × 10−2

aThe boldface values on the diagonal indicate the error of the earliest learned predictive solution in each subregion, while the boldface values
in the last column denote the error of the solution obtained from training the final subnetwork.

dashed line and the red one shows an increasing trend, which indi-
cates that our improvement helps to slow down error accumulation
and improve the accuracy of each sub region compared to bc-PINN.
In other word, due to the refinement made in the loss term MSES,
even though bc-PINN adopts a concatenated form of solution, the

error propagation speed is also faster than Ibc-PINN. Consider-
ing that the examples presented in Fig. 13 are divided into at most
six sub regions, if the number of sub-domains divided increases in
future research, the slowdown of Ibc-PINN in error accumulation
speed may yield greater advantages in accuracy.

TABLE VIII. Relative L2 errors of the data-driven third-order rogue wave (m1 = n1 = n2 = 0, m2 = 50) for the NLS equation in each sub-domain by Ibc-PINN.a

subnet-1 subnet-2 subnet-3 subnet-4 subnet-5 subnet-6

Relative L2 error of u(x, t) sub-domain 1 3.980 × 10−4 1.327 × 10−3 2.021 × 10−3 2.663 × 10−3 4.578 × 10−3 4.301 × 10−3

sub-domain 2 \ 5.857 × 10−4 1.720 × 10−3 2.473 × 10−3 3.848 × 10−3 3.552 × 10−3

sub-domain 3 \ \ 1.906 × 10−3 3.883 × 10−3 3.836 × 10−3 5.183 × 10−3

sub-domain 4 \ \ \ 3.546 × 10−3 4.918 × 10−3 5.269 × 10−3

sub-domain 5 \ \ \ \ 6.795 × 10−3 7.909 × 10−3

sub-domain 6 \ \ \ \ \ 1.292 × 10−2

Relative L2 error of v(x, t) sub-domain 1 3.917 × 10−4 1.085 × 10−3 2.328 × 10−3 2.604 × 10−3 4.039 × 10−3 4.657 × 10−3

sub-domain 2 \ 5.577 × 10−4 2.059 × 10−3 2.821 × 10−3 4.325 × 10−3 4.296 × 10−3

sub-domain 3 \ \ 2.151 × 10−3 4.180 × 10−3 4.304 × 10−3 4.726 × 10−3

sub-domain 4 \ \ \ 3.113 × 10−3 4.728 × 10−3 4.669 × 10−3

sub-domain 5 \ \ \ \ 9.264 × 10−3 1.024 × 10−2

sub-domain 6 \ \ \ \ \ 1.340 × 10−2

Relative L2 error of |q(x, t)| sub-domain 1 3.033 × 10−4 8.866 × 10−4 1.578 × 10−3 1.829 × 10−3 3.040 × 10−3 3.062 × 10−3

sub-domain 2 \ 4.405 × 10−4 1.408 × 10−3 1.768 × 10−3 2.736 × 10−3 2.566 × 10−3

sub-domain 3 \ \ 9.628 × 10−4 2.656 × 10−3 2.590 × 10−3 3.453 × 10−3

sub-domain 4 \ \ \ 1.059 × 10−3 2.877 × 10−3 2.909 × 10−3

sub-domain 5 \ \ \ \ 2.793 × 10−3 4.114 × 10−3

sub-domain 6 \ \ \ \ \ 6.690 × 10−3

aThe boldface values on the diagonal indicate the error of the earliest learned predictive solution in each subregion, while the boldface values
in the last column denote the error of the solution obtained from training the final subnetwork.
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B. Error analysis

In the last subsection, we demonstrate the necessity of proposing an Ibc-PINN method that can slow down the accumulation of errors
by analyzing the errors of two methods in each sub-domain. The previous analysis is conducted from the perspective of sub regions. Here, we
analyze the relative L2 errors and absolute error plots across the entire spatiotemporal region.

FIG. 13. Relative L2 errors in each sub-domain: (a) data-driven second-order rogue wave (m1 = 0, n1 = 0); (b) data-driven third-order rogue wave (m1 = n1
= n2 = 0,m2 = 50).

TABLE IX. Relative L2 errors of the data-driven rogue wave solutions |q(x, t)| for the NLS and KE equations by bc-PINN, Ibc-PINN(unjoined), and Ibc-PINN.

bc-PINN Ibc-PINN(unjoined) Ibc-PINN

First-order rogue waves β = 0 1.062 × 10−3 6.776 × 10−4 4.843 × 10−4

β = 1

3
(KE) 4.471 × 10−3 3.909 × 10−3 3.789 × 10−3

Second-order rogue waves m1 = 0 6.368 × 10−3 3.902 × 10−3 3.690 × 10−3

m1 = 10 6.580 × 10−3 4.183 × 10−3 3.543 × 10−3

Third-order rogue waves m1 = 10, m2 = 0 1.932 × 10−2 9.368 × 10−3 6.953 × 10−3

m1 = 0, m2 = 50 6.419 × 10−3 4.020 × 10−3 2.985 × 10−3

TABLE X. Relative L2 errors of the data-driven rogue wave solutions for the AB system by bc-PINN, Ibc-PINN(unjoined), and Ibc-PINN.

bc-PINN Ibc-PINN(unjoined) Ibc-PINN

First-order rogue wave |A(x, t)| 2.083 × 10−1 4.612 × 10−3 4.238 × 10−3

B(x, t) 5.070 × 10−1 1.595 × 10−2 1.442 × 10−2

Second-order rogue wave |A(x, t)| 3.309 × 10−3 2.719 × 10−3 2.671 × 10−3

B(x, t) 1.212 × 10−2 9.881 × 10−3 9.891 × 10−3
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FIG. 14. The absolute error density diagrams of data-driven first-order rogue wave (β = 0): (a1) by bc-PINN, (a2) Ibc-PINN(unjoined), and (a3) Ibc-PINN; the absolute error
density diagrams of data-driven second-order rogue wave (m1 = 0, n1 = 0): (b1) by bc-PINN, (b2) Ibc-PINN(unjoined), and (b3) Ibc-PINN.

TABLE XI. Relative L2 errors of the data-driven first-order rogue wave solution |q(x, t)| for the NLS equation by using different number of hidden layers and neurons per layer.

Neurons

32 64 96 128

Layers bc-PINN Ibc-PINN bc-PINN Ibc-PINN bc-PINN Ibc-PINN bc-PINN Ibc-PINN

4 8.875 × 10−4 5.564 × 10−4 5.889 × 10−4 3.224 × 10−4 5.799 × 10−4 2.327 × 10−4 1.327 × 10−3 1.630 × 10−4

6 8.402 × 10−4 3.389 × 10−4 5.292 × 10−4 1.558 × 10−4 5.854 × 10−4 1.874 × 10−4 1.062 × 10−3 4.843 × 10−4

8 6.323 × 10−4 2.505 × 10−4 6.050 × 10−4 3.505 × 10−4 1.398e+00 6.662 × 10−4 5.955 × 10−3 4.871 × 10−3

FIG. 15. Instability of data-driven first-order rogue wave for the NLS equation by bc-PINN: (a) predicted results of the penultimate stage; (b) predicted results of the last stage.
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The Ibc-PINN method proposed in this study has been
improved in two aspects for bc-PINN: one is to modify the loss term
MSES and the other is to take the joined form as the final form of
the predicted solution, as shown in (15) and (20). To illustrate that
both of these improvements contribute to accuracy, the errors gen-
erated by the three methods [bc-PINN, Ibc-PINN(unjoined), and
Ibc-PINN] over the entire region are shown in Tables IX and X.
Among them, Ibc-PINN(unjoined) refers to the modification of bc-
PINN only in the form of MSES , without using a concatenated
version in the final form of the predicted solution.

According to the results in the tables, it can be seen that Ibc-
PINN is optimal in terms of accuracy, while Ibc-PINN(unjoined)

FIG. 16. Instability of data-driven first-order rogue wave for the AB system by bc-PINN: predicted results of the penultimate stage: (a) |A(x, t)| and (c) |B(x, t)|; predicted
results of the last stage: (b) |A(x, t)| and (d) |B(x, t)|.

is suboptimal, which implies that the improvements in these two
aspects can both improve accuracy to a certain extent.

In addition, the absolute error plots of the first-order
(β = 0) and second-order rogue waves (m1 = 0, n1 = 0) for the
nonlinear Schrödinger equation are displayed in Fig. 14. The three
columns in the figure correspond to the results of the bc-PINN,
Ibc-PINN(unjoined), and Ibc-PINN methods, while each row cor-
responds to a different data-driven rogue wave solution.

We can observe the characteristics of the error distribution of
the three methods. Due to the joined form adopted in the final rep-
resentation of the predicted solutions in Ibc-PINN, there are distinct
traces of concatenation in the absolute error graphs of the third
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column. For the bc-PINN, larger absolute errors primarily occur in
the following three typical regions: (1) near the initial time; (2) where
the wave amplitude is large or the gradient is significant; (3) near
the final time. The phenomenon of significant errors in bc-PINN
near the initial time is contrary to the typical error propagation pat-
terns in time piecewise training methods. For the first sub-domain,
accurate initial conditions are given, while the training for subse-
quent sub-domains is based on pseudo-initial values. Theoretically,
the accuracy of the first sub region should have been the highest,
but the red part indicating a large error value can be observed near
the initial time in the first column of absolute error graphs. For Ibc-
PINN(unjoined) and Ibc-PINN, the absolute error near the initial
time is significantly reduced, especially for Ibc-PINN, which per-
forms well in the first sub-domain with an absolute error of almost
zero. It reflects that the violation of error propagation law men-
tioned above can be corrected by the improvement proposed in this
study.

C. The impact of neural network architecture

Here, we explore the impact of network architecture on exper-
imental results, specifically investigating whether the improved
method still enhances accuracy when changing the number of hid-
den layers and neurons. Due to the time-consuming nature of
time-segmented training approaches, we take the first-order rogue
wave solution for the NLS equation as an example to illustrate.

The number of hidden layers changes from 4 to 8 with step size
2 and the number of neurons in each hidden layer changes from
32 to 128 with step size 32. The relative L2 errors of the bc-PINN
and Ibc-PINN methods are presented in Table XI. It is noteworthy
that increasing the number of hidden layers or neurons does not
necessarily lead to smaller errors. However, the improved method
consistently demonstrate a certain level of accuracy enhancement.

Additionally, we observed that when the number of hidden
layers is 8 and the number of neurons is 96, the bc-PINN method
converges to an incorrect solution, resulting in a significant error.
This phenomenon is not incidental and is also reflected in the
data-driven first-order rogue wave of the AB system, as shown in
Table IV. It indicates the instability in the predictive performance
of bc-PINN under certain network structure settings, whereas the
improved method can effectively alleviate or even avoid such occur-
rences. More specifically, we further analyzed the specific perfor-
mance in each sub region based on the results of bc-PINN for these
two examples. The predicted results of the penultimate stage and
the final stage using the bc-PINN method are shown in the first and
second columns of Figs. 15 and 16, respectively. It can be observed
that the penultimate subnetwork effectively captures the dynamic
behaviors of rogue wave solutions with minor errors, whereas the
predictive accuracy of the final subnetwork is significantly compro-
mised. It illustrates that for bc-PINN, once the network training
performs poorly in a certain sub-domain, the success achieved in
previous regions is nullified and the errors generated by this stage of
training instantly pollute the entire region. This is due to the fact that
the form of the solution adopted by bc-PINN is entirely dependent
on whether the training of the last subnet in the last sub-domain
is successful or not. In contrast, for Ibc-PINN, if the training in a
specific sub-domain is inadequate, it only affects the accuracy of the

predicted solutions from that subregion onward. This also reveals
the necessity for us to propose improvements to the ultimate form
of the predicted solution shown in (20). The underlying reasons for
the instability in accuracy of bc-PINN require further investigation,
and targeted improvements can be proposed to address this issue in
future research.

V. CONCLUSIONS

The bc-PINN is a sequential method to train physics informed
neural networks over successive time segments while satisfying the
solution for all previous time segments. Based on the character-
istics of error propagation, we have made improvements in two
aspects, namely, the loss function and the final form of the predicted
solution. First, the loss term for ensuring backward compatibil-
ity is modified by selecting the earliest learned solution for each
sub-domain as pseudo-reference solution. It can reduce the cumu-
lative speed of errors to improve the accuracy of the solution in
subsequent training. Second, we take the joined form of solutions
obtained from individual subnetworks as the final form of the pre-
dicted solution, rather than relying solely on the solution learned
by the last subnetwork. Its advantage lies in the fact that insuffi-
cient training in a specific subdomain only affects the accuracy of the
predicted solutions from that subregion onward. This stands in con-
trast to bc-PINN, where inadequate training instantly compromises
the accuracy of the entire region, rendering prior successful training
in other subdomains futile. The improved bc-PINN (Ibc-PINN) is
applied to successfully obtain data-driven higher-order rogue wave
solutions for the nonlinear Schrödinger equation and the AB sys-
tem. We also explore the impact of neural network architecture on
performance and several cases were identified where the accuracy of
bc-PINN is significantly compromised, while Ibc-PINN consistently
maintains stability. In summary, both improvements contribute to
the enhancement of the algorithm’s accuracy and stability compared
to the original bc-PINN method.

The domain decomposition technique possesses strong flexibil-
ity. In each sub-domain, a separate network can be employed, having
its own set of parameters, including network width and depth, acti-
vation functions, and optimization methods. The discussion and
research on this part can be carried out in subsequent work. More-
over, different subdomains can be partitioned into varying sizes and
adaptive domain decomposition methods can be designed in future
study based on the distinct characteristics of solutions in different
sub regions. In this paper, we investigate the dynamic characteris-
tics of rogue waves up to the third order, which exhibit geometric
structures of triangle and pentagon. In fact, rogue wave patterns
have been widely analytically studied but the research by using deep
learning methods are still relatively scarce. Data-driven rogue waves
of the fourth order and beyond can be simulated to showcase more
intricate geometric structures including heptagon and nonagon in
the future research.
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