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ABSTRACT

We propose a novel variable-coefficient Davey–Stewartson type system for studying internal wave phenomena in finite-depth stratified fluids
with background flows, where the upper- and lower-layer fluids possess distinct velocity potentials, and the variable-coefficient terms are pri-
marily controlled by the background flows. This realizes the first application of variable-coefficient DS-type equations in the field of internal
waves. Compared to commonly used internal wave models, this system not only describes multiple types of internal waves, such as internal
solitary waves, internal breathers, and internal rogue waves, but also aids in analyzing the impact of background flows on internal waves. We
provide the influence of different background flow patterns on the dynamic behavior and spatial position of internal waves, which contribute
to a deeper understanding of the mechanisms through which background flows influence internal waves. Furthermore, the system is capable
of capturing variations in the velocity potentials of the upper and lower layers. We discover a connection between internal waves under the
influence of background flows and velocity potentials. Through the variations in velocity potentials within the flow field, the dynamic behav-
iors of internal waves can be indirectly inferred, their amplitude positions located, and different types of internal waves distinguished. This
result may help address the current shortcomings in satellite detection of internal wave dynamics and internal rogue waves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0219224

I. INTRODUCTION

Internal waves (IWs) are oscillations within a fluid medium, not
on its surface.1,2 Their existence relies on the stratification of the fluid.
Typically, this means density varies with depth. IWs propagate along
boundaries where low-density water covers high-density water. Due to
the stratified nature of real-world ocean, IWs are ubiquitous in the
global ocean.3,4 The significant vertical displacement and strong hori-
zontal currents induced by them play a crucial role in oceanic ecosys-
tems and energy transfer.5 Particularly, IWs with larger amplitudes
pose potential hazards to ships and offshore drilling platforms.6

Hence, IWs are of paramount importance for ocean engineering, ecol-
ogy, and marine resource exploitation.

Since Nansen first discovered the phenomenon of IWs, scholars
have conducted extensive observational studies on it.7 These observa-
tions not only reveal the presence of IWs in environments such as
lakes and oceans but also discover many types of IWs. From the 1970s
to the 1980s, the development of nonlinear internal wave theory

significantly advanced the understanding of internal waves. The prop-
ositions of equations such as Korteweg–de Vries (KdV), nonlinear
Schr€odinger (NLS), and Gardner enable us to better describe and com-
prehend various internal wave phenomena.8–10 It is found from cur-
rent oceanic observational data that the IWs exhibit diverse waveforms
and complex wave structures. In particular, the propagation of internal
solitary waves (ISWs) is more common in small sea areas or nearshore
shelf–slope regions.11,12 Describing and understanding these structur-
ally complex types of IWs necessitates the support of nonlinear theo-
ries. Furthermore, the generation and propagation of IWs are
influenced by multiple factors. Among them, background flow is one
of the primary factors, referring to the dominant flow patterns in
oceans or lakes, typically driven by factors such as topography, tides,
and large-scale circulation. Early in Benney’s original weakly nonlinear
description of IWs, background flow was taken into account.13

Subsequent studies show that variations in background flows signifi-
cantly affect the amplitude of IWs and may even trigger their breaking
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and the generation of turbulence.14,15 Therefore, a thorough investiga-
tion of background flows contributes to a better understanding of the
generation and propagation of IWs.

Currently, research on different types of IWs primarily utilizes
various one-dimensional models. Grimshaw et al. studied the propaga-
tion of ISWs on slope-shelf topography based on the KdV equation.16

Bokaeeyan et al. found the “bright and dark” solutions of the Gardner
equation, which could simulate internal rogue waves (IRWs) in a
three-layer fluid.17 Nakayama and Lamb proposed that internal
breathers (IBs) could be well simulated by exact solutions of the
mKdV equation.18 These are excellent works, but two shortcomings
remain: first, they primarily rely on one-dimensional models, and dif-
ferent types of IWs require different models; second, the significant
factor of background flows is overlooked. Addressing the first short-
coming, we recently proposed a three-coupled Davey–Stewartson (DS)
type system.19 This system leverages the rich exact solution properties
of the DS equation to comprehensively describe various types of inter-
nal waves (ISWs, IBs, and IRWs), and to reflect their high-dimensional
forms. Moreover, considering that the DS equation can describe not
only the amplitude but also the velocity potential, this system can be
used to investigate the relationship between internal waves and velocity
potential. However, we still neglected the role of background flows. In
the exploration of IWs, scholars typically separate background flows,
assuming they depend only on depth, and mainly investigate their
effect on the amplitude.20 In fact, in the actual marine environment,
background flows also vary with time. Therefore, we consider incorpo-
rating background flows into variable-coefficient terms and addressing
the second limitation with the variable-coefficient DS-type system.21–23

It is well known that variable-coefficient equations are commonly used
in the field of integrable systems to study the dynamics of localized
waves.24–26 Consequently, employing the variable-coefficient system
can effectively explore the impact of background flows on the dynamic
behavior of internal waves, which has not been fully realized in previ-
ous internal wave models. It is worth mentioning that traditional
variable-coefficient DS equations (1) are typically used to describe the
phenomena in the fields of the ultra-relativistic degenerate dense plas-
mas or Bose–Einstein condensates27

iut þ P1ðtÞuxx þ P2ðtÞuyy � Q1ðtÞjuj2 þ Q2ðtÞv
� �

u ¼ 0;

Rvxx � vyy � Sðjuj2Þxx ¼ 0;
(1)

where P1ðtÞ and P2ðtÞ denote the wave group dispersion; Q1ðtÞ and
Q2ðtÞ stand for the cubic nonlinear coefficient and nonlocal quadratic
nonlinearity, respectively; and R and S are both the constants that rep-
resent different physical quantities in different fields. In this paper, we
show that the inapplicability of Eq. (1) to IWs in stratified fluids, while
also pioneering the extension of variable-coefficient DS-type equations
to the field of IWs, thereby establishing a new variable-coefficient sys-
tem for IWs.

Ocean observation data indicate that at specific observation
points, fluctuations exist in parameters such as density, temperature,
and velocity inside the ocean, suggesting the possible passage of IWs
through these points.28–30 Compared to traditional internal wave
models,31,32 our proposed variable-coefficient system not only captures
various internal wave phenomena but also has the ability to obtain
velocity potential information. In previous studies, we have established
the existence of a correlation between IWs and velocity potentials.19

Satellite remote sensing technology is widely used to monitor IWs in

the ocean.33–35 However, the movement speed of IWs is typically fast,
and the temporal resolution of satellite remote sensing data may not
be sufficient to capture the rapid changes of IWs, limiting the in-depth
study of internal wave dynamics. We propose a potential strategy,
focusing on utilizing velocity potential information to indirectly infer
the presence and dynamics of IWs.

The remaining part of this paper is organized as follows. In Sec.
II, we establish a new variable-coefficient system to investigate the
effect of background flows on IWs. The physical significance of each
parameter is explained, especially the part where background flows is
introduced into the variable-coefficient terms. In Sec. III, we introduce
a precise solution strategy based on the Hirota bilinear method to
obtain the solutions for different types of IWs. The application of the
established system in IWs is discussed, and the dynamic behaviors of
different types of IWs under the influence of background flows are
described in detail. In particular, we emphasize the potential value of
velocity potential as an indirect probe for detecting the presence and
dynamic behavior of IWs under the influence of background flows in
practical applications. Section IV specifically discusses these conclu-
sions, summarizes the main findings, and explores future research
directions.

II. DERIVATION OF THE VARIABLE-COEFFICIENT
EXTENDED DS SYSTEM

Consider a three-dimensional two-layer fluid system with no vis-
cosity, incompressibility, and no rotation. The velocity potentials of
each layer are different. As shown in Fig. 1, let q1 and q2 denote the
densities of the upper and lower layers of the fluid, respectively, with
depths d1 and d2. The depth of the fluid is relatively small compared to
the wavelength of the disturbance. The upper and lower layers flow
horizontally (in the x direction) with velocities W1 and W2, respec-
tively, which are functions solely dependent on time t. The IWs are
generated at the interface between the two-layer fluid, and their gov-
erning equations can be expressed as follows:

@2u1

@x2
þ @2u1

@y2
þ @2u1

@z2
¼ 0; 0 < z < d1; (2)

@2u2

@x2
þ @2u2

@y2
þ @2u2

@z2
¼ 0; �d2 < z < 0; (3)

FIG. 1. Schematic view of the flow coordinate system.
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@u1

@z

���
z¼0

¼ @g
@t

þ W1ðtÞ þ U1½ � @g
@x

þ V1
@g
@y

; z ¼ gðx; y; tÞ; (4)

@u2

@z

���
z¼0

¼ @g
@t

þ W2ðtÞ þ U2½ � @g
@x

þ V2
@g
@y

; z ¼ gðx; y; tÞ; (5)

p1 ¼ p2; z ¼ gðx; y; tÞ; (6)

p1 ¼ �q1
@u1

@t
� q1

2
f W1ðtÞ þ U1½ �2 þ V2

1 þW2
1g � q1 gg; (7)

p2 ¼ �q2
@u2

@t
� q2

2
f W2ðtÞ þ U2½ �2 þ V2

2 þW2
2g � q2 gg; (8)

@u1

@z
¼ 0; z ¼ d1; (9)

@u2

@z
¼ 0; z ¼ �d2; (10)

where the velocity potentials of the upper and lower layers are denoted
as u1 and u2, respectively, while gðx; y; tÞ represents the amplitude of
the waves at the interface. Vi andWi are the components of fluid veloc-
ity in the y and z directions, respectively, and due to the presence of
background flows, the component of fluid velocity in the x direction is
WiðtÞ þ Ui, where i¼ 1 represents the upper layer and i¼ 2 represents
the lower layer. Because of the assumption of small wave amplitudes,
the values of quantities at z ¼ g are still replaced by z¼ 0. At the inter-
face, pressure should be continuous; thus, p1¼ p2 represents the
dynamic boundary condition. Equations (9) and (10), respectively,
characterize the constraints imposed on the fluid by rigid boundaries
at the top and bottom.

Introduce appropriate reference quantities to construct dimen-
sionless variables: x̂ ¼ x

k ; ŷ ¼ y
k ; ẑ ¼ x

h ; t̂ ¼ c
k t; ĝ ¼ g

# ; û1 ¼ h
#kcu1;

û2 ¼ h
#kcu2, where k, #, and h represent typical wavelength, typical

amplitude, and typical water depth, respectively, and c ¼ ffiffiffiffiffi
gh

p
denotes

the typical horizontal velocity. Using these dimensionless quantities,
Eqs. (2)–(10) can be reformulated as follows:

d
@2u1

@x2
þ @2u1

@y2

 !
þ @2u1

@z2
¼ 0; 0 < z <

d1
h
; (11)

d
@2u2

@x2
þ @2u2

@y2

 !
þ @2u2

@z2
¼ 0; � d2

h
< z < 0; (12)

d
@g
@t

þ e
@u1

@x
@g
@x

þ e
@u1

@y
@g
@y

� �
� @u1

@z
¼ 0; z ¼ egðx; y; tÞ; (13)

d
@g
@t

þ e
@u2

@x
@g
@x

þ e
@u2

@y
@g
@y

� �
� @u2

@z
¼ 0; z ¼ egðx; y; tÞ; (14)

q1
@u1

@t
þ q1gþ

q1
2

e
@u1

@x

� �2

þ e
@u1

@y

� �2
" #

þ q1e
2d

@u1

@z

� �2

¼ q2
@u2

@t
þ q2gþ

q2
2

e
@u2

@x

� �2

þ e
@u2

@y

� �2
" #

þ q2e
2d

@u2

@z

� �2

;

z ¼ egðx; y; tÞ; (15)

@u1

@z
¼ 0; z ¼ d1; (16)

@u2

@z
¼ 0; z ¼ �d2: (17)

The above equations are often more concise and general, capable of
reflecting the fundamental characteristics of internal wave phenome-
non. Here, e ¼ #

h is the nonlinear (amplitude) parameter and d ¼ h2

k2
is

the dispersion (long wavelength) parameter.
The velocity potentials consist of two parts: the velocity potential

of the background flow and the velocity potential of the wave motion.
To further simplify Eqs. (11)–(17), we perform a multi-scale expansion
on the wave velocity potentials under the long wave condition, given
by

u1 ¼ W1ðtÞx þ u10 þ du11 þ d2u12 þ d3u13 þ � � � ; (18)

u2 ¼ W2ðtÞx þ u20 þ du21 þ d2u22 þ d3u23 þ � � � : (19)

Under the assumption of long waves, we have d � 1.
Substituting Eqs. (18) and (19) into Eqs. (11), (12), (16), and (17),

and then collecting terms of the same order of d, we obtain

d0 : u10 ¼ u10ðx; y; tÞ; u20 ¼ u20ðx; y; tÞ; (20)

d1 : u11 ¼ �
z � d1

h

� �2

2
@u1
@x

þ @v1
@y

� �
;

u21 ¼ �
z þ d2

h

� �2

2
@u2
@x

þ @v2
@y

� �
;

(21)

d2 :
u12 ¼

z � d1
h

� �4

24
@

@x
r2u1
� 	

þ @

@y
r2v1
� 	� �

;

u22 ¼
z þ d2

h

� �4

24
@

@x
r2u2
� 	

þ @

@y
r2v2
� 	� �

;

(22)

where @u10
@x ¼ u1;

@u10
@y ¼ v1;

@u20
@x ¼ u2 and

@u20
@y ¼ v2.

According to equations (18)–(22), we can simplify system (11)–
(17) as follows:

1
d

@g
@t

� d1
h

@u1
@x

þ @v1
@y

� �
 �
þ Ur

@ðu1gÞ
@x

þ @ðv1gÞ
@y

þW1ðtÞ @g
@x


 �

� 1
6

�d1
h

� �3
@

@x
r2u1
� 	

þ @

@y
r2v1
� 	
 �

¼ 0; (23)

1
d

@g
@t

þ d2
h

@u2
@x

þ @v2
@y

� �
 �
þ Ur

@ðu2gÞ
@x

þ @ðv2gÞ
@y

þW2ðtÞ @g
@x


 �

� 1
6

d2
h

� �3
@

@x
r2u2
� 	

þ @

@y
r2v2
� 	
 �

¼ 0; (24)

q1
d

@u1
@t

þ@g
@x

þdW1ðtÞ
dt


 �
þq1Ur u1þW1ðtÞ½ �@u1

@x
þ v1

@u1
@y

� 

�q1
2

�d1
h

� �2
@

@t
r2u1
� 	

¼ q2
d

@u2
@t

þ @g
@x

þ dW2ðtÞ
dt

� �
þq2Ur u2þW2ðtÞ½ �@u2

@x
þ v2

@u2
@y

� 

�q2
2

d2
h

� �2
@

@t
r2u2
� 	

; (25)
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q1
d

@v1
@t

þ @g
@y

� �
þ q1Ur u1 þW1ðtÞ½ � @v1

@x
þ v1

@v1
@y

� 

� q1
2

�d1
h

� �2
@

@t
r2v1
� 	

¼ q2
d

@v2
@t

þ @g
@y

� �
þ q2Ur u2 þW2ðtÞ½ � @v2

@x
þ v2

@v2
@y

� 

� q2
2

d2
h

� �2
@

@t
r2v2
� 	

; (26)

where Ur ¼ e
d is the Ursell parameter.

However, Eqs. (23)–(26) still form a set of complex nonlinear
equations. In order to obtain precise solutions describing IWs and
velocity potentials, we adopt the method of multiple scales.36 First, we
introduce new variables

n ¼ e x � Cgtð Þ; h ¼ ey; s ¼ e2t; (27)

where Cg is the group velocity and e is a small parameter.
To obtain approximate equations for studying the behavior of

Eqs. (23)–(26), we represent the dependent variables in the form of the
sum of the main variation and modification terms

uj ¼
X1
n¼1

en
Xn
m¼�n

EmuðmÞ
jn ðn;h;sÞ; vj ¼

X1
n¼2

en
Xn
m¼�n

EmvðmÞ
jn ðn;h;sÞ;

g¼
X1
n¼1

en
Xn
m¼�n

EmgðmÞ
n ðn;h;sÞ; Wj ¼

X1
n¼0

enWjnðsÞ;
(28)

where E ¼ eiðkx�xtÞ, gð�mÞ
n ¼ g�ðmÞ

n ; uð�mÞ
jn ¼ u�ðmÞ

jn , and vð�mÞ
jn

¼ v�ðmÞ
jn , with the star denoting the complex conjugate.
Next, we concentrate on the main variation terms determined by

low powers of e. Substituting Eqs. (27) and (28) into Eqs. (23)–(26),
terms of the same order in enEm are collected. At the order of e1E1, we
obtain

uð1Þ11 ¼ 6h3 W10ðsÞkUrd� x½ �
kd1 d21k2dþ 6h2
� 	 gð1Þ1 ;

uð1Þ21 ¼ 6h3 W20ðsÞkUrd� x½ �
kd2 d22k2dþ 6h2
� 	 gð1Þ1 :

(29)

The coefficients for e2E0; e2E1, and e2E2 give rise to the following
relation:

gð0Þ1 ¼ 0; uð0Þ11 ¼ 0; uð0Þ21 ¼ 0;
dW20ðsÞ

ds
¼ q1

q2

dW10ðsÞ
ds


 �
; (30)

uð1Þ12 ¼ iS1ðsÞ@g
ð1Þ
1

@n
þS2ðsÞgð1Þ1 ; uð1Þ22 ¼ iF1ðsÞ@g

ð1Þ
1

@n
þF2ðsÞgð1Þ1 ;

gð1Þ2 ¼ iW1ðsÞ@g
ð1Þ
1

@n
þW2ðsÞgð1Þ1 ;

(31)

vð1Þ12 ¼ iJ1ðsÞ @g
ð1Þ
1

@h
; vð1Þ22 ¼ iJ2ðsÞ @g

ð1Þ
1

@h
; (32)

uð2Þ12 ¼ P1ðsÞ gð1Þ1

� �2
; uð2Þ22 ¼M1ðsÞ gð1Þ1

� �2
; gð2Þ2 ¼G1ðsÞ gð1Þ1

� �2
;

(33)

vð2Þ12 ¼ 0; vð2Þ22 ¼ 0; (34)

where S1ðsÞ; S2ðsÞ; F1ðsÞ; F2ðsÞ; W1ðsÞ; W2ðsÞ; J1ðsÞ; J2ðsÞ; P1ðsÞ;
M1ðsÞ, and G1ðsÞ are given in Appendix.

According to Eqs. (29)–(34), the following system is finally
obtained:

a1ðsÞ @
2/1

@n2
þ a2ðsÞ @

2/1

@h2
þ a3ðsÞ @/2

@n2
� a4ðsÞ @jg

ð1Þ
1 j2
@n

¼ 0; (35)

b1ðsÞ @
2/2

@n2
þ b2ðsÞ @

2/2

@h2
þ b3ðsÞ @/1

@n2
� b4ðsÞ @jg

ð1Þ
1 j2
@n

¼ 0; (36)

ic1ðsÞ@g
ð1Þ
1

@s
þ c2ðsÞ@

2gð1Þ1

@n2
þ c3ðsÞ@

2gð1Þ1

@h2
þ c4ðsÞjgð1Þ1 j2gð1Þ1

þ c5ðsÞgð1Þ1
@/1

@n
þ c6ðsÞgð1Þ1

@/2

@n
þ ic7ðsÞ@g

ð1Þ
1

@n

þ ic8ðsÞþ c9ðsÞ½ �gð1Þ1 ¼ 0: (37)

Here, gð1Þ1 represents the complex amplitude variable, and the real
functions /1 and /2 can be regarded as velocity potential variables.

Additionally, @/1
@n ¼ uð0Þ12 ;

@/1
@h ¼ vð0Þ12 ;

@/2
@n ¼ uð0Þ22 and @/2

@h ¼ vð0Þ22 ;
dW21ðsÞ

ds

¼ q1
q2
½dW11ðsÞ

ds �; dW22ðsÞ
ds ¼ q1

q2
½dW12ðsÞ

ds �. aiðsÞ; biðsÞ and cjðsÞ (i ¼ 1;…; 4

and j ¼ 1;…; 9) are variable coefficients only dependent on s, and
their expressions are provided in the Appendix.

Compared with the equations commonly used in previous studies
of IWs, the system consisting of (35)–(37) not only accounts for the
IWs in stratified fluids with high-dimensional effects but also provides
information on the velocity potentials of the upper and lower layers,
which are not achievable with previous models of IWs.16–18 In contrast
to the classical variable-coefficient DS equation (1), Eqs. (35)–(37)

introduce additional terms such as @gð1Þ1
@n and gð1Þ1 , and incorporate more

variable coefficients such as ai and bi (i¼ 1, 2). This may lead to novel
outcomes. When /1 ¼ /2 and ai¼ bi (i¼ 1, 2), Eqs. (35)–(37) reduce
to the classical variable-coefficient DS equation with additional terms

a1ðsÞþ a3ðsÞ½ �@
2/1

@n2
þ a2ðsÞ@

2/1

@h2
þ a4ðsÞ@jg

ð1Þ
1 j2
@n

¼ 0;

ic1ðsÞ@g
ð1Þ
1

@s
þ c2ðsÞ@

2gð1Þ1

@n2
þ c3ðsÞ@

2gð1Þ1

@h2
þ c4ðsÞjgð1Þ1 j2gð1Þ1

þ c5ðsÞþ c6ðsÞ½ �gð1Þ1
@/1

@n
þ ic7ðsÞ@g

ð1Þ
1

@n

þ ic8ðsÞþ c9ðsÞ½ �gð1Þ1 ¼ 0:

(38)

It is noteworthy that negative density or equal densities in upper and
lower layers appear in this transformation process, indicating the
inability of the classical variable-coefficient DS equation to directly
describe the phenomenon of IWs in stratified fluids. However, further
mathematical investigations into Eq. (38) are warranted for future
exploration.

In summary, we have constructed, for the first time, a novel
variable-coefficient system to describe the velocity potentials and IWs
in density-stable stratified fluids. Since it has partial resemblance to Eq.
(1), we refer to it as the variable-coefficient extended DS (VCEDS)
equation.
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The coefficients of the VCEDS equation are highly complex,
involving multiple physical quantities such as background flow, den-
sity, depth, dispersion parameters, and Ursell parameters, resulting in
coefficients with high degrees of freedom. In the remaining part of this
paper, we will focus on the time-dependent background flows, while
other physical quantities constitute arbitrary constants. In other words,
these coefficients can be viewed as polynomials of the background
flows, while the specific physical analysis of these coefficients is left for
future work.

III. INTERNAL WAVES

To capture the internal wave phenomenon that can be character-
ized by the system (35)–(37) and investigate the influence of back-
ground flows on IWs, we make the following transformations to the
amplitude, upper-, and lower-layer velocity potentials:22,27

gð1Þ1 ¼ G
F
; /1 ¼ aðsÞðln FÞn þ A; /2 ¼ bðsÞðln FÞn þ B; (39)

where F is a real function and G is a complex function, aðsÞ and bðsÞ
are parameter variables that depend solely on s, and A and B are con-
stants. Note that aðsÞ 6¼ bðsÞ and A 6¼ B, so that /1 6¼ /2.

Substituting Eq. (39) into the system (35)–(37), we obtain the
bilinear form

a1ðsÞaðsÞþ a3ðsÞbðsÞ½ �D2
n þ a2ðsÞaðsÞD2

h �RðsÞ
n o

F � F
þ2a4ðsÞG �G� ¼ 0;

b1ðsÞbðsÞþ b3ðsÞaðsÞ½ �D2
n þ b2ðsÞbðsÞD2

h�KðsÞ
n o

F � F
þ2b4ðsÞG �G� ¼ 0;

ic1ðsÞDs þ c2ðsÞD2
n þ c3ðsÞD2

h þ ic7ðsÞDnþ ic8ðsÞþ c9ðsÞ�CðsÞ
h i
� G � F ¼ 0;

c2ðsÞ� 1
2
c5ðsÞaðsÞ� 1

2
c6ðsÞbðsÞ


 �
D2

nþ c3ðsÞD2
h �CðsÞ

� 
F �F

� c4ðsÞG �G� ¼ 0;

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(40)

where R, K, and C are parameter variables that depend solely on s,
while Dn; Dh, and Ds are the bilinear differential operators defined as
follows:37

Dm
n D

l
hD

k
sðF;GÞ

¼ @

@n
� @

@n0

� �m
@

@h
� @

@h0

� �l
@

@s
� @

@s0

� �k

FGjn0¼n;h0¼h;s0¼s:

(41)

A. Internal solitary waves

For the purpose of exploring the applicability of Eqs. (35)–(37) in
describing ISWs and researching the effect of variable coefficients con-
trolled by background flows on their propagation, we assume

G ¼ neiaðsÞ 1þ n1e
pnþqhþXðsÞþic

� �
; F ¼ 1þ n1e

pnþqhþXðsÞ; (42)

where n, n1, p, q, and c are constants, while aðsÞ and XðsÞ will be
determined subsequently and can represent interventions and adjust-
ments of the background flows.

Substituting Eq. (42) into Eq. (40), we obtain the solution for
ISWs

gð1Þ1 ¼ neiaðsÞ 1þ n1epnþqhþXðsÞþic
� �
1þ n1epnþqhþXðsÞ ; (43)

where

aðsÞ ¼
ð
c4ðsÞn2 þ c9ðsÞ

c1ðsÞ ds; XðsÞ ¼
ð�c7ðsÞp

c1ðsÞ ds: (44)

In comparison with models commonly used to describe IWs, Eqs.
(35)–(37) can also provide solutions for the velocity potentials

/1 ¼ aðsÞ � pn1epnþqhþXðsÞ

1þ n1epnþqhþXðsÞ þ A; (45)

/2 ¼ bðsÞ � pn1epnþqhþXðsÞ

1þ n1epnþqhþXðsÞ þ B; (46)

where aðsÞ and bðsÞ are given by

aðsÞ ¼ f2c2ðsÞn2½cosðcÞa3ðsÞc3ðsÞb5ðsÞþ cosðcÞa5ðsÞc2ðsÞb2ðsÞ
� cosðcÞa5ðsÞc3ðsÞb1ðsÞ� a3ðsÞc3ðsÞb5ðsÞ� a5ðsÞc2ðsÞb2ðsÞ
þ a5ðsÞc3ðsÞb1ðsÞ�g=fq2½a3ðsÞc3ðsÞ2b3ðsÞ
þ a1ðsÞc2ðsÞc3ðsÞb2ðsÞ� a1ðsÞc3ðsÞ2b1ðsÞ
� a2ðsÞc2ðsÞ2b2ðsÞþ a2ðsÞc2ðsÞc3ðsÞb1ðsÞ�g; (47)

bðsÞ¼�f2c2ðsÞn2½cosðcÞa1ðsÞc3ðsÞb5ðsÞ� cosðcÞa2ðsÞc2ðsÞb5ðsÞ
þa5ðsÞc3ðsÞb3ðsÞ� cosðcÞa5ðsÞc3ðsÞb3ðsÞ
�a1ðsÞc3ðsÞb5ðsÞþa2ðsÞc2ðsÞb5ðsÞ�g=fq2½a3ðsÞc3ðsÞ2b3ðsÞ
þa1ðsÞc2ðsÞc3ðsÞb2ðsÞ�a1ðsÞc3ðsÞ2b1ðsÞ
�a2ðsÞc2ðsÞ2b2ðsÞþa2ðsÞc2ðsÞc3ðsÞb1ðsÞ�g: (48)

It is worth noting that to achieve the above results, we must sat-
isfy the condition c8 ¼ 0. Fortunately, this condition is feasible, just
making sure that W10 and W20 are both constants or d1 ¼ d2.
Therefore, the generation and propagation of ISWs can be divided into
two cases. The first case is that the main variation terms of the back-
ground flows in the upper and lower layers are both constants, and the
second is that the depths of the upper and lower layers are equal.

The first case is illustrated in Fig. 2. The secondary variations of
the background flows are set to be periodic functions, linear functions,
and constants, respectively, resulting in three types of dynamic behav-
iors of ISWs. The most common type of ISWs [see Fig. 2(c)] is
obtained, when all the variations of the background flows are constant,
a situation that usually corresponds to regions without significant flow
variations. They propagate linearly at a uniform speed, because no
background flow velocity variations affect the wave propagation char-
acteristics. At this time, the VCEDS system degenerates into a
constant-coefficient form. However, when the background flows
increase linearly over time, ISWs no longer propagate linearly but
instead bend [see Fig. 2(b)]. On the other hand, when the background
flows vary periodically, ISWs also exhibit periodic dynamic behavior
[see Fig. 2(a)]. This periodic variation can be considered a modulation
of the ISWs, causing ISWs to display periodic behavior corresponding

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 097142 (2024); doi: 10.1063/5.0219224 36, 097142-5

Published under an exclusive license by AIP Publishing

 21 Septem
ber 2024 04:25:04

pubs.aip.org/aip/phf


to the changes in the background flows. The above results reveal that
the background flows have a significant influence on the dynamic
behaviors of ISWs. The response of the ISWs to the variation of the
background flows also demonstrates the adaptability and variability of
IWs under different flow field conditions. In addition, we obtain the
variations of the upper and lower velocity potentials during the propa-
gation of the ISWs (see Fig. 3), a capability not provided by general
models. Together with Fig. 2, it can be roughly observed that the veloc-
ity potentials change drastically in the region where the amplitudes
fluctuate. Changes in velocity potentials can expose key dynamical
characteristics during the propagation of IWs because they determine
the velocity distribution and reflect fluid particle motion. The relation
between ISWs and velocity potentials is discussed in detail in the sub-
sequent analysis.

The second case is illustrated in Fig. 4. The components of the
background flows are set as periodic functions, linear functions, and
their combination forms, resulting in four types of internal solitary
wave dynamics. Periodic functions result in ISWs exhibiting periodic
dynamic behavior [see Fig. 4(a)], while linear functions cause the

propagation of ISWs to bend [see Fig. 4(b)], similar to the first case.
However, the combination forms result in completely irregular
dynamic behaviors [see Figs. 4(c) and 4(d)]. The combination of such
periodic and linear variations creates a complex flow pattern that
makes the behaviors of ISWs more unpredictable. This suggests that in
ocean environments, complex variations in background flows may
pose a challenge to the detection and prediction of IWs, and thus, there
is a need to rely on more suitable models to address this complexity.
By comparing Figs. 4(a) and 4(d), it is evident that different primary
variations in the background flows lead to distinct dynamic behaviors
of ISWs. Similarly, comparing Figs. 4(a) and 4(c) shows that different
secondary variations in the background flows also result in varying
dynamic behaviors of ISWs. Hence, it can be concluded that both pri-
mary and secondary variations in the background flows can signifi-
cantly affect the dynamic behavior of ISWs. Figure 5 illustrates the
corresponding variations in velocity potentials.

As an advantage of high-dimensional models, we are able to con-
duct research from the perspective of space ðn; hÞ. As shown in Fig. 6,
at s¼ 0, the spatial positions of ISWs vary under different background

FIG. 2. The dynamic behaviors of the
internal solitary waves with W10 ¼ 2. (a)
W11 ¼ W12 ¼ sinðsÞ, (b) W11 ¼ W12
¼ s, and (c) W11 ¼ W12 ¼ 2.

FIG. 3. The upper-layer velocity potential /1 and the lower-layer velocity potential /2 of the internal solitary waves with W10 ¼ 2. (a) W11 ¼ W12 ¼ sinðsÞ, (b)
W11 ¼ W12 ¼ s, and (c) W11 ¼ W12 ¼ 2. For (d), (e), and (f), the background flow parameters are the same as those in (a), (b), and (c), respectively.
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flow patterns. Specifically, the two types of ISWs under periodic back-
ground flows are located closer to each other, whereas they are farther
away from ISWs under the linear background flow. In addition, the
time-dependent background flows do not affect the amplitude and
shape of ISWs, which is different from depth-dependent background
flows. This implies that the position of the observed ISWs at a certain
time may vary with the background flows, while other fundamental
properties remain stable. In the 3D plots, we show the spatial charac-
teristics of the ISWs at different moments, using only one background
flow pattern as an example. As shown in Fig. 7, the ISWs exhibit the
shape of linear solitons propagating with constant amplitude over
time. In addition, it is observed that the velocity potentials vary sub-
stantially at locations where ISWs appear at different moments,
whereas the velocity potentials remain unchanged at locations where

FIG. 5. The upper-layer velocity potential /1 and the lower-layer velocity potential /2 of the internal solitary waves with d1 ¼ d2. (a) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (b)
W10 ¼ W11 ¼ W12 ¼ s, (c) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (d) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ. For (e), (f), (g), and (h), the background flow parameters are the
same as those in (a), (b), (c), and (d), respectively.

FIG. 4. The dynamic behaviors of the internal solitary waves with d1 ¼ d2. (a) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ W11 ¼ W12 ¼ s, (c) W10 ¼ sinðsÞ; W11
¼ W12 ¼ s, and (d) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.

FIG. 6. The internal solitary waves at s¼ 0. Color in red: W10 ¼ W11 ¼ W12
¼ sinðsÞ, in blue: W10 ¼ W11 ¼ W12 ¼ s, and in green: W10 ¼ 2; W11 ¼ W12
¼ sinðsÞ.
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no ISWs appear. The appearance and propagation of ISWs cause sig-
nificant local changes in the velocity potentials, further supporting the
close relation between velocity potentials and ISWs.

By observing the density plots of ISWs and velocity potentials
under different background flows in Figs. 8 and 9, it appears that the
propagation trajectory of ISWs can perfectly envelope the range of
velocity potential variations. To verify this, we superimpose the density
plots of ISWs and velocity potentials to illustrate more clearly the
degree of coincidence between them (see Fig. 10). It is well known that
satellites are the primary tools for detecting ISWs in the ocean, but
they can only provide snapshots of a certain moment (as described in
Fig. 7), making it difficult to accurately reflect the dynamic behaviors
of ISWs. However, real-time monitoring of flow velocities within the
marine fluid is relatively easy to achieve. Therefore, we can use the
velocity potential field to infer the propagation of ISWs. Furthermore,
through Fig. 11, we observe that the locations where the amplitude of
ISWs is generated correspond to positions with significant changes in
velocity potentials, typically oscillating rapidly between local minima
and maxima. Otherwise, the velocity potentials change slowly or
remain unchanged. To clearly illustrate this correspondence, we adjust
the ratio of A to B from 1 to 10 (in reality the ratio is closer to 1, but
the curves will overlap) and mark the positions of maximum ampli-
tude with dashed lines in the figure. Hereafter, we can indirectly infer
the propagation of ISWs based on the velocity potential field and
determine the spatiotemporal locations of their amplitude occurrence.

Note that we obtain the same results from a spatial ðn; hÞ perspective
analysis, so it is not further elaborated here.

B. Internal breathers

In this subsection, we investigate IBs by Eqs. (35)–(37) through
assuming

G ¼ neiaðsÞ
�
1þ ei pxþqyþXðsÞ½ �þc1þic2

þ e�i pxþqyþXðsÞ½ �þc1þic2 þ n1e2c1þ2ic2
�
;

F ¼ 1þ ei pxþqyþXðsÞ½ �þc1 þ e�i pxþqyþXðsÞ½ �þc1 þ n1e2c1 ;

(49)

where n, n1, p, q, c1, and c2 are constants, while aðsÞ and XðsÞ are
functions solely dependent on s.

Substituting Eq. (49) into Eqs.(40), we obtain the solution for IBs

gð1Þ1 ¼neiaðsÞ 1þei pxþqyþXðsÞ½ �þc1þic2 þe�i pxþqyþXðsÞ½ �þc1þic2 þn1e2c1þ2ic2
� �

1þei pxþqyþXðsÞ½ �þc1 þe�i pxþqyþXðsÞ½ �þc1 þn1e2c1
;

(50)

where

aðsÞ ¼
ð
c4ðsÞn2 þ c9ðsÞ

c1ðsÞ ds; XðsÞ ¼ �
ð
c7ðsÞp
c1ðsÞ ds;

n1 ¼ 4 cosðc2Þ � 4
cosð2c2Þ � 1

:

(51)

FIG. 7. Evolution of an internal solitary wave and velocity potentials in the (n, h)-plane at time (a) s ¼ �15, (b) s¼ 0, and (c) s¼ 15, respectively.
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The solutions for the upper and lower velocity potentials are
given as follows:

/1 ¼ aðsÞ � ipei pxþqyþXðsÞ½ �þc1 � ipe�i pxþqyþXðsÞ½ �þc1

1þ ei pxþqyþXðsÞ½ �þc1 þ e�i pxþqyþXðsÞ½ �þc1 þ4cosðUÞ�4
cosð2UÞ�1

e2c1

þA; (52)

/2 ¼ bðsÞ � ipei pxþqyþXðsÞ½ �þc1 � ipe�i pxþqyþXðsÞ½ �þc1

1þ ei pxþqyþXðsÞ½ �þc1 þ e�i pxþqyþXðsÞ½ �þc1 þ 4cosðUÞ� 4
cosð2UÞ� 1

e2c1

þB; (53)

where

aðsÞ¼ f2n2½cosðc2Þp2a3ðsÞb5ðsÞ� cosðc2Þp2a5ðsÞb1ðsÞ
� cosðc2Þq2a5ðsÞb2ðsÞ�p2a3ðsÞb5ðsÞþq2a5ðsÞb2ðsÞ
þp2a5ðsÞb1ðsÞ�g=½p4a3ðsÞb3ðsÞ�p4a1ðsÞb1ðsÞ
�p2q2a1ðsÞb2ðsÞ�p2q2a2ðsÞb1ðsÞ�q4a2ðsÞb2ðsÞ�; (54)

bðsÞ ¼ �f2n2½cosðc2Þp2a1ðsÞb5ðsÞ � cosðc2Þp2a5ðsÞb3ðsÞ
þ cosðc2Þq2a2ðsÞb5ðsÞ � p2a1ðsÞb5ðsÞ � q2a2ðsÞb5ðsÞ
þ p2a5ðsÞb3ðsÞ�g=½p4a3ðsÞb3ðsÞ � p4a1ðsÞb1ðsÞ
� p2q2a1ðsÞb2ðsÞ � p2q2a2ðsÞb1ðsÞ � q4a2ðsÞb2ðsÞ�: (55)

The condition for obtaining the IBs is also c8 ¼ 0. Thus, the IBs
described by Eqs. (35)–(37) also fall into two cases: one, where the
main variation terms are constants; the other, where the upper and
lower depths are equal. When both W10 andW20 are constants, we set
the secondary variations to be periodic functions, linear functions, and
constants, respectively, resulting in three types of internal breather
dynamics (see Fig. 12). In the case where all the variation terms are
constants, conventional IBs are obtained [see Fig. 12(c)], exhibiting
periodicity in time and space, with no change in amplitude during
propagation. The oscillations within each period are similar to conven-
tional ISWs. In the case of linear functions [see Fig. 12(b)], the propa-
gation process of IBs becomes curved. In the case of periodic functions
[see Fig. 12(a)], IBs exhibit a periodically curved propagation process.
This result is consistent with the influence of background flows on the

FIG. 8. The density plots of the internal solitary waves and the velocity potentials with W10 ¼ 2. (a) W11 ¼ W12 ¼ sinðsÞ, (b) W11 ¼ W12 ¼ s, and (c) W11 ¼ W12 ¼ 2.
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dynamics of ISWs and shows that changes in background flows can
alter the temporal periodicity of IBs. Additionally, variations in the
velocity potentials during the propagation of IBs are displayed (see
Fig. 13), where the velocity potentials exhibit periodic characteristics
similar to those of IBs.

When d1 ¼ d2, we also consider cases when the variation terms
are periodic functions, linear functions, and their combination, result-
ing in four types of internal breather dynamics (see Fig. 14). The
dynamics in Figs. 14(a) and 14(b) are similar to those in Figs. 12(a)
and 12(b), caused by the fact that the background flows vary in a simi-
lar way over time. The combined forms of background flows also gen-
erate complex internal breather dynamics [see Figs. 14(c) and 14(d)],
which were rarely reported in previous studies. In the case, we can
observe that both the primary and minor variation terms have a signif-
icant impact on the IBs, and it is noted that under the same back-
ground flows, the dynamic behaviors of IBs within one cycle is similar
to that of ISWs, indicating a certain consistency in the influence of
background flows on IBs and ISWs. Figure 15 presents the corre-
sponding variations in velocity potentials. It is worth mentioning that
when the background flows are constant, ISWs and IBs we obtain are
consistent with IWs described by the constant-coefficient DS-type sys-
tem.19 These waves can also be regarded as high-dimensional forms of
solutions obtained from common low-dimensional internal wave

models such as the KdV and mKdV equations.16,18 In this scenario,
the background flows have no significant impact on the dynamics of
IWs. However, when the background flows vary with time, the propa-
gation characteristics of IWs are affected, exhibiting various dynamic
behaviors. These behaviors reveal the complex diversity of internal
wave motions.

Similar to the situation of ISWs, the background flows have no
effect on the amplitude of IBs (see Fig. 16). Although the background
flows shift the position of IBs, they continue to exhibit spatial periodic-
ity. Figure 17 shows the spatial morphology of IBs at different time,
accompanied by images of the velocity potentials in the upper and
lower layers. It is evident that the IBs maintain a highly consistent peri-
odicity characteristic with their velocity potentials. Next, by comparing
Figs. 18 and 19, we find that the corresponding velocity potentials of
IBs exhibits similar density structures. To verify this, the density maps
of IBs and velocity potentials are superimposed (see Fig. 20) to clearly
demonstrate the good agreement between them. This implies that we
can also use the velocity potential field to infer the propagation of IBs.
From Figs. 21(c), 21(d), and 21(g), it can be seen that IBs cause the
amplitude of IBs to appear periodically, and correspondingly, the
velocity potentials also exhibit periodic dramatic changes. Figures
21(a), 21(b), 21(e), and 21(f) show that in regions where no amplitude
appears for long durations, the changes in velocity potentials are

FIG. 9. The density plots of the internal solitary waves and the velocity potentials with d1 ¼ d2. (a) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ W11 ¼ W12 ¼ s, (c)
W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (d) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.
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FIG. 10. The velocity potential indirectly infers the dynamic behaviors of internal solitary waves. (a) W10 ¼ 2; W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ 2; W11 ¼ W12 ¼ s, (c)
W10 ¼ W11 ¼ W12 ¼ 2, (d) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (e) W10 ¼ W11 ¼ W12 ¼ s, (f) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (g) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.

FIG. 11. The velocity potential indirectly infers the appearance of internal solitary waves. (a) W10 ¼ 2; W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ 2; W11 ¼ W12 ¼ s, (c)
W10 ¼ W11 ¼ W12 ¼ 2, (d) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (e) W10 ¼ W11 ¼ W12 ¼ s, (f) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (g) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.
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relatively slow. Once the amplitude appears, the velocity potentials
change rapidly. Dashed lines signify the position of maximum ampli-
tude to clearly illustrate this correspondence. Notably, the IBs signifi-
cantly lose their temporal periodicity in Figs. 21(a), 21(b), 21(e), and
21(f), showing that the background flows disrupt the periodicity of the

IBs. The above results indicate that we can also indirectly infer the
characteristics of IBs based on the velocity potential field, and further
distinguish whether the types of waves generated in the fluid are
breathers or solitary waves based on the different characteristics of the
velocity potentials.

FIG. 13. The upper-layer velocity potential
/1 and the lower-layer velocity potential
/2 of the internal breathers with W10 ¼ 2.
(a) W11 ¼ W12 ¼ sinðsÞ, (b) W11 ¼ W12
¼ s, and (c) W11 ¼ W12 ¼ 2. For (d),
(e), and (f), the background flow parame-
ters are the same as those in (a), (b), and
(c), respectively.

FIG. 14. The dynamic behaviors of the internal breathers with d1 ¼ d2. (a) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ W11 ¼ W12 ¼ s, (c) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s,
and (d)W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.

FIG. 12. The dynamic behaviors of the
internal breathers with W10 ¼ 2. (a) W11
¼ W12 ¼ sinðsÞ, (b) W11 ¼ W12 ¼ s,
and (c) W11 ¼ W12 ¼ 2.
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C. Internal rogue waves

The phenomenon of oceanic rogue waves has attracted significant
attention due to its irregular and sudden nature. However, there are
relatively few physical models describing IRWs. In order to evaluate
the ability of Eqs. (35)–(37) to describe IRWs and to investigate the
influence of background flows, we choose

G ¼ neiaðsÞ
�
pxþ jpy� iXðsÞ � c1½ �

� pxþ jpyþ iXðsÞ þ c1½ � þ c2
�
;

F ¼ pxþ jpy� iXðsÞ½ � pxþ jpyþ iXðsÞ½ � þ c2;

(56)

where n, p, j, c1, and c2 are constants, while aðsÞ and XðsÞ are func-
tions solely dependent on s.

Substituting Eq. (56) into Eqs. (40), we obtain the solution for
IRWs

gð1Þ1 ¼ neiaðsÞ pxþjpy� iXðsÞ� c1½ � pxþjpyþ iXðsÞþ c1½ �þ c2
� �

pxþjpy� iXðsÞ½ � pxþjpyþ iXðsÞ½ �þ c2
;

(57)

where

c2 ¼
c21
4
; aðsÞ ¼

ð
c4ðsÞn2 þ c9ðsÞ

c1ðsÞ ds;

XðsÞ ¼
ð
2p2 c3ðsÞj2 þ c2ðsÞ
� �

c1c1ðsÞ
ds:

(58)

The solutions for the upper and lower velocity potentials are
given as follows:

/1 ¼ aðsÞ � 2p px þ jpyð Þ
px þ jpy � iXðsÞ½ � px þ jpy þ iXðsÞ½ � þ c21

4

þ A; (59)

/2 ¼ bðsÞ � 2p px þ jpyð Þ
px þ jpy � iXðsÞ½ � px þ jpy þ iXðsÞ½ � þ c21

4

þ B; (60)

where

aðsÞ ¼ n2c21 b2ðsÞa5ðsÞj2 þ b1ðsÞa5ðsÞ � b5ðsÞa3ðsÞ
� �

p2 �a2ðsÞb2ðsÞj4 � a2ðsÞb1ðsÞj2 � a1ðsÞb2ðsÞj2 þ b3ðsÞa3ðsÞ � a1ðsÞb1ðsÞ½ � ; (61)

FIG. 15. The upper-layer velocity potential /1 and the lower-layer velocity potential /2 of the internal breathers with d1 ¼ d2. (a) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (b)
W10 ¼ W11 ¼ W12 ¼ s, (c) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (d) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ. For (e), (f), (g), and (h), the background flow parameters are the
same as those in (a), (b), (c), and (d), respectively.

FIG. 16. The internal breathers at s¼ 0. Color in red:W10 ¼ W11 ¼ W12 ¼ sinðsÞ,
in blue:W10 ¼ W11 ¼ W12 ¼ s, and in green:W10 ¼ 2; W11 ¼ W12 ¼ sinðsÞ.
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FIG. 17. Evolution of an internal breather and velocity potentials in the (n, h) plane at time (a) s ¼ �15, (b) s¼ 0, and (c) s¼ 15, respectively.

FIG. 18. The density plots of the internal breathers and the velocity potentials with W10 ¼ 2. (a) W11 ¼ W12 ¼ sinðsÞ, (b) W11 ¼ W12 ¼ s, and (c) W11 ¼ W12 ¼ 2.
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FIG. 19. The density plots of the internal breathers and the velocity potentials with d1 ¼ d2. (a) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ W11 ¼ W12 ¼ s, (c)
W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (d) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.

FIG. 20. The velocity potential indirectly infers the dynamic behaviors of internal breathers. (a) W10 ¼ 2; W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ 2; W11 ¼ W12 ¼ s, (c)
W10 ¼ W11 ¼ W12 ¼ 2, (d) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (e) W10 ¼ W11 ¼ W12 ¼ s, (f) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (g) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.
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FIG. 21. The velocity potential indirectly infers the appearance of internal breathers. (a) W10 ¼ 2; W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ 2; W11 ¼ W12 ¼ s, (c)
W10 ¼ W11 ¼ W12 ¼ 2, (d) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (e) W10 ¼ W11 ¼ W12 ¼ s, (f) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, and (g) W10 ¼ s; W11 ¼ W12 ¼ sinðsÞ.

FIG. 22. The influence of background
flows on the internal rogue waves. Color
in red: W10 ¼ W11 ¼ W12 ¼ sinðsÞ, in
blue: W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, in
green: W10 ¼ W11 ¼ W12 ¼ s, and in
black:W10 ¼ 2; W11 ¼ W12 ¼ s.

FIG. 23. Dynamical behavior of the inter-
nal rogue wave and velocity potentials
with d1 ¼ d2; W10 ¼ W11 ¼ W12
¼ sinðsÞ. (a) The internal rogue wave, (b)
the upper-layer velocity potential /1, and
(c) the lower-layer velocity potential /2.
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bðsÞ ¼ n2c21 b5ðsÞa2ðsÞj2 þ b5ðsÞa1ðsÞ � b3ðsÞa5ðsÞ
� �

p2 �a2ðsÞb2ðsÞj4 � a2ðsÞb1ðsÞj2 � a1ðsÞb2ðsÞj2 þ b3ðsÞa3ðsÞ � a1ðsÞb1ðsÞ½ � : (62)

The conditions for describing IRWs with Eqs. (35)–(37) not only
require c8 ¼ 0 but also need to satisfy c7 ¼ 0 (which has been verified
to be feasible), indicating that additional limiting conditions may be
necessary for the occurrence of rogue waves. As shown in Fig. 22, when
the variations in the background flows are all periodic functions, IRWs
no longer appear near s¼ 0 but instead around s¼ 1. As the primary
variation in the background flows changes from sinðsÞ to 2 and then to
s, the duration of IRWs gradually increases. Different background flows
affect the time interval when IRWs occur. The appearance time and
duration of our IRWs vary due to changes in the background flows,
though they resemble the internal rogue wave solutions obtained from

the Gardner equation.17 In Fig. 23, we only provide images of IRWs
under a specific background flow [see Figs. 23(a)]. Compared to ISWs,
the amplitude of IRWs is about three times greater, which increases
energy and poses a serious threat to vessels and offshore structures.
Moreover, IRWs exhibit localization in specific time regions, indicating
significant energy concentration during propagation. This characteristic
is also reflected in the changes of the velocity potentials, which show
the impact of substantial energy accumulation on the surrounding fluid
dynamic environment [see Figs. 23(b) and 23(c)].

Given the increased physical constraints required to obtain
IRWs, and their sudden appearance and disappearance characteristics,

FIG. 24. Evolution of the internal rogue wave and velocity potentials in the (n, h)-plane at time (a) s ¼ �0:5, (b) s ¼ 0:95, and (c) s ¼ 1:3, respectively.

FIG. 25. The density plots of the internal rogue wave and the velocity potentials. (a) the internal rogue wave, (b) the upper-layer velocity potential /1, and (c) the lower-layer
velocity potential /2.
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FIG. 26. The velocity potential indirectly infers the dynamic behavior and appearance of the internal rogue wave. (a) the dynamic behaviors of the internal rogue wave and the
velocity potential; (b) n ¼ �20, (c) n ¼ �1:1, (d) n ¼ �0:9, and (e) n¼ 20.

FIG. 27. The patterns of the background flows. (a) W10 ¼ W11 ¼ W12 ¼ sinðsÞ, (b) W10 ¼ W11 ¼ W12 ¼ s, (c) W10 ¼ sinðsÞ; W11 ¼ W12 ¼ s, (d) W10 ¼ s; W11
¼ W12 ¼ sinðsÞ, (e) W10 ¼ 2; W11 ¼ W12 ¼ sinðsÞ, (f) W10 ¼ 2; W11 ¼ W12 ¼ s, and (g) W10 ¼ W11 ¼ W12 ¼ 2.
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capturing and detecting them becomes extremely challenging. In this
case, can we utilize the changes in velocity potentials to indirectly
detect IRWs? As shown in Fig. 24, images of IRWs at different time
are presented. At the moment when IRWs just appear and are about
to disappear [see Figs. 24(a) and 24(c)], the differences in velocity
potentials in space are not significant. However, at the moment when
the amplitude of the internal rogue wave reaches its peak [see
Fig. 24(b)], there are greater differences in velocity potentials. This sug-
gests a connection between the generation of large amplitudes and
velocity potentials. Figures 25 and 26(a) demonstrate that changes in
velocity potentials only occur in the region where IRWs appear.
Similarly, in the two-dimensional Figs. 26(b)–26(e), velocity potentials
do not changeover time when IRWs are absent, while in the time
region when IRWs occur, there are noticeable changes in velocity
potentials. Therefore, by monitoring changes in velocity potentials in
the flow field, we may be able to infer the existence and characteristics
of IRWs, thus better understand and utilize this complex fluid phe-
nomenon in practical applications.

Finally, we integrate all variations of the background flows and
provide images of the background flows under different patterns (see
Fig. 27). Although the characteristics of the background flows under
different modes are similar, for example, Figs. 27(b), 27(d), 27(f), and
27(g) exhibits linear characteristics, while Figs. 27(a), 27(c), and 27(e)
shows periodic characteristics, the degree to which IWs are affected
varies appreciably. Therefore, even minor changes in the background
flows can markedly affect the response of IWs, emphasizing the impor-
tance of understanding the background flows for the dynamic behavior
of IWs.

IV. CONCLUSIONS AND DISCUSSIONS

A novel variable-coefficient DS-type system is proposed for
describing internal wave phenomena in stratified fluids with back-
ground flows. Considering the time dependence of the background
flows, the system generates variable-coefficient terms and additional
terms. When the background flows are time-independent, the system
degenerates into a constant-coefficient form. We rely on this system to
investigate the effects of the background flows on the dynamic behav-
iors of internal waves. Furthermore, this system not only has the capa-
bility to describe various high-dimensional internal waves but also
captures the variations in the velocity potentials, aiding our investiga-
tion into the relation between the two.

We successfully derive precise solutions for ISWs, IBs, and IRWs,
and investigate the effects of different patterns of background flows on
IWs under two conditions: the primary variation terms of the back-
ground flows are constants, and the depths of the fluid upper and
lower layers are equal. The results reveal that when the background
flows are constant, the dynamical behaviors of ISWs and IBs align
with those described for internal waves in previous models. However,
when considering background flows with different temporal variations,
ISWs and IBs exhibit various distinct dynamical behaviors. Both the
primary and secondary variations significantly influence these behav-
iors, leading to irregular dynamic behaviors rarely reported before. In
addition, it is observed that the influence of background flows on the
dynamic behaviors of ISWs and IBs exhibits a certain consistency. At a
fixed moment in time, the background flows have no effect on the
amplitude of the ISWs and IBs, but change the spatial location where
the ISWs and IBs appear. As for IRWs, they are subject to stricter
physical constraints, with larger amplitudes and appearing only within

specific time intervals. Different background flow patterns can influ-
ence the appearance time and duration of IRWs, suggesting that back-
ground flows are involved in the temporal modulation of these waves.
This finding can aid in the prediction of IRWs. While past research
primarily focused on the influence of background flows on amplitude,
the above results emphasize that background flows also play a crucial
role in the dynamics of IWs.

The research suggests that velocity potentials can reflect the
dynamic behaviors of IWs under the influence of background flows
and indirectly infer the spatiotemporal locations where internal wave
amplitudes occur, thereby determining the type of IWs. This helps to
compensate for the limitations of satellite imaging technology, provid-
ing valuable insights for detecting and identifying internal wave phe-
nomena in practical applications. Additionally, with deep learning
showing tremendous potential in fields such as fluid dynamics, ocean-
ography, and atmospheric science, future research explores the appli-
cation of deep learning to obtain more internal wave solutions of
VCEDS system. Given the significant impact of background flows on
internal waves, we would also aim to integrate inverse problem techni-
ques from deep learning to discover parameters like background flow.
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APPENDIX: COEFFICIENTS
OF THE VARIABLE-COEFFICIENT EXTENDED
DS SYSTEM FOR INTERNAL WAVES

a1ðsÞ ¼ ðq1 � q2Þd1
dh UrdW10ðsÞ � Cg
� 	þ q1 UrdW10ðsÞ � Cg

� 	
d

; (A1)

a2ðsÞ ¼ ðq1 � q2Þd1
h UrdW10ðsÞ � Cg
� 	

d
; a3ðsÞ ¼ � q2 UrW20ðsÞd� Cg

� 	
d

;

(A2)
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a4ðsÞ ¼ � 12ðq1 � q2ÞUrdh3 W10ðsÞkUrd� xð Þ
UrdW10ðsÞ � Cg
� 	

d1 d21k2dþ 6h2
� 	

k
þ 36Urq1h

6 W10ðsÞkUrd� xð Þ2
d21 d21k2dþ 6h2
� 	2

k2
� 36Urq2h

6 W20ðsÞkUrd� xð Þ2
d22k2 d22k2dþ 6h2ð Þ2 ; (A3)

b1ðsÞ ¼ � ðq1 � q2Þd2
hd UrW20ðsÞd� Cg
� 	� q2 UrW20ðsÞd� Cg

� 	
d

; (A4)

b2ðsÞ ¼ � ðq1 � q2Þd2
h UrW20ðsÞd� Cg
� 	

d
; b3ðsÞ ¼

q1 UrdW10ðsÞ � Cg
� 	

d
; (A5)

b4ðsÞ ¼ 12ðq1 � q2ÞUrdh3 W20ðsÞkUrd� xð Þ
UrW20ðsÞd� Cg
� 	

d2k d22k2dþ 6h2
� 	 þ 36Urq1h

6 W10ðsÞkUrd� xð Þ2
d21 d21k2dþ 6h2
� 	2

k2
� 36Urq2h

6 W20ðsÞkUrd� xð Þ2
d22k2 d22k2dþ 6h2

� 	2 ; (A6)

c1ðsÞ ¼ 1
2
ðd21dh2q1 þ 2h2q1ÞR1ðsÞ � R2ðsÞq2

1
2
d22h

2dþ h2
� �

þ 1
d31dh3 þ 6d1h2k

6q1 UrW10ðsÞkdh2 � d21h
2d

2
þ h2

� �
x

� �
h3

þ 1
d32dh3 þ 6d2h2k

6q2 UrW20ðsÞkdh2 � x
1
2
d22h

2dþ h2
� �� �

h3; (A7)

c2ðsÞ ¼ �1
2
q1dð2kCg þxÞd21R1ðsÞþ1

2
dd22q2ð2kCg þxÞR2ðsÞþ UrW20ðsÞdh2�h2Cg �

kCg

2
þx

� �
kdd22

� �
q2F1ðsÞ

�

�q1 W10ðsÞUrdh
2�h2Cg � kCg

2
þx

� �
kd21d

� �
S1ðsÞ�W1ðsÞh2ðq1�q2Þþ

1
d31dk3þ 6d1h2k

�q1

�
UrW10ðsÞkdh2� d21h

2d
2

þh2
� �

x

�

� 6W10ðsÞW1ðsÞUrdh
3þ3R1ðsÞd31dk�6W1ðsÞh3Cg � 6S1ðsÞ d21h

2d
2

þh2
� �

d1

� �
� 1
d32dh3þ6d2h2k

� UrW20ðsÞkdh2�x
d22h

2d
2

þh2
� �� �

q2 �6W20ðsÞW1ðsÞUrdh
3þ3R2ðsÞd32dkþ6W1ðsÞh3Cg � 6

d22h
2d

2
þh2

� �
F1ðsÞd2

� �
;

(A8)

c3ðsÞ ¼�1
2
ðR1ðsÞd21q1 �R2ðsÞd22q2Þdx� 1

d31dk3þ 6d1h2k
q1

�
UrW10ðsÞkdh2�

�
d21h

2d
2

þ h2
�
x

��
R1ðsÞd31dk� 6

�
d21h

2d
6

þ h2
�
J1ðsÞd1

�

þ 1
d32dk3 þ 6d2h2k

�
UrW20ðsÞkdh2 �x

�
d22k

2d
2

þ h2
��

q2

�
R2ðsÞd32dk� 6J2ðsÞ

�
d22k

2d
6

þ h2
�
d2

�
; (A9)

c7ðsÞ ¼ Urdh
2q1W11ðsÞR1ðsÞ � Urdh

2q2W21ðsÞR2ðsÞ þ F1ðsÞW21ðsÞUrdh
2kq2 �

�
UrW20ðsÞdh2 � h2Cg �

�
1
2
kCg þ x

�
kdd22

�
q2F2ðsÞ

� S1ðsÞW11ðsÞUrdh
2kq1 þ q1

�
W10ðsÞUrdh

2 � h2Cg �
�
1
2
kCg þ x

�
kd21d

�
S2ðsÞ þ h2W2ðsÞðq1 � q2Þ

þ 1
d31dh3 þ 6d1h2k

q1

�
UrW10ðsÞkdh2 �

�
1
2
d21k

2dþ h2
�
x

��
� 6dUrh

3ðW1ðsÞk� 1ÞW11ðsÞ þ 6h3W2ðsÞUrdW10ðsÞ

� 6h3CgW2ðsÞ � 6S2ðsÞ
�
1
2
d21h

2dþ h2
�
d1

�
� 1
d32dh3 þ 6d2h2k

�
UrW20ðsÞkdh2 � x

�
1
2
d22h

2dþ h2
��

q2

�
�
6dUrh

3ðW1ðsÞk� 1ÞW21ðsÞ � 6h3W2ðsÞUrdW20ðsÞ þ 6h3CgW2ðsÞ � 6

�
1
2
d22h

2dþ h2
�
F2ðsÞd2

�
; (A10)

c4ðsÞ ¼
� �1
d31dk3 þ 6d1h2k

6q1

�
UrW10ðsÞkdh2 �

�
d21dh

2

2
þ h2

�
x

�
h3dR1ðsÞUrkþ �1

d32dh3 þ 6d2h2k
6

�
UrW20ðsÞkdh2

� x

�
d22h

2d
2

þ h2
��

q2dUrR2ðsÞkh3
�
B3ðsÞ þ �1

d31dk3 þ 6d1h2k
6q1

�
UrW10ðsÞkdh2 �

�
d21dh

2

2
þ h2

�
x

�
h3P1ðsÞkUrd

þ �1
d32dk3 þ 6d2h2k

6

�
UrW20ðsÞkdh2 � x

�
d22h

2d
2

þ h2
��

q2M1ðsÞkUrdh
3 � R1ðsÞP1ðsÞUrdh

2kq1 þ R2ðsÞM1ðsÞUrdh
2kq2

þ �1
d31dk3 þ 6d1h2k

6q1

�
UrW10ðsÞkdh2 �

�
d21dh

2

2
þ h2

�
x

�
R1ðsÞG1ðsÞUrdh

3k

þ �1
d32dk3 þ 6d2h2k

6

�
UrW20ðsÞkdh2 � x

�
d22h

2d
2

þ h2
��

q2R2ðsÞG1ðsÞUrdh
3k; (A11)
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c5ðsÞ ¼
�6q1 UrW10ðsÞkdh2 � d21dh

2

2
þ h2

� �
x

� �
h3dR1ðsÞUrk

d31dk3 þ 6d1h2k
þ
�6 UrW20ðsÞkdh2 � x

d22h
2d

2
þ h2
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q2dUrR2ðsÞkh3

d32dk3 þ 6d2h2k

0
B@

1
CA
B1ðsÞ

� UrdR1ðsÞq1h2kþ
�6q1 UrW10ðsÞkdh2 � d21dh

2

2
þ h2

� �
x

� �
h3dUrk

d31dk3 þ 6d1h2k
; (A12)

c6ðsÞ ¼
�6q1 UrW10ðsÞkdh2 � d21dk

2

2
þ h2

� �
x

� �
h3dR1ðsÞUrk

d31dh3 þ 6d1h2k
þ
�6 UrW20ðsÞkdh2 � x

d22k
2d
2

þ h2
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q2dUrR2ðsÞkh3

d32dk3 þ 6d2h2k

0
B@

1
CA
B2ðsÞ

þ UrdR2ðsÞq2h2kþ
�6 UrW20ðsÞkdh2 � x

d22h
2d

2
þ h2

� �� �
q2dUrkh3

d32dk3 þ 6d2h2k
; (A13)

c8ðsÞ ¼ 1
2
d21dh

2q1 þ h2q1

� �
d
ds

R1ðsÞ
� �

þ � 1
2
d22k

2dq2 � h2q2

� �
d
ds

R2ðsÞ
� �

; (A14)

c9ðsÞ ¼ UrdðF2ðsÞW21ðsÞq2�W12ðsÞq1R1ðsÞ þW22ðsÞq2R2ðsÞ � S2ðsÞW11ðsÞq1Þh2k

�
6q1 UrW10ðsÞkdh2 � 1

2
d21dk

2 þ h2
� �

x

� �
h3dðW2ðsÞW11ðsÞ þW12ðsÞÞUrk

d31dk3 þ 6d1h2k

�
6 UrW20ðsÞkdh2 � x

1
2
d22k

2dþ h2
� �� �

q2dUrðW2ðsÞW21ðsÞ þW22ðsÞÞkh3

d32dk3 þ 6d2h2k
; (A15)

W1ðsÞ ¼ ð1296d2ð�ð1=6Þd21k2d þ h2ÞU2
r k

2q1ðð1=6Þd22k2d þ h2Þ2d2h3W10ðsÞ2
� 2592d2Urk

2ðð1=24Þd2Cgk
4d41 þ ð5=12Þh2dCgk

2d21 þ ð1=6Þh2dxkd21
þ h4CgÞq1ðð1=6Þd22k2d þ h2Þ2dhW10ðsÞ þ 1296U2

r k
2ð�ð1=6Þd22k2d

þ h2Þd1d2ðð1=6Þd21k2d þ h2Þ2h3q2W20ðsÞ2 � 2592Urk
2d1dðð1=6Þd21k2d

þ h2Þ2hq2ðð1=24Þd2Cgk
4d42 þ ð5=12Þh2dCgk

2d22 þ ð1=6Þh2dxkd22 þ h4CgÞW20ðsÞ
þ d52d

5
1d

4ðq1 � q2Þk10 þ 6d42ðd1q2 þ d2q1ÞCgd
4
1xd

4hk9 þ 12d32ððd21 þ d22Þðq1 � q2Þh
� ð1=4Þdx2d1d2ðd1q2 þ d2q1ÞÞd31d3hk8 þ 48d22Cgðd31q2 þ ðð3=2Þðd21ÞÞd2q1
þ ðð3=2Þd1Þd22q2 þ d32q1Þd21xd3h3k7 þ 36d2d1d

2ððd41 þ 4d21d
2
2 þ d42Þðq1 � q2Þh

� dx2d21d
2
2ðd1q1 þ d2q2ÞÞh3k6 þ ð72ðd51q2 þ 3d41d2q1 þ 8d31d

2
2q2 þ 8d21d

3
2q1

þ 3d1d
4
2q2 þ d52q1ÞÞCgxd

2h5k5 þ ð432ðd1d2ðd21 þ d22Þðq1 � q2Þh
� ð1=12Þdx2ðd51q2 þ 3d41d2q1 þ 3d1d

4
2q2 þ d52q1ÞÞÞdh5k4 þ ð864ðd31q2 þ 2d21d2q1

þ 2d1d
2
2q2 þ d32q1ÞÞCgxdh

7k3 þ ð1296ðd1d2ðq1 � q2Þh � ð1=3Þdx2ðd31q2
þ d32q1ÞÞÞh7k2 þ ð2592ðd1q2 þ d2q1ÞÞCgxh

9k � ð1296ðd1q2 þ d2q1ÞÞx2h9Þ=
ðð1296ðð1=6Þd21k2d þ h2ÞÞðð1=6Þd22k2d þ h2Þkðh3d2k2U2

r d2q1ðð1=6Þd22k2d
þ h2ÞW10ðsÞ2 � 2d2Urðð1=4Þd21k2d þ h2Þkq1ðð1=6Þd22k2d þ h2ÞxdhW10ðsÞ
þ h3d2k2U2

r d1q2ðð1=6Þd21k2d þ h2ÞW20ðsÞ2 � 2Urkd1xðð1=4Þd22k2d
þ h2Þdðð1=6Þd21k2d þ h2Þhq2W20ðsÞ þ ð1=36Þd31d32d2k6ðq1 � q2Þ þ ð1=6Þd2ððd21
þ d22Þðq1 � q2Þh þ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞd1dhk4 þ ðd1d2ðq1 � q2Þh
þ ð1=6Þdx2ðd31q2 þ 3d21d2q1 þ 3d1d

2
2q2 þ d32q1ÞÞh3k2 þ h5x2ðd1q2 þ d2q1ÞÞÞ; (A16)

R1ðsÞ ¼ 6h3ðUrW10ðsÞkd� xÞ
d1ðd21dk2 þ 6h2Þk ; R2ðsÞ ¼ � 6h3ðUrW20ðsÞkd� xÞ

d2kðd22dk2 þ 6h2Þ ; (A17)

J1ðsÞ ¼ 2h2

2UrW10ðsÞkdh2 � xd21k2d� 2xh2
; J2ðsÞ ¼ 2h2

2UrW20ðsÞkdh2 � xd22k2d� 2xh2
; (A18)
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W2ðsÞ ¼ �2Urkdhðh2dW11ðsÞkUrd2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ þ h2dW21ðsÞ
� kUrd1q2ðð1=6Þd21k2dþ h2ÞW20ðsÞ � xðd2ðð1=4Þd21k2dþ h2Þq1ðð1=6Þd22k2d
þ h2ÞW11ðsÞ þ d1W21ðsÞðð1=4Þd22k2dþ h2Þðð1=6Þd21k2dþ h2Þq2ÞÞ=
ðh3d2k2U2

r d2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ2 � 2d2Urðð1=4Þd21k2dþ h2Þkq1ðð1=6Þd22k2d
þ h2ÞxdhW10ðsÞ þ h3d2k2U2

r d1q2ðð1=6Þd21k2dþ h2ÞW20ðsÞ2 � 2Urkd1xðð1=4Þd22k2d
þ h2Þdðð1=6Þd21k2dþ h2Þhq2W20ðsÞ þ ð1=36Þd31d32d2k6ðq1 � q2Þ þ ð1=6Þd2ððd21
þ d22Þðq1 � q2Þhþ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞd1dhk4 þ ðd1d2ðq1 � q2Þh
þ ð1=6Þdx2ðd31q2 þ 3d21d2q1 þ 3d1d

2
2q2 þ d32q1ÞÞh3k2 þ h5x2ðd1q2 þ d2q1ÞÞ; (A19)

S2ðsÞ ¼ �Urdðh3d2W11ðsÞk2U2
r d2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ2

þ ð2ðh2dW21ðsÞkUrd1q2ðð1=6Þd21k2dþ h2ÞW20ðsÞ � ðh2d2q1ðð1=6Þd22k2dþ h2ÞW1;1ðsÞ
þ d1W21ðsÞðð1=4Þd22k2dþ h2Þðð1=6Þd21k2dþ h2Þq2ÞxÞÞUrkdhW10ðsÞ
� U2

r W1;1ðsÞk2d1d2ðð1=6Þd21k2dþ h2Þh3q2W20ðsÞ2 þ 2Urkd1ððð1=4Þd22k2dþ h2ÞW1;1ðsÞ
� h2W21ðsÞÞxdðð1=6Þd21k2dþ h2Þhq2W20ðsÞ þ ð�ð1=36Þd31d32d2k6ðq1 � q2Þ
� ð1=6Þd2ððd21 þ d22Þðq1 � q2Þhþ ð1=2Þdx2d21d2q2Þd1dhk4 � ðd1d2ðq1 � q2Þh
þ ð1=6Þdx2ðd31q2 þ 3d1d

2
2q2 � d32q1ÞÞh3k2 � h5x2ðd1q2 � d2q1ÞÞW1;1ðsÞ

þ 2d1W21ðsÞx2ðð1=4Þd22k2dþ h2Þðð1=6Þd21k2dþ h2Þhq2Þh3=ððh3d2k2U2
r d2q1

� ðð1=6Þd22k2dþ h2ÞW10ðsÞ2 � 2d2Urðð1=4Þd21k2dþ h2Þkq1ðð1=6Þd22k2dþ h2ÞxdhW10ðsÞ
þ h3d2k2U2

r d1q2ðð1=6Þd21k2dþ h2ÞW20ðsÞ2 � 2Urkd1xðð1=4Þd22k2dþ h2Þdðð1=6Þd21k2d
þ h2Þhq2W20ðsÞ þ ð1=36Þd31d32d2k6ðq1 � q2Þ þ ð1=6Þd2ððd21 þ d22Þðq1 � q2Þh
þ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞd1dhk4 þ ðd1d2ðq1 � q2Þhþ ð1=6Þdx2ðd31q2 þ 3d21d2q1
þ 3d1d

2
2q2 þ d32q1ÞÞh3k2 þ h5x2ðd1q2 þ d2q1ÞÞd1ðð1=6Þd21k2dþ h2ÞÞ; (A20)

S1ðsÞ ¼ �ð�d2U
3
r k

2q1ðð1=6Þd22k2dþ h2Þ2d3h3W10ðsÞ3 þ 2d2ðð1=2ÞkCg þ xÞU2
r kq1

� ðð1=6Þd22k2dþ h2Þ2ðð1=2Þd21k2dþ h2Þd2hW10ðsÞ2 þ Urð�U2
r k

2d1ðð1=36Þd2k4d21d22
þ ð1=2Þðd21 � ð1=3Þd22Þdh2k2 þ h4Þd2h3q2W20ðsÞ2 þ ð2ðð1=144Þd21d42d3k6Cg þ ð1=72Þ
� d21d

4
2d

3k5xþ ð1=72Þð5ðd21 þ 3d22ð1=5ÞÞÞd22Cgd
2h2k4 þ ð1=6Þd21d22d2h2k3xþ ð1=6ÞCgðd21

þ 5d22ð1=2ÞÞdh4k2 þ ð1=3Þðd21 þ ð1=2Þd22Þxdh4kþ h6CgÞÞUrk
2d1dhq2W20ðsÞ

� ð1=72Þd3d31d52ðq1 � q2Þk8 � ð1=36Þd21d42d3hxCgðd1q2 þ d2q1Þk7 � ð1=6Þd32ððd21
þ ð1=6Þd22Þðq1 � q2Þhþ ð1=12Þdx2d1d2ðd1q2 þ 4d2q1ÞÞd1d2hk6 � 2d22ðd31q2
þ ðð3=2Þðd21ÞÞd2q1 þ ðð3=4Þd1Þd22q2 þ ð1=4Þd32q1ÞCgxd

2h3k5ð1=9Þ � ð1=2Þd2ððd21
þ 2d22ð1=3ÞÞd1ðq1 � q2Þhþ ð1=9Þð4ðd31q2 þ 3d21d2q1 � ð3=8d1Þd22q2
þ ð1=8Þd32q1ÞÞd2x2dÞdh3k4 � ð1=3Þdh5xCgðd31q2 þ 3d21d2q1 þ 4d1d

2
2q2 þ 2d32q1Þk3

� ðd1d2ðq1 � q2Þhþ ð1=6Þdx2ðd31q2 þ 12d21d2q1 þ 2d32q1ÞÞh5k2 � 2h7xCgðd1q2
þ d2q1Þkþ h7x2ðd1q2 � d2q1ÞÞdW10ðsÞ þ 2U2

r kð�ð1=72Þd21d22d2k5Cg

þ ð1=36Þd2xk4d21d22 � ð1=12Þh2dCgðd21 þ d22Þk3 þ ð1=3Þh2dxk2d21 � ð1=2Þh4kCg

þ h4xÞd1d2h3q2W20ðsÞ2 � 2Urðð1=48Þd21d42d3k6 þ 17d22ðd21 þ 3d22ð1=17ÞÞd2h2k4ð1=72Þ
þ ð1=2Þðd21 þ 7d22ð1=6ÞÞdh4k2 þ h6Þd1x2dhq2W20ðsÞ � ð1=216Þd3d31d52Cgðq1 � q2Þk8

þ ð1=54Þd3d31d52xðq1 � q2Þk7 � ð1=18Þd32Cgd1d
2ððd21 þ ð1=2Þd22Þðq1 � q2Þh

� ð1=4Þdx2d1d2ðd1q2 þ d2q1ÞÞhk6 þ 2d32ððd21 þ ð1=4Þd22Þðq1 � q2Þhþ ð1=8Þdx2d1d2ðd1q2
þ d2q1ÞÞd1xd2hk5ð1=9Þ � ð1=6Þd2ðd1ðd21 þ 2d22Þðq1 � q2Þh� 2d2ðd31q2 þ ðð3=2Þðd21ÞÞd2q1
þ ðð3=4Þd1Þd22q2 þ ð1=4Þd32q1Þx2dð1=3ÞÞCgdh

3k4 þ 2d2ððd21 þ d22Þðq1 � q2Þh
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þ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞd1xdh3k3ð1=3Þ � Cgðd1d2ðq1 � q2Þh� ð1=6Þdx2ðd31q2
þ 3d21d2q1 þ 4d1d

2
2q2 þ 2d32q1ÞÞh5k2 þ 2d1xðd2ðq1 � q2Þhþ ð1=6Þdx2ðd21q2 þ 3d1d2q1

þ 2d22q2ÞÞh5kþ h7x2Cgðd1q2 þ d2q1ÞÞh3=ððh3d2k2U2
r d2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ2

� 2d2Urðð1=4Þd21k2dþ h2Þkq1ðð1=6Þd22k2dþ h2ÞxdhW10ðsÞ þ h3d2k2U2
r d1q2ðð1=6Þd21k2d

þ h2ÞW20ðsÞ2 � 2Urkd1xðð1=4Þd22k2dþ h2Þdðð1=6Þd21k2dþ h2Þhq2W20ðsÞ
þ ð1=36Þd31d32d2k6ðq1 � q2Þ þ ð1=6Þd2ððd21 þ d22Þðq1 � q2Þhþ ð1=2Þdx2d1d2ðd1q2
þ d2q1ÞÞd1dhk4 þ ðd1d2ðq1 � q2Þhþ ð1=6Þdx2ðd31q2 þ 3d21d2q1 þ 3d1d

2
2q2 þ d32q1ÞÞh3k2

þ h5x2ðd1q2 þ d2q1ÞÞðð1=6Þd21k2dþ h2Þðð1=6Þd22k2dþ h2Þkd1Þ; (A21)

F1ðsÞ ¼ h3ð�U3
r k

2d1d
3ðð1=6Þd21k2dþ h2Þ2h3q2W20ðsÞ3 þ ð2ðð1=2ÞkCg þ xÞÞU2

r kðð1=2Þd22k2d
þ h2Þd1d2ðð1=6Þd21k2dþ h2Þ2hq2W20ðsÞ2 � Urðd2U2

r k
2ðð1=36Þd2k4d21d22 � ð1=6Þdh2ðd21

� 3d22Þk2 þ h4Þq1d2h3W10ðsÞ2 � 2d2Urk
2q1ðð1=144Þd41d22d3k6Cg þ ð1=72Þd41d22d3k5x

þ ð1=24Þðd21 þ 5d22ð1=3ÞÞCgd
2
1d

2h2k4 þ ð1=6Þd21d22d2h2k3xþ 5Cgdðd21
þ 2d22ð1=5ÞÞh4k2ð1=12Þ þ ð1=6Þdh4xðd21 þ 2d22Þkþ h6CgÞdhW10ðsÞ þ ð1=72Þd3d51d32ðq1
� q2Þk8 þ ð1=36Þd41d22d3hxCgðd1q2 þ d2q1Þk7 þ ð1=36Þd2d31ððd21 þ 6d22Þðq1 � q2Þh
þ 2d2d1ðd1q2 þ ð1=4Þd2q1Þx2dÞd2hk6 þ ð1=18Þd21d2h3xCgðd31q2 þ 3d21d2q1 þ 6d1d

2
2q2

þ 4d32q1Þk5 þ ð1=3Þðd2ðd21 þ 3d22ð1=2ÞÞðq1 � q2Þhþ ð1=12Þd1dx2ðd31q2 � 3d21d2q1

þ 24d1d
2
2q2 þ 8d32q1ÞÞd1dh3k4 þ ð1=3Þð2ðd31q2 þ 2d21d2q1 þ ðð3=2Þd1Þd22q2

þ ð1=2Þd32q1ÞÞCgxdh
5k3 þ ðd1d2ðq1 � q2Þhþ ð1=3Þðd31q2 þ 6d1d

2
2q2

þ ð1=2Þd32q1Þx2dÞh5k2 þ 2h7xCgðd1q2 þ d2q1Þkþ h7x2ðd1q2 � d2q1ÞÞdW20ðsÞ
þ 2d2U

2
r kq1ð�ð1=72Þd21d22d2k5Cg þ ð1=36Þd2xk4d21d22 � ð1=12Þh2dCgðd21 þ d22Þk3

þ ð1=3Þh2dxk2d22 � ð1=2Þh4kCg þ h4xÞd2h3W10ðsÞ2 � 2d2Urq1ðð1=48Þd41d22d3k6

þ ð1=24Þðd21 þ 17d22ð1=3ÞÞd21d2h2k4 þ 7dðd21 þ 6d22ð1=7ÞÞh4k2ð1=12Þ þ h6Þx2dhW10ðsÞ
� ð1=216Þd51d32d3Cgðq1 � q2Þk8 þ ð1=54Þd51d32d3xðq1 � q2Þk7 � ð1=36Þd2ððd21 þ 2d22Þðq1
� q2Þh� ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞCgd

3
1d

2hk6 þ ð1=18Þd2d31xd2hððd21 þ 4d22Þðq1
� q2Þhþ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞk5 � ð1=3Þðd2ðd21 þ ð1=2Þd22Þðq1 � q2Þh
� ð1=12Þd1dx2ðd31q2 þ 3d21d2q1 þ 6d1d

2
2q2 þ 4d32q1ÞÞCgd1dh

3k4 þ 2d2ððd21 þ d22Þðq1
� q2Þhþ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞd1xdh3k3ð1=3Þ � Cgðd1d2ðq1 � q2Þh
� ð1=3Þðd31q2 þ 2d21d2q1 þ ðð3=2Þd1Þd22q2 þ ð1=2Þd32q1Þx2dÞh5k2 þ 2d2ðd1ðq1 � q2Þh
þ ð1=3Þðd21q1 þ ðð3=2Þd1Þd2q2 þ ð1=2Þd22q1Þx2dÞxh5kþ h7x2Cgðd1q2 þ d2q1ÞÞ=
ðd2kðh3d2k2U2

r d2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ2 � 2d2Urðð1=4Þd21k2d
þ h2Þkq1ðð1=6Þd22k2dþ h2ÞxdhW10ðsÞ þ h3d2k2U2

r d1q2ðð1=6Þd21k2dþ h2ÞW20ðsÞ2

� 2Urkd1xðð1=4Þd22k2dþ h2Þdðð1=6Þd21k2dþ h2Þhq2W20ðsÞ þ ð1=36Þd31d32d2k6ðq1
� q2Þ þ ð1=6Þd2ððd21 þ d22Þðq1 � q2Þhþ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞd1dhk4 þ ðd1d2ðq1
� q2Þhþ ð1=6Þdx2ðd31q2 þ 3d21d2q1 þ 3d1d

2
2q2 þ d32q1ÞÞh3k2 þ h5x2ðd1q2

þ d2q1ÞÞðð1=6Þd22k2dþ h2Þðð1=6Þd21k2dþ h2ÞÞ; (A22)
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M1ðsÞ ¼ ððð3d2ð1=2Þ þ d1Þh4 þ ð1=3Þdk2ðd31 þ ð3=2ðd21ÞÞd2 þ 3=4ðd32ÞÞh2 þ ð1=36Þd2k4d21
� ðd31 þ 3d32ÞÞðð1=6Þd22k2dþ h2Þd2q1d2h3U2

r k
2W10ðsÞ2 � ð2ðð1=6Þd22k2dþ h2ÞÞd2q1ðð3d2ð1=2Þ

þ d1Þh6 þ ð1=3Þð4ðd31 þ ðð9=8Þðd21ÞÞd2 þ 3=16ðd32ÞÞÞdk2h4 þ 13d2k4ðd31 þ ð6=13ðd21ÞÞd2
þ 9=13ðd32ÞÞd21h2ð1=36Þ þ ðð1=36Þd71 þ ð1=36Þd41d32Þd3k6ÞdhUrkxW10ðsÞ
� ð1=2Þð2d21k2dð1=3Þ þ h2Þd2h3U2

r ðð1=6Þd21k2dþ h2Þ2q2k2d21W20ðsÞ2 þ ð2d21k2dð1=3Þ
þ h2Þdh3Urðð1=6Þd21k2dþ h2Þ2q2kd21xW20ðsÞ � ð1=2Þx2ðd21q2 � 2d1d2q1 � 3d22q1Þh9

þ k2d21d2ðq1 � q2Þh8 � ð1=2Þðd41q2 � ðð14=3Þðd31ÞÞd2q1 � 5d21d
2
2q1 � ð1=3Þd1d32q1

� d42q1Þx2k2dh7 þ ðd21 þ ð1=6Þd22Þd21k4ðq1 � q2Þd2dh6 � ð1=8Þðd61q2 � ðð50=9Þðd51ÞÞd2q1
� ð8=3ðd41ÞÞd22q1 � ð28=9ðd31ÞÞd32q1 � ð20=3ðd21ÞÞd42q1 � ð1=3Þd62q1Þx2k4d2h5

þ ð1=4Þd41ðd21 þ 2d22ð1=3ÞÞk6ðq1 � q2Þd2d2h4 � ð1=108Þd21x2k6ðd61q2 � 6d51d2q1

� ð25=2ðd31ÞÞd32q1 � 12d21d
4
2q1 � ðð15=2Þðd62ÞÞq1Þd3h3 þ ð1=54Þd61ðd21 þ 9d22ð1=4ÞÞk8ðq1

� q2Þd2d3h2 þ ð1=108Þd41d32d4k8x2q1ðd1 þ d2Þðd21 � d1d2 þ d22Þhþ ð1=324Þd81d32d4k10ðq1
� q2ÞÞðUrW20ðsÞkd� xÞdh6Ur=ððð1=6Þd22k2dþ h2Þ2d22ðð1=6Þd21k2d
þ h2Þ2ðh3d2k2U2

r d1q2ð2d21k2dð1=3Þ þ h2ÞW20ðsÞ2 � ð2ð2d21k2dð1=3Þ þ h2ÞÞdhðd22dk2

þ h2ÞUrq2kd1xW20ðsÞ þ h3d2k2U2
r d2q1ð2d22k2dð1=3Þ þ h2ÞW10ðsÞ2

� 2d2ð2d22k2dð1=3Þ þ h2Þq1dhUrðd21dk2 þ h2ÞkxW10ðsÞ þ h5x2ðd1q2 þ d2q1Þ
þ k2d1d2ðq1 � q2Þh4 þ 2dx2k2ðd31q2 þ 3d21d2q1 þ 3d1d

2
2q2 þ d32q1Þh3ð1=3Þ

þ 2dk4d1d2ðd21 þ d22Þðq1 � q2Þh2ð1=3Þ þ 4d2x2k4d21d
2
2ðd1q2 þ d2q1Þhð1=3Þ þ 4d31d

3
2d

2k6ðq1 � q2Þð1=9ÞÞkd1Þ; (A23)

F2ðsÞ ¼ �h3Urð�U2
r k

2d1W21ðsÞd2ðð1=6Þd21k2dþ h2Þh3q2W20ðsÞ2

� 2Urkðdh2W11ðsÞkUrd2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ � ðh2d1q2ðð1=6Þd21k2d
þ h2ÞW21ðsÞ þ d2ðð1=4Þd21k2dþ h2Þq1ðð1=6Þd22k2dþ h2ÞW11ðsÞÞxÞdhW20ðsÞ
þ h3d2W21ðsÞk2U2

r d2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ2 þ 2d2Urkq1ðð1=6Þd22k2d
þ h2Þxdhðð�ð1=4Þd21k2d� h2ÞW21ðsÞ þ h2W11ðsÞÞW10ðsÞ þ ðð1=36Þd31d32d2k6ðq1
� q2Þ þ ð1=6Þd2ððd21 þ d22Þðq1 � q2Þhþ ð1=2Þdx2d1d

2
2q1Þd1dhk4 þ ðd1d2ðq1 � q2Þh

� ð1=6Þdx2ðd31q2 � 3d21d2q1 � d32q1ÞÞh3k2 � h5x2ðd1q2 � d2q1ÞÞW21ðsÞ
� 2d2ðð1=4Þd21k2dþ h2Þq1ðð1=6Þd22k2dþ h2ÞW11ðsÞx2hÞd=
ðd2ðh3d2k2U2

r d2q1ðð1=6Þd22k2dþ h2ÞW10ðsÞ2 � 2d2Urðð1=4Þd21k2d
þ h2Þkq1ðð1=6Þd22k2dþ h2ÞxdhW10ðsÞ þ h3d2k2U2

r d1q2ðð1=6Þd21k2dþ h2ÞW20ðsÞ2

� 2Urkd1xðð1=4Þd22k2dþ h2Þdðð1=6Þd21k2dþ h2Þhq2W20ðsÞ þ ð1=36Þd31d32d2k6ðq1
� q2Þ þ ð1=6Þd2ððd21 þ d22Þðq1 � q2Þhþ ð1=2Þdx2d1d2ðd1q2 þ d2q1ÞÞd1dhk4

þ ðd1d2ðq1 � q2Þhþ ð1=6Þdx2ðd31q2 þ 3d21d2q1 þ 3d1d
2
2q2 þ d32q1ÞÞh3k2

þ h5x2ðd1q2 þ d2q1ÞÞðð1=6Þd22k2dþ h2ÞÞ; (A24)

B1ðsÞ ¼ �q1ðUrdW10ðsÞ � CgÞ
q1 � q2

; B2ðsÞ ¼ q2ðUrdW20ðsÞ � CgÞ
q1 � q2

;

B3ðsÞ ¼ 1
q1 � q2

12Urdkh5ðW10ðsÞUrdk� xÞ
d1kðd21k2dþ 6h2Þð2W10ðsÞUrdkh2 � xd21k2d� 2xh2Þ þ

12Urdkh5ðW20ðsÞUrdk� xÞ
d2kðd22k2dþ 6h2Þð2W20ðsÞUrdkh2 � xd22k2d� 2xh2Þ

" #
;

(A25)
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P1ðsÞ ¼ �ð�3d2h3U2
r ðð1=6Þd21k2dþ h2Þq2k2d1ððd1 þ 2d2ð1=3ÞÞh4 þ ð1=6Þdðd31 þ 2d1d

2
2

þ 4=3ðd32ÞÞk2h2 þ ð1=18Þd22d2ðd31 þ ð1=3Þd32Þk4ÞW20ðsÞ2 þ 6dhUrððd1 þ 2d2ð1=3ÞÞh6

þ ð1=6Þdk2ðd31 þ 6d1d
2
2 þ 16=3ðd32ÞÞh4 þ ð1=6Þd22d2ðd31 þ ðð2=3Þd1Þd22 þ ð13=9Þðd32ÞÞk4h2

þ ðð1=54Þd31d42 þ ð1=54Þd72Þd3k6Þðð1=6Þd21k2dþ h2Þq2kd1xW20ðsÞ þ ðð1=6Þd22k2d

þ h2Þ2d22ð2d22k2dð1=3Þ þ h2Þq1d2h3U2
r k

2W10ðsÞ2 � 2ðð1=6Þd22k2dþ h2Þ2d22ð2d22k2dð1=3Þ
þ h2Þq1dh3UrkxW10ðsÞ � 3x2ðq2d21 þ ðð2=3Þd1Þd2q2 � ð1=3Þd22q1Þh9 � 2k2d1d

2
2ðq1 � q2Þh8

� x2k2ðd41q2 þ ð1=3Þd31d2q2 þ 5d21d
2
2q2 þ ðð14=3Þd1Þd32q2 � d42q1Þdh7 � ð1=3Þdk4d1d22ðd21

þ 6d22Þðq1 � q2Þh6 � ð1=12Þðd61q2 þ 20d41d
2
2q2 þ ðð28=3Þðd31ÞÞd32q2 þ 8d42d

2
1q2 þ ðð50=3Þd1Þd52q2

� 3d62q1Þx2k4d2h5 � ð1=3Þd1k6ðq1 � q2Þðd21 þ 3d22ð1=2ÞÞd42d2h4 � ð1=36Þð5ðd61q2
þ ðð8=5Þðd41ÞÞd22q2 þ ðð5=3Þðd31ÞÞd32q2 þ ðð4=5Þd1Þd52q2 � ðð2=15Þðd62ÞÞq1ÞÞx2k6d22d

3h3

� ð1=12Þd1k8ðq1 � q2Þd62ðd21 þ 4d22ð1=9ÞÞd3h2 � ð1=54Þd31d42d4k8x2q2ðd1 þ d2Þðd21
� d1d2 þ d22Þh� ð1=162Þd31d82d4k10ðq1 � q2ÞÞðUrW10ðsÞkd� xÞdh6Ur=ð2ðð1=6Þd22k2d

þ h2Þ2d2ðð1=6Þd21k2dþ h2Þ2ðh3d2k2U2
r d1q2ð2d21k2dð1=3Þ þ h2ÞW20ðsÞ2 � ð2ð2d21k2dð1=3Þ

þ h2ÞÞdhðd22dk2 þ h2ÞUrq2kd1xW20ðsÞ þ h3d2k2U2
r d2q1ð2d22k2dð1=3Þ þ h2ÞW10ðsÞ2

� 2d2ð2d22k2dð1=3Þ þ h2Þq1dhUrðd21dk2 þ h2ÞkxW10ðsÞ þ h5x2ðd1q2 þ d2q1Þ þ k2d1d2ðq1
� q2Þh4 þ 2dx2k2ðd31q2 þ 3d21d2q1 þ 3d1d

2
2q2 þ d32q1Þh3ð1=3Þ þ 2dk4d1d2ðd21 þ d22Þðq1

� q2Þh2ð1=3Þ þ 4d2x2k4d21d
2
2ðd1q2 þ d2q1Þhð1=3Þ þ 4d31d

3
2d

2k6ðq1 � q2Þð1=9ÞÞkd21Þ; (A26)

G1ðsÞ ¼ �3dh4Urððð1=6Þd22k2dþ h2Þ2d22ð2d22k2dð1=3Þ þ h2Þq1d2ðð1=3Þd21k2d

þ h2Þh2U2
r k

2W10ðsÞ2 � 2ðð1=6Þd22k2dþ h2Þ2d22ð2d22k2dð1=3Þ þ h2Þq1dUrðð1=9Þd41d2k4

þ d21dh
2k2 þ h4ÞkxW10ðsÞ � ð2d21k2dð1=3Þ þ h2Þd2h2U2

r ðð1=6Þd21k2dþ h2Þ2q2ðð1=3Þd22k2d

þ h2Þk2d21W20ðsÞ2 þ ð2ðð1=9Þd42d2k4 þ d22dh
2k2 þ h4ÞÞð2d21k2dð1=3Þ þ h2ÞdUrðð1=6Þd21k2d

þ h2Þ2q2kd21xW20ðsÞ � ðð1=243Þd5d41d42ðd41q2 � d42q1Þk10þ 5d21d
2
2h

2ðd61q2 þ ðð9=5Þðd41ÞÞd22q2
� ðð9=5Þðd21ÞÞd42q1 � d62q1Þd4k8ð1=162Þ þ ð1=54Þðd81q2 þ 45d61d

2
2q2ð1=2Þ � 12d42ðq1 � q2Þd41

� 45d21d
6
2q1ð1=2Þ � d82q1Þh4d3k6 þ ð1=4Þðd61q2 � ð1=9Þð8ðq1 � 15q2ð1=2ÞÞÞd22d41

� ð1=3Þð20ðq1 � 2q2ð1=15ÞÞÞd42d21 � d62q1Þh6d2k4 þ ðd41q2 � 5d22ðq1 � q2Þd21ð1=3Þ

� d42q1Þh8dk2 þ h10ðd21q2 � d22q1ÞÞx2Þ=ð2ðð1=6Þd22k2dþ h2Þ2d2ðð1=6Þd21k2d

þ h2Þ2ðh3d2k2U2
r d2q1ð2d22k2dð1=3Þ þ h2ÞW10ðsÞ2 � 2d2ð2d22k2dð1=3Þ þ h2Þq1dhUrðd21dk2

þ h2ÞkxW10ðsÞ þ h3d2k2U2
r d1q2ð2d21k2dð1=3Þ þ h2ÞW20ðsÞ2 � ð2ð2d21k2dð1=3Þ

þ h2ÞÞdhðd22dk2 þ h2ÞUrq2kd1xW20ðsÞ þ 4d31d
3
2d

2k6ðq1 � q2Þð1=9Þ
þ 2d2dhd1ð2dx2d1d2ðd1q2 þ d2q1Þ þ ðd21 þ d22Þðq1 � q2ÞhÞk4ð1=3Þ þ h3ð2dx2ðd31q2
þ 3d21d2q1 þ 3d1d

2
2q2 þ d32q1Þð1=3Þ þ d1d2ðq1 � q2ÞhÞk2 þ h5x2ðd1q2 þ d2q1ÞÞd1Þ: (A27)
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