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Abstract In this paper, we derive a general mixed
(bright–dark) multi-soliton solution to a two-dimen-
sional (2D) multi-component long-wave–short-wave
resonance interaction (LSRI) system, which include
multi-component short waves (SWs) and one-com-
ponent long wave (LW) for all possible combinations
of nonlinearity coefficients including positive, nega-
tive and mixed types. With the help of the KP hierar-
chy reduction method, we firstly construct two types
of general mixed N -soliton solution (two-bright–one-
dark soliton and one-bright–two-dark one for SW com-
ponents) to the 2D three-component LSRI system in
detail. Then by extending the corresponding analysis
to the 2D multi-component LSRI system, a general
mixed N -soliton solution in Gram determinant form
is obtained. The expression of the mixed soliton solu-
tion also contains the general all bright and all dark
N -soliton solution as special cases. In particular, for
the soliton solutionwhich include two-bright–one-dark
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soliton for SW components in three-component LSRI
system, the dynamics analysis shows that solioff exci-
tation and solioff interaction appear in two SW compo-
nents which possess bright soliton, while V-type soli-
tary and interaction take place in the other SW compo-
nent and LW one.

Keywords Long-wave–short-wave resonance inter-
action system · KP hierarchy reduction · Bright–dark
multi-soliton solution

1 Introduction

It is of considerable interest to investigate multi-
component system of nonlinear partial differential
equations in the theoryof nonlinearwaves. For instance,
in the integrable coupled nonlinear Schrödinger (NLS)
equation, namely the celebrated Manakov model [1], it
has recently been found that the solitons exhibit cer-
tain novel inelastic collision properties, which have
not been observed in single-component counterpart
[2]. Furthermore, the vector solitons undergoing shape
changing (inelastic) collision identified in the gener-
alized multi-component NLS equation can be used in
developing logic gates and in all-optical digital com-
putations [3–7].

The long-wave–short-wave resonance interaction
(LSRI) is a strong nonlinear interaction phenomenon
that occurswhen the phase velocity vp of the short wave
(high-frequency wave) and the group velocity vg of the
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long wave (low-frequency wave) satisfy the Zakharov–
Benny condition vp = vg [8]. This model appear in
various contexts such as water waves, plasma physics,
nonlinear optics, bio-physics and Bose–Einstein con-
densates [8–18]. Indeed, the theoretical study of such
resonant nonlinear wave interaction originates from
investigation the dynamics of Langmuir and ion acous-
tic waves in plasma by Zakharov [9]. In the case of long
waves propagating in a single direction, the Zakharov
system is reduced to the Yajima–Oikawa equations
[10]. Yajima and Oikawa [10] showed that these equa-
tions are integrable using the method of the inverse
scattering transformation and admit multi-soliton solu-
tions.

In two-dimensional (2D) case, the LSRI system for
the resonant interaction between a long surface wave
and a short internal wave in a two-layer fluid was pro-
posed in Ref. [19] and the bright and dark soltion solu-
tions are provided by using the Hirota’s direct method.
By applying the reductive perturbation method, Ohta
et al. [20] derived an integrable two-component analog
of the 2D LSRI system as a governing equation for the
interaction of the nonlinear dispersive waves and the
(N ; M; N + M) bright soliton solution expressed by
the Wronskian was reported. The Painlevé test for the
single- and two-component 2D LSRI systems was car-
ried out, and some special solutions such as positons,
dromions, instantons and periodic wave solutions were
constructed [21,22]. Later, Kanna et al. have obtained
the bright N -soliton solutions in the Gram-type deter-
minant form for the multi-component LSRI system
and analyzed the bright soliton bound states in detail
[23,24]. In particular, these authors have shown that
such bright multi-soliton solution display a fascinat-
ing energy-sharing (shape changing) collision in 2D
multi-component LSRI system [23]. Moreover, they
have derived the general 2D multi-component LSRI
system as the evolution equation for propagation of N -
dispersive waves in weak Kerr-type nonlinear medium
in the small-amplitude limit [25]. The corresponding
set of general governing equations with arbitrary non-
linearity coefficients is given by

i
(
S(�)
t +S(�)

y

)
−S(�)

xx +LS(�) =0, �=1, 2, . . . , M,

Lt = 2
M∑

�=1

σ�|S(�)|2x , (1)

where σ� = ±1, S(�) and L indicate the �th short-wave
and long-wave components, respectively. The general

multi-component LSRI system is shown to be inte-
grable by performing the Painlevé analysis and its exact
brightmulti-soliton solutionwas constructed in [27]. In
Ref. [25], themixed (bright–dark) one- and two-soliton
solutions of a particular 2D multi-component LSRI
system, namely the general LSRI system with same
nonlinearity coefficients, were also obtained and their
propagation properties and collision dynamics were
discussed. However, the general representation of the
mixed multi-soliton solution for this particular LSRI
system is missing. More importantly, as the detailed
analysis provided in [27] involving the dynamics of the
bright soliton, the arbitrariness of nonlinearity coeffi-
cients σ� gives an additional freedom resulting in rich
soliton dynamics. Thus, it is still worth seeking for the
explicit formulation of themixedmulti-soliton solution
for the general 2D multi-component LSRI system.

The KP hierarchy reduction for deriving soliton
solutions of integrable systems is an elegant and effec-
tive method, which was first proposed by the Kyoto
school in the 1970s [28]. Such method has been
applied to study the bright soliton solutions in vari-
ous equations such as the NLS equation, the modi-
fied KdV equation and the Davey–Stewartson equa-
tion. In fact, the multi-component YO system in one-
dimensional case with same nonlinearity coefficients
σ� was reduced from the KP hierarchy in Ref. [29–
31] and its corresponding bright soliton solution was
obtained directly. Recently, general dark–dark soliton
solution was derived in a two-component NLS equa-
tion with the focusing–defocusing coupling by using
the KP hierarchy reduction method [32]. Very recently,
one of our authors [33] has constructed general bright–
dark N -soliton solution to the vector NLS equation of
all possible combinations of nonlinearities including all
focusing, all-defocusing andmixed types. Similarly,we
have obtained the two different expressions of the dark
N -soliton solution, the Gram and Wronski determi-
nants, for the 2D multi-component LSRI system [34].
General bright–dark multi-soliton solution to the 1D
multi-component LSRI system was derived in [35].
Meanwhile, exact explicit rational solutions in terms
of Gram determinant of the 2Dmulti-component LSRI
system were investigated in Ref. [36]. Breather solu-
tionswere calculated by theHirota bilinearmethod, and
rogue wave modes were obtained from the breathers
through a long-wave limit for the 1D multi-component
LSRI system [38]. In addition, an integrable semi-
discrete analog of the 1D multi-component LSRI sys-
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tem was proposed and both the bright and dark soliton
solutions in terms of Pfaffians were constructed [37].
In this study, we will be devoted to consider the general
formulation of the mixed multi-soliton solution for the
2D multi-component LSRI system.

The goal of this paper is to construct general bright–
dark multi-soliton solution to the 2D multi-component
LSRI system (1). The rest of the paper is organized
as follows. In Sect. 2, we deduce two types of general
mixed soliton solution, which include two-bright–one-
dark and one-bright–two-dark soliton for SW compo-
nents, to the three-componentLSRI systembyusing the
KP hierarchy reduction technique. In Sect. 3, general
bright–dark soliton solution consisting ofm bright soli-
tons and M − m dark solitons to the multi-component
YO system is obtained by generalizing our analysis.
We summarize the paper in Sect. 4.

2 General mixed soliton solution to the 2D
three-component LSRI system

In order to have a clear picture of the procedure to derive
the general mixed soliton solution, we first restrict our
treatment to a 2D three-component LSRI system [i.e.,
Eqs. (1) with the number of the short-wave components
M = 3],

i
(
S(�)
t + S(�)

y

)
− S(�)

xx + LS(�) = 0, � = 1, 2, 3,

Lt = 2(σ1|S(1)|2 + σ2|S(2)|2 + σ3|S(3)|2)x , (2)

where σ� = ±1 for � = 1, 2, 3. In this case, the mixed
soliton can be divided into bright and dark parts among
the three short-wave components in two different ways:
two-bright–one-dark soliton and one-bright–two-dark
one. Hence, wewill construct these two types of soliton
solutions in the subsequent two subsections, respec-
tively.

2.1 Two-bright–one-dark soliton for SW components

In this case, we assume that the SW components S(1)

and S(2) are of bright type and the SW component S(3)

is of dark type. By introducing the dependent variable
transformations

S(1) = g(1)

f
, S(2) = g(2)

f
,

S(3) = ρ1
h(1)

f
ei

[
α1x+β1y−

(
β1−α2

1

)
t
]
, L=−2(log f )xx ,

(3)

the three-component LSRI system (2) is converted into
the following bilinear equations:
[
i(Dt + Dy) − D2

x

]
g(k) · f = 0, k = 1, 2,

[
i(Dt + Dy − 2α1Dx ) − D2

x

]
h(1) · f = 0,

(
Dt Dx − 2σ3ρ

2
1

)
f · f = −2

2∑
k=1

σkg
(k)g(k)∗

−2σ3ρ
2
1h

(1)h(1)∗, (4)

where g(1), g(2) and h(1) are complex-valued functions,
f is a real-valued function, α1, β1 and ρ1(ρ1 > 0)
are arbitrary real constants and ∗ denotes the complex
conjugation hereafter. The Hirota’s bilinear differential
operators are defined by

Dn
x D

m
t (a · b) =

(
∂

∂x
− ∂

∂x ′

)n(
∂

∂t
− ∂

∂t ′

)m

a(x, t)b(x ′, t ′)
∣∣∣∣
x=x ′,t=t ′

.

In what follows, we provide the detailed process
that the bilinear form of three-component LSRI system
is reduced from the three-component KP hierarchy by
suitable reductions and its mixedmulti-soltion solution
is also obtained correspondingly. To this end, we start
from the following bilinear equations in KP hierarchy,

(Dx2 − D2
x1)τ1,0(k1) · τ0,0(k1) = 0,

(Dx2 − D2
x1)τ0,1(k1) · τ0,0(k1) = 0,

(Dx2 − D2
x1 − 2c1Dx1)τ0,0(k1 + 1) · τ0,0(k1) = 0,

Dx1Dy(1)1
τ0,0(k1) · τ0,0(k1)=−2μ1τ1,0(k1)τ−1,0(k1),

Dx1Dy(2)1
τ0,0(k1) · τ0,0(k1)=−2μ2τ0,1(k1)τ0,−1(k1),

(Dx1Dx (1)−1
− 2)τ0,0(k1) · τ0,0(k1)

= −2τ0,0(k1 + 1)τ0,0(k1 − 1). (5)

Based on the classical Sato theory [28], the above equa-
tions have the solution given by the Gram determinant
form

τ0,0(k1) =
∣∣∣∣
A I

−I B

∣∣∣∣ , (6)

τ1,0(k1) =
∣∣∣∣∣∣
A I ΦT

−I B 0T

0 −Ψ̄ 0

∣∣∣∣∣∣
,

τ−1,0(k1) =
∣∣∣∣∣∣

A I 0T

−I B Ψ T

−Φ̄ 0 0

∣∣∣∣∣∣
, (7)
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τ0,1(k1) =
∣∣∣∣∣∣
A I ΦT

−I B 0T

0 −Ῡ 0

∣∣∣∣∣∣
,

τ0,−1(k1) =
∣∣∣∣∣∣

A I 0T

−I B Υ T

−Φ̄ 0 0

∣∣∣∣∣∣
, (8)

where I is an N×N identitymatrix, A and B are N×N
matrices defined as

Ai j (k1) = 1

pi + p̄ j

(
− pi − c1

p̄ j + c1

)k1
eξi+ξ̄ j ,

Bi j = μ1

qi + q̄ j
eηi+η̄ j + μ2

ri + r̄ j
eχi+χ̄ j ,

and0 is a N -component zero-rowvector,Φ,Ψ,Υ, Φ̄, Ψ̄

and Ῡ are N -component row vectors given by

Φ = (eξ1 , eξ2 , . . . , eξN ), Ψ = (eη1 , eη2 , . . . , eηN ),

Υ = (eχ1, eχ2 , . . . , eχN ),

Φ̄ = (eξ̄1 , eξ̄2 , . . . , eξ̄N ),

Ψ̄ = (eη̄1 , eη̄2 , . . . , eη̄N ), Ῡ = (eχ̄1 , eχ̄2 , . . . , eχ̄N ),

with

ξi = 1

pi − c1
x (1)
−1 + pi x1 + p2i x2 + ξi0,

ξ̄ j = 1

p̄ j + c1
x (1)
−1 + p̄ j x1 − p̄2j x2 + ξ̄ j0,

ηi = qi y
(1)
1 + ηi0,

η̄ j = q̄ j y
(1)
1 + η̄ j0, χi = ri y

(2)
1 + χi0,

χ̄ j = r̄ j y
(2)
1 + χ̄ j0.

Here pi , p̄ j , qi , q̄ j , ri , r̄ j , ξi0, ξ̄ j0, ηi0, η̄ j0, χi0, χ̄ j0

and c1 are complex parameters.
Next, by setting x1, x

(1)
−1, y

(1)
1 , y(2)

1 , μ1 and μ2 are
real, x2, c1 are pure imaginary and by letting p∗

j = p̄ j ,

q∗
j = q̄ j = r∗

j = r̄ j , ξ∗
j0 = ξ̄ j0, η∗

j0 = η̄ j0 and
χ∗
j0 = χ̄ j0, it is easy to check that

Ai j (k1) = A∗
j i (k1), Bi j = B∗

j i .

Thus, we can define

f = τ0,0(0), g(1) = τ1,0(0), g(2) = τ0,1(0),

h(1) = τ0,0(1),

g(1)∗ = −τ−1,0(0), g(2)∗ = −τ0,−1(0),

h(1)∗ = τ0,0(−1),

and then the bilinear Eq. (5) become

(Dx2 − D2
x1)g

(k) · f = 0,

Dx1Dy(k)
1

f · f = 2g(k)g(k)∗, k = 1, 2,

(Dx2 − D2
x1 − 2c1Dx1)h

(1) · f = 0,

(Dx1Dx (1)−1
− 2) f · f = −2h(1)h(1)∗. (9)

Furthermore, by considering the independent variables
changes

x1 = x, x2 = −iy, y(k)
1 = −νk(t − y),

x (1)
−1 = σ3ρ

2
1 (t − y), k = 1, 2,

i.e.,

∂x = ∂x1 , ∂y = −i∂x2 +
2∑

k=1

νk∂y(k)
1

− σ3ρ
2
1∂x (1)

−1
,

∂t = −
2∑

k=1

νk∂y(k)
1

+ σ3ρ
2
1∂x (1)

−1
,

with c1 = iα1 and ν1, ν2 are real constants, Eqs. (9)
are transformed into the bilinear Eq. (4) of the three-
component LSRI system.

Finally, the general mixed soliton (two-bright–one-
dark soliton for SW components) solution to 2D three-
component LSRI system reads

f =
∣∣∣∣
A I

−I B

∣∣∣∣ ,

h(1) =
∣∣∣∣
A(1) I
−I B

∣∣∣∣ ,

g(k) =
∣∣∣∣∣∣
A I φT

−I B 0T

0 ψ(k) 0

∣∣∣∣∣∣
, (10)

where A, A(1) and B are N × N matrices defined as

Ai j = 1

pi + p∗
j
eΞi+Ξ∗

j ,

A(1)
i j = 1

pi + p∗
j

(
− pi − iα1

p∗
j + iα1

)
eΞi+Ξ∗

j ,

Bi j = 1

qi + q∗
j

2∑
k=1

μke
Θ

(k)
i +Θ

(k)∗
j ,

and φ and ψ(k) are N -component row vectors given by

φ = (eΞ1 , eΞ2 , . . . , eΞN ),

ψ(k) = −(eΘ
(k)∗
1 , eΘ

(k)∗
2 , . . . , eΘ

(k)∗
N ),

with

Ξi = 1

pi − iα1
σ3ρ

2
1 (t − y) + pi x − ip2i y + ξi0,
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Θ
(k)
i = −νkqi (t − y) + θ

(k)
i0 .

Here σk = μkνk , pi , qi , ξi0 and θ
(k)
i0 (i = 1, 2, . . . , N ;

k = 1, 2) are arbitrary complex parameters.

2.1.1 One-soliton solution

To obtain the single soliton solution, we take N = 1 in
the formula (10). The Gram determinants read

f =
∣∣∣∣
A11 1
−1 B11

∣∣∣∣ ,

h(1) =
∣∣∣∣
A(1)
11 1

−1 B11

∣∣∣∣ ,

g(k) =

∣∣∣∣∣∣∣

A11 1 eΞ1

−1 B11 0

0 −eΘ
(k)∗
1 0

∣∣∣∣∣∣∣
, (11)

where A11 = 1
p1+p∗

1
eΞ1+Ξ∗

1 , A(1)
11 = 1

p1+p∗
1(

− p1−iα1
p∗
1+iα1

)
eΞ1+Ξ∗

1 and B11 = 1
q1+q∗

1

∑2
k=1 e

Θ
(k)
1 +Θ

(k)∗
1

for k = 1, 2. Then one canwrite the above tau functions
as

f = 1 + e2Ξ1R

4p1Rq1R

2∑
k=1

μke
2Θ(k)

1R , (12)

g(1) = −eΞ1+Θ
(1)∗
1 , g(2) = −eΞ1+Θ

(2)∗
1 , (13)

h(1) = 1 − p1 − iα1

p∗
1 + iα1

e2Ξ1R

4p1Rq1R

2∑
k=1

e2Θ
(k)
1R , (14)

where the suffixes R and I denote the real and imagi-
nary parts, respectively.

To obtain nonsingular soliton solution, we always
choose p1Rq1R > 0 and μ1 = μ2 = 1. Then one-
soliton solutions can be classified into the following
three cases (only for σ1 and σ2): (i) positive nonlinear-
ity coefficients [(σ1, σ2) = (1, 1), then ν1 = ν2 = 1]:
This case have been discussed in Ref. [25]; (ii) neg-
ative nonlinearity coefficients [(σ1, σ2) = (−1,−1),
then ν1 = ν2 = −1]: For the choice, the LSRI system
admits a similar type of propagation and even colli-
sion behaviors as that of the positive nonlinearity coef-
ficients [26,27]; (iii) mixed-type nonlinearity coeffi-
cients: Without loss of generality, we take (σ1, σ2) =
(1,−1) and fix σ3 = 1, then ν1 = −ν2 = 1 and tau
functions in (12)–(14) can be rewritten as

f = 1 + eΩ1+Ω∗
1+R1 + eΩ2+Ω∗

2+R2 , (15)

g(1) = −eΩ1+iΓ1+θ
(1)
10R ,

g(2) = −eΩ2+iΓ2+θ
(2)
10R , (16)

h = 1 + eΩ1+Ω∗
1+R1+2iφ + eΩ2+Ω∗

2+R2+2iφ (17)

with Ωk = ΩkR + iΩk I , ΩkR = p1Rx + (−wkR +
2p1R p1I )y + wkRt , Ωk I = p1I x − [wk I + (p21R −
p21I )]y+wk I t ,Γk = 2(−1)k+1q1I (t−y)−θ

(k)
10I ,wkR =

ρ2
1 p1R

p21R+(p1I−α1)2
+ (−1)kq1R , wk I = − ρ2

1 (p1I−α1)

p21R+(p1I−α1)2
+

(−1)kqk I , eRk = 1
4p1Rq1R

e2ξ10R+2θ(k)
10R and e2iφ =

− p1−iα1
p∗
1+iα1

for k = 1, 2.

From the expressions (15)–(17) of tau functions,
the single soliton solution actually represents two-
soliton resonance solution. In the following, we carry
out the asymptotic analysis for this kind of soliton
resonance solution. We assume p1R > 0, p1I > 0,

q1R > 0, q1I > 0 and
ρ2
1 p1R

p21R+(p1I−α1)2
< q1R , then

w1R < 0 and w2R > 0. In the limit x, y → ±∞
and a fixed t , the soliton resonance solution takes the
following asymptotic forms.
(a) Before collision (x, y → −∞):

soliton 1 (Ω1R � 0, Ω2R → −∞)

S(1) � −
√
p1Rq1R
eξ10R

ei(Ω1I+Γ1)sech(Ω1R + R1

2
),

S(2) � 0,

S(3) � ρ1

2
ei[α1x+β1y−(β1−α2

1)t][1 + e2iφ

−(1 − e2iφ) tanh(Ω1R + R1

2
)],

L � −2p21Rsech
2
(

Ω1R + R1

2

)
,

soliton 2 (Ω2R � 0, Ω1R → −∞)

S(1) � 0,

S(2) � −
√
p1Rq1R
eξ10R

ei(Ω2I+Γ2)sech(Ω2R + R2

2
),

S(3) � ρ1

2
ei

[
α1x+β1y−

(
β1−α2

1

)
t
] [
1 + e2iφ

− (1 − e2iφ) tanh(Ω2R + R2

2
)

]
,

L � −2p21Rsech
2
(

Ω2R + R2

2

)
,

(b) After collision (x, y → +∞):
soliton 1 (Ω1R � 0, Ω2R → +∞)

S(1) � 0,

S(2) � 0,

S(3) � ρ1e
i
[
α1x+β1y−

(
β1−α2

1

)
t+2φ

]
,
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Fig. 1 Mixed one-soliton (two-bright–one-dark soliton for SW components) solution in three-component LSRI system at time t = 0

L � 0,

soliton 2 (Ω2R � 0, Ω1R → +∞)

S(1) � 0,

S(2) � 0,

S(3) � ρ1e
i
[
α1x+β1y−

(
β1−α2

1

)
t+2φ

]
,

L � 0,

As reported in Ref. [26,27], the formation of this
special soliton solution is due to themixed-type nonlin-
earity coefficients. In this case,we illustrate one-soliton
solution in Fig. 1 with the parametersμ1 = μ2 = ν1 =
−ν2 = ρ1 = 1, α1 = 2, p1 = 1 + 1

2 i, q1 = 2 + i,

eξ10 = 1 + 3i, eθ
(1)
10 = 1 + 1

2 i and eθ
(2)
10 = 1

2 + 2i. One
can observe that the bright solitons in SW components
S(1) and S(2) are solitoffs, while the dark soliton of

the SW component S(3) and the bright one of the LW
component −L are “V” solitary wave. In Ref. [39],
the authors have derived the solitoff solution for the
single-component LSRI system (only one SW compo-
nent). For the multi-component LSRI system, the for-
mation of such soliton is ascribed to the mixed-type
nonlinearity coefficients σl , as expressed in (12). This
situation also hits that the fact reported in [27] the arbi-
trariness of nonlinearity coefficients σ� in the general
multi-component LSRI system increases the freedom
resulting in rich mixed soliton dynamics.

2.1.2 Two-soliton solution

By taking N = 2 in (10), we deduce the Gram deter-
minant forms for the mixed two-soliton solution as
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Fig. 2 Mixed two-soliton (two-bright–one-dark soliton for SW components) solution in three-component LSRI system at time t = 0

f =

∣∣∣∣∣∣∣∣

A11 A12 1 0
A21 A22 0 1
−1 0 B11 B12

0 −1 B21 B22

∣∣∣∣∣∣∣∣
,

h(1) =

∣∣∣∣∣∣∣∣

A(1)
11 A(1)

12 1 0

A(1)
21 A(1)

22 0 1
−1 0 B11 B12

0 −1 B21 B22

∣∣∣∣∣∣∣∣
, (18)

g(k) =

∣∣∣∣∣∣∣∣∣∣∣

A11 A12 1 0 eΞ1

A21 A22 0 1 eΞ2

−1 0 B11 B12 0
0 −1 B21 B22 0

0 0 −eΘ
(k)∗
1 −eΘ

(k)∗
2 0

∣∣∣∣∣∣∣∣∣∣∣

, (19)

where Ai j = 1
pi+p∗

j
eΞi+Ξ∗

j , A(1)
i j = 1

pi+p∗
j(

− pi−iα1
p∗
j+iα1

)
eΞi+Ξ∗

j and Bi j = 1
qi+q∗

j

∑2
k=1 μke

Θ
(k)
i +Θ

(k)∗
j for k = 1, 2.

For the samenonlinearity coefficients (σ1, σ2, σ3) =
(1,−1, 1), we show an example in Fig. 2 which dis-
plays the bright solitoff interaction appearing in SW
components S(1) and S(2) and the V-type soliton inter-
action for dark soliton in SWcomponent S(3) and bright
one in LW component −L , respectively. The param-
eters are chosen as μ1 = μ2 = ν1 = −ν2 = 1,
ρ1 = 2, p1 = 1 + 1

2 i, p2 = 2
3 + 3

2 i, q1 = 1 + i, q2 =
1
2 + 2

3 i, e
ξ10 = 1 + 3i, eξ20 = 3

2 + 1
2 i, e

θ
(1)
10 = 1 +

1
2 i, e

θ
(1)
20 = 1 + 1

5 i, e
θ

(2)
10 = 2

3 + i and eθ
(2)
20 = 1

4 + 1
3 i.
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2.2 One-bright–two-dark soliton for SW components

In this subsection, we let SW component S(1) is of
bright type and SW components S(2) and S(3) are of
dark type. Using the dependent variable transforma-
tions

S(1) = g(1)

f
, S(2) = ρ1

h(1)

f
ei[α1x+β1y−(β1−α2

1)t],

S(3) = ρ2
h(2)

f
ei[α2x+β2 y−(β2−α2

2)t], L = −2(log f )xx ,

(20)

leads three-component LSRIEqs. (2) into the following
bilinear equations:[

i(Dt + Dy) − D2
x

]
g(1) · f = 0,

[
i(Dt+Dy−2αl Dx )−D2

x

]
h(l) · f =0, l=1, 2,

(
Dt Dx − 2

2∑
l=1

σl+1ρ
2
l

)
f ·

f = −2σ1g
(1)g(1)∗ − 2

2∑
l=1

σl+1ρ
2
l h

(l)h(l)∗, (21)

where g(1), h(1) and h(2) are complex-valued functions,
f is a real-valued function, αl , βl and ρl(ρl > 0, l =
1, 2) are arbitrary real constants.

Similar to the previous subsection, the bilinear
equations of three-component LSRI system (21) are
viewed as a reduction of two-component KP hierar-
chy. Specifically, we consider the bilinear equations in
two-component KP as follows,

(Dx2 − D2
x1)τ1(k1, k2) · τ0(k1, k2) = 0,

(Dx2 − D2
x1 − 2c1Dx1)τ0(k1 + 1, k2) ·

τ0(k1, k2) = 0,
(Dx2 − D2

x1 − 2c2Dx1)τ0(k1, k2 + 1) ·
τ0(k1, k2) = 0,

Dx1Dy(1)
1

τ0(k1, k2) ·
τ0(k1, k2) = −2μ1τ1(k1, k2)τ−1(k1, k2),

(Dx1Dx (1)−1
− 2)τ0(k1, k2) ·

τ0(k1, k2) = −2τ0(k1 + 1, k2)τ0(k1 − 1, k2),
(Dx1Dx (2)−1

− 2)τ0(k1, k2) ·
τ0(k1, k2) = −2τ0(k1, k2 + 1)τ0(k1, k2 − 1).

(22)

On the basis of the Sato theory for the KP hierarchy,
the tau functions in above bilinear equations can be
expressed by the following Gram determinant

τ0(k1, k2) =
∣∣∣∣
A I

−I B

∣∣∣∣ , (23)

τ1(k1, k2) =
∣∣∣∣∣∣
A I ΦT

−I B 0T

0 −Ψ̄ 0

∣∣∣∣∣∣
,

τ−1(k1, k2) =
∣∣∣∣∣∣

A I 0T

−I B Ψ T

−Φ̄ 0 0

∣∣∣∣∣∣
, (24)

whereΦ,Ψ, Φ̄, Ψ̄ are N -component rowvectors defined
previously, A and B are N × N matrices defined as

Ai j (k1, k2) = 1

pi + p̄ j

(
− pi − c1

p̄ j + c1

)k1

(
− pi − c2

p̄ j + c2

)k2
eξi+ξ̄ j ,

Bi j = μ1

qi + q̄ j
eηi+η̄ j ,

with

ξi = 1

pi − c1
x (1)
−1 + 1

pi − c2
x (2)
−1+ pi x1+ p2i x2 + ξi0,

ξ̄ j = 1

p̄ j +c1
x (1)
−1+ 1

p̄ j +c2
x (2)
−1 + p̄ j x1 − p̄2j x2 + ξ̄ j0,

ηi = qi y
(1)
1 + ηi0, η̄ j = q̄ j y

(1)
1 + η̄ j0.

Here pi , p̄ j , qi , q̄ j , ξi0, ξ̄ j0, ηi0, η̄ j0, c1 and c2 are
complex parameters.

Next, we present the reduction process to obtain
the bilinear Eq. (21) from the ones in two-component
KP hierarchy. We first perform the complex conjugate
reduction by setting x1, x

(1)
−1, x

(2)
−1, y

(1)
1 and μ1 are real,

x2, c1 c2 are pure imaginary and by letting p∗
j = p̄ j ,

q∗
j = q̄ j , ξ∗

j0 = ξ̄ j0, and η∗
j0 = η̄ j0. Then, it is easy to

see that

Ai j (k1, k2) = A∗
j i (−k1,−k2), Bi j = B∗

j i . (25)

Thus, if we define

f = τ0(0, 0), g(1) = τ1(0, 0), h(1) = τ0(1, 0),

h(2) = τ0(0, 1),

g(1)∗ = −τ−1(0, 0), h(1)∗ = τ0(−1, 0),

h(2)∗ = τ0(0,−1),

the bilinear Eq. (22) become

(Dx2 − D2
x1)g

(1) · f = 0,
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(Dx2 − D2
x1 − 2c1Dx1)h

(1) · f = 0,

(Dx2 − D2
x1 − 2c2Dx1)h

(2) · f = 0,

Dx1Dy(1)
1

f · f = 2μ1g
(1)g(1)∗,

(Dx1Dx (1)−1
− 2) f · f = −2h(1)h(1)∗,

(Dx1Dx (2)−1
− 2) f · f = −2h(2)h(2)∗. (26)

Furthermore, by using the independent variables trans-
formations

x1 = x, x2 = −iy, y(1)
1 = −ν1(t − y),

x (l)
−1 = σl+1ρ

2
l (t − y), l = 1, 2,

i.e.,

∂x = ∂x1 , ∂y = −i∂x2 + ν1∂y(1)
1

−
2∑

l=1

σl+1ρ
2
l ∂x (l)

−1
,

∂t = −ν1∂y(1)
1

+
2∑

l=1

σl+1ρ
2
l ∂x (l)

−1
,

and c1 = iα1, c2 = iα2, we can arrive at the bilinear
Eq. (21).

Consequently, we are able to construct the gen-
eralmixed soliton (one-bright–two-dark soliton for SW
components) solution to 2D three-component LSRI
system,

f =
∣∣∣∣
A I

−I B

∣∣∣∣ ,

h(l) =
∣∣∣∣
A(l) I
−I B

∣∣∣∣ ,

g(1) =
∣∣∣∣∣∣
A I φT

−I B 0T

0 ψ(1) 0

∣∣∣∣∣∣
, (27)

where A, A(k) and B are N × N matrices defined as

Ai j = 1

pi + p∗
j
eΞi+Ξ∗

j ,

A(l)
i j = 1

pi + p∗
j

(
− pi − iαl

p∗
j + iαl

)
eΞi+Ξ∗

j ,

Bi j = 1

qi + q∗
j
eΘ

(1)
i +Θ

(1)∗
j ,

and φ and ψ(1) are N -component row vectors given by

φ = (eΞ1 , eΞ2 , . . . , eΞN ),

ψ(1) = −(eΘ
(1)∗
1 , eΘ

(1)∗
2 , . . . , eΘ

(1)∗
N ),

with

Ξi =
2∑

l=1

1

pi − iαl
σl+1ρ

2
l (t − y) + pi x − ip2i y + ξi0,

Θ
(1)
i = −ν1qi (t − y) + θ

(1)
i0 .

Here σ1 = μ1ν1, pi , qi , ξi0 and θ
(1)
i0 (i = 1, 2, . . . , N ;

l = 1, 2) are arbitrary complex parameters.

2.2.1 One-soliton solution

By taking N = 1 in the formula (27), we get the Gram
determinants

f =
∣∣∣∣
A11 1
−1 B11

∣∣∣∣ ,

h(l) =
∣∣∣∣
A(l)
11 1

−1 B11

∣∣∣∣ ,

g(1) =

∣∣∣∣∣∣∣

A11 1 eΞ1

−1 B11 0

0 −eΘ
(1)∗
1 0

∣∣∣∣∣∣∣
, (28)

where A11 = 1
p1+p∗

1
eΞ1+Ξ∗

1 , A(l)
11 = 1

p1+p∗
1

(
− p1−iαl

p∗
1+iαl

)

eΞ1+Ξ∗
1 and B11 = 1

q1+q∗
1
eΘ

(1)
1 +Θ

(1)∗
1 for l = 1, 2. The

above tau functions can be written as

f = 1 + e2Ξ1R+2Θ(1)
1R

4p1Rq1R
, g(1) = −eΞ1+Θ

(1)∗
1 , (29)

h(l) = 1 − p1 − iαl
p∗
1 + iαl

e2Ξ1R+2Θ(1)
1R

4p1Rq1R
, l = 1, 2. (30)

As an example, we show such one-soliton solution
in Fig. 3 under the nonlinear coefficients (σ1, σ2, σ3) =
(1, 1,−1). The parameters are chosen as μ1 = ν1 =
ρ1 = ρ2 = 1, α1 = 0, α2 = 1 p1 = 1, q1 = 1 + i and

eξ10 = eθ
(1)
10 = 1. Here, αl -parameter affects the depth

of dark part in mixed soliton solution. This fact can be
evidenced from Fig. 3 in which S(2) is a dark soliton,
whereas S(3) is a gray one.

2.2.2 Two-soliton solution

When N = 2 in (27), we have the mixed two-soliton
solution in Gram determinant form as follows

f =

∣∣∣∣∣∣∣∣

A11 A12 1 0
A21 A22 0 1
−1 0 B11 B12

0 −1 B21 B22

∣∣∣∣∣∣∣∣
,
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Fig. 3 One-bright–two-dark mixed one-soliton solution in three-component LSRI system at time t = 0.

h(l) =

∣∣∣∣∣∣∣∣

A(l)
11 A(l)

12 1 0

A(l)
21 A(l)

22 0 1
−1 0 B11 B12

0 −1 B21 B22

∣∣∣∣∣∣∣∣
, (31)

g(1) =

∣∣∣∣∣∣∣∣∣∣∣

A11 A12 1 0 eΞ1

A21 A22 0 1 eΞ2

−1 0 B11 B12 0
0 −1 B21 B22 0

0 0 −eΘ
(1)∗
1 −eΘ

(1)∗
2 0

∣∣∣∣∣∣∣∣∣∣∣

, (32)

where Ai j = 1
pi+p∗

j
eΞi+Ξ∗

j , A(l)
i j = 1

pi+p∗
j

(
− pi−iαl

p∗
j+iαl

)

eΞi+Ξ∗
j and Bi j = μ1

qi+q∗
j
eΘ

(1)
i +Θ

(1)∗
j for l = 1, 2.

The soliton interaction can be analyzed in parallel
with the same type of soliton solution to LSRI system

with the same nonlinearity coefficients σ� = 1, � =
1, 2, 3. Interestingly, two-soliton bound state can be
acquired from this mixed soliton solution by restrict-
ing solitonsmovingwith a common speed. For this pur-
pose, we rewrite Ξi R + Θ

(1)∗
i R = pi Rx + (2pi R pi I −

wi R)y + wi Rt + ξi0R + θ
(1)
i0R and Ξi I + Θ

(1)∗
i I =

pi I x + (p2i I − p2i R − wi I )y + wi I t + ξi0I − θ
(1)
i0I

with wi R = ∑2
l=1

σl+1ρ
2
l pi R

p2i R+(pi I−αl )
2 − ν1qi R and wi I =

−∑2
l=1

σl+1ρ
2
l (pi I−αl )

p2i R+(pi I−αl )
2 + ν1qi I . Then conditions p1I =

p2I and w1R
p1R

= w2R
p2R

will result in two-soliton bound
state, which is illustrated in Fig. 4 with (σ1, σ2, σ3) =
(−1, 1,−1). The parameters are μ1 = −ν1 = ρ1 =
1, ρ2 = 2, α1 = 0, α2 = 1, p1 = 2 + i, p2 = 3 + i,
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Fig. 4 Mixed two-soliton bound state (one-bright–two-dark soliton for SW components) in three-component LSRI system at time
t = 0

q1 = 131
45 , q2 = 3 + 2i, eξ10 = 1 + 3i, eξ20 = 3 + 2i,

eθ
(1)
10 = 2 + 1

2 i and eθ
(1)
20 = 1

2 + 5i.

3 General N-soliton solution to 2D
multi-component LSRI system

In the same spirit as the three-component LSRI sys-
tem, the general mixed-type soliton solution to the
2D multi-component LSRI system can be derived via
the KP hierarchy reduction method. It is known that
the multi-bright soliton solutions can be derived from
the reduction of the multi-component KP hierarchy,
whereas the multi-dark soliton solutions are obtained

from the reduction of the single KP hierarchy but with
multiple copies of shifted singular points. Therefore, if
we consider a general mixed soliton solution consist-
ing ofm bright solitons and M −m dark solitons to the
2Dmulti-component LSRI system (1), we need to start
from an (m+1)-component KP hierarchy with M −m
copies of shifted singular points in the first component.
The details are omitted here, and we present only the
results for the 2D multi-component LSRI system (1).

3.1 N -bright–dark soliton solution

To seek for mixed multi-soliton solution consisting of
m bright solitons and M − m dark solitons for SW
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components, the 2D multi-component LSRI system is
first converted to the following bilinear form
[
i(Dt + Dy) − D2

x

]
g(k) · f = 0, k = 1, 2, . . . ,m,

[
i(Dt + Dy − 2αl Dx ) − D2

x

]
h(l) ·

f = 0, l = 1, 2, . . . , M − m,(
Dt Dx − 2

M−m∑
l=1

σl+mρ2
l

)
f ·

f = −2
m∑
k

σkg
(k)g(k)∗ − 2

M−m∑
l=1

σl+mρ2
l h

(l)h(l)∗,

(33)

through the dependent variable transformations:

S(k) = g(k)

f
,

S(l) = ρl
h(l)

f
ei[αl x+βl y−(βl−α2

l )t],

L = −2(log f )xx , (34)

where αl , βl and ρl (ρl > 0) are real constants for
k = 1, . . .m and l = 1, . . . , M − m.

Similar to the procedure discussed in Sect. 2, tak-
ing into account the Gram determinant solutions of the
(m+1)-componentKPhierarchy, one can obtainmixed
multi-soliton solution as follows:

f =
∣∣∣∣
A I

−I B

∣∣∣∣ ,

h(l) =
∣∣∣∣
A(l) I
−I B

∣∣∣∣ ,

g(k) =
∣∣∣∣∣∣
A I φT

−I B 0T

0 ψ(k) 0

∣∣∣∣∣∣
, (35)

where A, A(l) and B are N × N matrices defined as

Ai j = 1

pi + p∗
j
eΞi+Ξ∗

j ,

A(l)
i j = 1

pi + p∗
j

(
− pi − iαl

p∗
j + iαl

)
eΞi+Ξ∗

j ,

Bi j = 1

qi + q∗
j

m∑
k=1

μke
Θ

(k)
i +Θ

(k)∗
j ,

and φ and ψ(k) are N -component row vectors given by

φ = (eΞ1 , eΞ2 , . . . , eΞN ),

ψ(k) = −(eΘ
(k)∗
1 , eΘ

(k)∗
2 , . . . , eΘ

(k)∗
N ),

with

Ξi =
M−m∑
l=1

1

pi − iαl
σl+1ρ

2
l (t − y)

+pi x − ip2i y + ξi0,

Θ
(k)
i = −νkqi (t − y) + θ

(k)
i0 .

Here σk = μkνk , pi , qi , ξi0 and θ
(k)
i0 (i = 1, 2, . . . , N ;

k = 1, 2, . . . ,m; l = 1, 2, . . . , M − m) are arbitrary
complex parameters.

Particularly,when all νk = 1,wehave generalmixed
soliton solution of the following form by performing
row and column operations,

f =
∣∣∣∣
A′ I
−I B ′

∣∣∣∣ ,

h(l) =
∣∣∣∣
A′(l) I
−I B ′

∣∣∣∣ ,

g(k) =
∣∣∣∣∣∣
A′ I φ′T
−I B ′ 0T

0 C 0

∣∣∣∣∣∣
, (36)

where A′, A′(l) and B ′ are N × N matrices defined as

A′
i j = 1

pi + p∗
j
eΞ ′

i+Ξ ′∗
j ,

A′(l)
i j = 1

pi + p∗
j

(
− pi − iαl

p∗
j + iαl

)
eΞ ′

i+Ξ ′∗
j ,

B ′
i j = 1

qi + q∗
j

m∑
k=1

σkc
(k)
i c(k)∗

j ,

and φ and ψ(k) are N -component row vectors given by

φ′ = (eΞ ′
1 , eΞ ′

2 , . . . , eΞ ′
N ),

C = −(c(k)∗
1 , c(k)∗

2 , . . . , c(k)∗
N ),

where Ξ ′
i = ∑M−m

l=1
1

pi−iαl
σl+1ρ

2
l (t − y) + pi x −

ip2i y − q∗
i (t − y) + ξi0 and c(k)

i = eθ
(k)
i0 , pi , qi ,

ξi0 and θ
(k)
i0 (i = 1, 2, . . . , N ; k = 1, 2, . . . ,m; l =

1, 2, . . . , M − m) are arbitrary complex parameters.
For the 2D multi-component LSRI system (1) with

all σ� = 1, the explicit one- and two-mixed soliton
solutions have been obtained by using the perturba-
tion expansion method [25]. Here the general mixed
soliton solution can be expressed by the determinant
form (36).
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3.2 N -bright soliton solution

General N -bright soliton solution to2Dmulti-component
LSRI system (1) can be derived from the KP hierarchy
reduction method. More precisely, the dependent vari-
able transformations

S(k) = g(k)

f
, L = −2(log f )xx , k = 1, . . . , M, (37)

first convert Eqs. (1) into the following bilinear equa-
tions[

i(Dt + Dy) − D2
x

]
g(k) . . . f = 0, k = 1, 2, . . . , M,

Dt Dx f . . . f = −2
M∑
k

σkg
(k)g(k)∗. (38)

Then, starting from the (M+1)-component KP hierar-
chy, one can construct general N -bright soliton solution
expressed by Gram determinant in the same way. The
tau functions of f and g(k) take the same form as in
(43)

f =
∣∣∣∣
A I

−I B

∣∣∣∣ ,

g(k) =
∣∣∣∣∣∣
A I φT

−I B 0T

0 ψ(k) 0

∣∣∣∣∣∣
, (39)

where A, A(k) and B are N × N matrices defined as

Ai j = 1

pi + p∗
j
eΞi+Ξ∗

j ,

Bi j = 1

qi + q∗
j

M∑
k=1

μke
Θ

(k)
i +Θ

(k)∗
j

and φ and ψ(k) are N -component row vectors given by

φ = (eΞ1 , eΞ2 , . . . , eΞN ),

ψ(k) = −(eΘ
(k)∗
1 , eΘ

(k)∗
2 , . . . , eΘ

(k)∗
N ),

with

Ξi =
M−m∑
l=1

1

pi − iαl
σl+1ρ

2
l (t − y)

+pi x − ip2i y + ξi0,

Θ
(k)
i = −νkqi (t − y) + θ

(k)
i0 .

Here σk = μkνk , pi , qi , ξi0 and θ
(k)
i0 (i = 1, 2, . . . , N ;

k = 1, 2, . . . ,m; l = 1, 2, . . . , M − m) are arbitrary
complex parameters.

When all νk = 1, we have general bright soliton
solution of the following form,

f =
∣∣∣∣
A′ I
−I B ′

∣∣∣∣ ,

g(k) =
∣∣∣∣∣∣
A′ I φ′T
−I B ′ 0T

0 C 0

∣∣∣∣∣∣
, (40)

where A′, A′(l) and B ′ are N × N matrices defined as

A′
i j = 1

pi + p∗
j
eΞ ′

i+Ξ ′∗
j ,

B ′
i j = 1

qi + q∗
j

M∑
k=1

σkc
(k)
i c(k)∗

j ,

and φ and ψ(k) are N -component row vectors given by

φ′ = (eΞ ′
1 , eΞ ′

2 , . . . , eΞ ′
N ),

C = −(c(k)∗
1 , c(k)∗

2 , . . . , c(k)∗
N ),

where Ξ ′
i = pi x − ip2i y − q∗

i (t − y) + ξi0 and

c(k)
i = eθ

(k)
i0 , pi , qi , ξi0 and θ

(k)
i0 (i = 1, 2, . . . , N ; k =

1, 2, . . . , M) are arbitrary complex parameters.

3.3 N -dark soliton solution

To find general N -dark soliton solution to 2D multi-
component LSRI system (1), we use the dependent
variable transformations

S(k) = g(k)

f
, S(l) = ρl

h(l)

f
ei

[
αl x+βl y−

(
βl−α2

l

)
t
]
,

L = −2(log f )xx , (41)

Eqs.(1) become the following bilinear form,[
i(Dt + Dy − 2αl Dx ) − D2

x

]
h(l) · f = 0,

l = 1, 2, . . . , M,

(
Dt Dx − 2

M∑
l=1

σlρ
2
l

)
f ·

f = −2
M∑
l=1

σlρ
2
l h

(l)h(l)∗, (42)

where αl , βl and ρl (ρl > 0) are real constants for
l = 1, . . . , M .

Similar to the procedure discussed in Sect. 2, tak-
ing into account the Gram determinant solutions of the
(m+1)-componentKPhierarchy, one can obtainmixed
multi-soliton solution as follows:

f =
∣∣∣∣
A I

−I B

∣∣∣∣ ,
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h(l) =
∣∣∣∣
A(l) I
−I B

∣∣∣∣ , (43)

where A, A(l) and B are N × N matrices defined as

Ai j = 1

pi + p∗
j
eΞi+Ξ∗

j ,

A(l)
i j = 1

pi + p∗
j

(
− pi − iαl

p∗
j + iαl

)
eΞi+Ξ∗

j ,

Bi j = δi j ,

with

Ξi =
M−m∑
l=1

1

pi − iαl
σl+1ρ

2
l (t − y)

+pi x − ip2i y + ξi0,

Here pi , ξi0 and θ
(k)
i0 (i = 1, 2, . . . , N ; l = 1, 2, . . . ,

M) are arbitrary complex parameters.
Due to a simple determinant identity shown in [33],

∣∣∣∣
A I

−I I

∣∣∣∣ = |I + A|,

this form of dark soliton solution coincides with the
one in [34].

In summary, we obtain general mixed (bright–
dark) multi-soliton solution to two-dimensional multi-
component LSRI system with all possible combina-
tions of nonlinearity coefficients including positive,
negative and mixed types. Compared with the study
in Ref. [25], we need to emphasize that: (i) Kanna
et. al have only provided mixed one- and two-soliton
solutions for σ� = 1; here, we present N -soliton
solutions in terms of determinant, which even include
general bright and dark soliton solution. (ii) Starting
from τ functions and the relevant bilinear equations
in the KP hierarchy, N -soliton solutions for the 2D
multi-component LSRI system are derived through the
direct reduction. In other words, we give the complete
proof of N -soliton solutions but the Ref. [25] have
constructed the mixed one- and two-soliton solutions
by using power series expansions. (iii) More impor-
tantly, the nonlinearity coefficients in (1) are always
σ� = ±1 [under line of formula (1)], which like cou-
pled NLS equations, and include focusing, defocusing
and focusing–defocusing cases. In fact, the result of
[25] corresponds to the focusing case σ� = 1; thus,
N -soliton solution for this case is just a special case of
our formulae [see in detail Eq. (36)]. Besides, although

the spirit of our derivation is same as the vector NLS
equation [33] and the 1D YO system [35], the differ-
ent model leads to the completely different reduction
condition and then brings the distrinct solution expres-
sion.

4 Conclusion

In this paper, we have constructed general bright–
dark multi-soliton solution to two-dimensional multi-
component LSRI system describing the nonlinear res-
onant interaction of M-component short waves with
a long wave. This solution exists in the original sys-
tem for all possible combinations of nonlinearity coef-
ficients including positive, negative and mixed types.
Taking the three-component LSRI system as an exam-
ple, we have deduced two kinds of the general mixed
N -soliton solution (two-bright–one-dark soliton and
one-bright–two-dark one for SW components) in the
form of Gram determinant by using the KP hierarchy
reduction method. The same analysis was extended
to obtain the general mixed solution consisting of
m bright solitons and M − m dark ones for SW
components in the 2D multi-component LSRI sys-
tem. The expression of the mixed solution also con-
tains the general bright and dark N -soliton solution.
In particular, for the soliton solution which include
two-bright–one-dark soliton for SW components in
three-component LSRI system, the dynamics analy-
sis showed that solioff excitation and solioff inter-
action appear in two SW components which possess
bright soliton, while V-type solitary and interaction
occur in the other SW component and LW one. In
addition, the related mixed soliton bound states in 2D
three-component LSRI system were exhibited graphi-
cally.
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