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A B S T R A C T

Traditional discrete learning methods involve discretizing continuous equations using difference schemes,
necessitating considerations of stability and convergence. Integrable nonlinear lattice equations possess a
profound mathematical structure that enables them to revert to continuous integrable equations in the
continuous limit, particularly retaining integrable properties such as conservation laws, Hamiltonian structure,
and multiple soliton solutions. The pseudo grid-based physics-informed convolutional-recurrent network (PG-
PhyCRNet) is proposed to investigate the localized wave solutions of integrable lattice equations, which
significantly enhances the model’s extrapolation capability to lattice points beyond the temporal domain.
We conduct a comparative analysis of PG-PhyCRNet with and without pseudo grid by investigating the
multi-soliton solutions and rational solitons of the Toda lattice and self-dual network equation. The results
indicate that the PG-PhyCRNet excels in capturing long-term evolution and enhances the model’s extrapolation
capability for solitons, particularly those with steep waveforms and high wave speeds. Finally, the robustness
of the PG-PhyCRNet method and its effect on the prediction of solutions in different scenarios are confirmed
through repeated experiments involving pseudo grid partitioning.
1. Introduction

Solving systems of continuous and discrete nonlinear partial dif-
ferential equations (PDEs) has been a key component in scientific
computing and mathematical physics. In recent years, deep learn-
ing has achieved great success in solving PDEs due to the powerful
representation capabilities of neural networks [1–3]. Research on mod-
eling mathematical-physical systems using deep neural networks can
be broadly classified into two categories: continuous networks and
discrete networks. Both continuous and discrete integrable systems, a
special class of nonlinear systems, possess a rich mathematical structure
and unique properties, such as Lax pairs, Hamiltonian structures, and
infinite conservation laws, distinguishing them from ordinary nonlinear
systems [4–6].

1.1. Continuous and discrete learning methods

Significant progress has been made in the study of nonlinear system
surrogate modeling using deep learning [2,3,7,8]. Many studies focus
on minimizing the physical information error function, driving the

∗ Corresponding author at: School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (Ministry of Education) and Shanghai
Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.

E-mail address: ychen@sei.ecnu.edu.cn (Y. Chen).

vibrant growth of scientific machine learning research, particularly
in the modeling and simulation of PDEs [1,9]. Karniadakis’ group
proposed a landmark data-driven approach based on fully connected
neural networks (FCNs): Physics-Informed Neural Networks (PINNs),
which is an efficient and powerful method for solving the forward and
inverse problems of PDEs [1]. Compared to purely data-driven neural
network learning, PINN imposes physical information constraints dur-
ing training, allowing for the learning of more generalizable models
with fewer data samples and the wide application in aerodynamic
flows, solid mechanics, blood flows modeling and many others [10–
13]. Chen’s group proposed the concept and framework of integrable
deep learning and conducted a series of significant studies. Many
data-driven localized wave solutions of continuous integrable equa-
tions can be obtained by PINN [14–19]. Besides, they investigated
some complex problems in integrable systems using the improved
PINN method: high-dimensional integrable systems, nonlocal integrable
equations, the forward and inverse problem for variable coefficients
integrable equations, and solving the higher-order RW solutions [20–
23]. There are also some innovative works that integrate the perfect
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mathematical structures of integrable systems. For example, the two-
stage PINN based on conservation laws can enhance the prediction
accuracy and generalization ability of solutions [24], the PINN based on
the Miura transformation discovered a new kink-bell solution of modi-
fied Korteweg de-Vries (mKdV) equation [25], and the LPNN based on
Lax pairs accelerated training efficiency and improves the prediction
accuracy of localized wave solutions [26]. Additionally, some other
excellent papers on integrable deep learning that readers can refer to
Refs. [27–30].

Unlike FCNs, convolutional neural networks (CNNs) extract spatial
hierarchical features through local connections and weight sharing, sig-
nificantly reducing the number of parameters and computational com-
plexity. This makes CNNs more efficient for handling large-scale data
and high-dimensional problems, and particularly well-suited for sur-
rogate modeling of discretized PDEs. Discretized learning approaches
based on CNNs have demonstrated good convergence and scalability in
modeling PDEs [31–38]. Researchers applied CNNs to surrogate mod-
eling and uncertainty quantification of PDEs in rectangular reference
domains [31]. PhyGeoNet achieved geometrically adaptive solutions
for steady-state partial differential equations through coordinate trans-
formations [32]. The AR-DenseED method successfully solved PDEs
using discretized learning without labeled data [33]. The physics-
informed convolutional-recurrent network (PhyCRNet) method, based
on an encoder–decoder convolutional long short-term memory (LSTM)
network, inherited the advantages of AR-DenseED in feature extraction
in low-dimensional space and time evolution learning, demonstrating
superior performance in the accuracy, extrapolation, and generalization
of PDEs’ solutions [38].

1.2. Discrete integrable systems and deep learning

The pioneering study on nonlinear lattice equations (NLEs) can
be traced back to the early 1950s, when Fermi, Pasta, and Ulam
(FPU) conducted great numerical experiments [39]. They established
a model of vibrating particles connected by nonlinear springs and,
through computer simulations, discovered that waves with various
sinusoidal initial conditions would return to their initial energy states
after a certain period. To extract quantitative information from models
described by continuous differential equations, it is often necessary to
solve them numerically using various discretization methods. However,
it is generally expected that the discretization of any given integrable
equations may lead to a non-integrable system. It is crucial to assure
that the discretized models exhibit the same qualitative features of
the dynamics as their continuous counterparts. Therefore, Toda in-
vestigated the motion equations of a one-dimensional uniform lattice
with nearest-neighbor interactions and propose the integrable Toda
lattice [5,6,40–42]. The existence of analytical solutions in integrable
lattice equations opens up new avenues for a better understanding
of nonlinear phenomena, not only in the context of FPU recurrence
but also in other areas related to nonlinear mechanics [43–45]. Until
the 1970s, the topic of integrable discretization continued to advance.
Case and Kac [46] focused on the discretization of the Schrödinger
spectral problem and the discretization of the Ablowitz-Kaup-Newell-
Segur spectral problem (developed by Ablowitz and Ladik [6,43]) as
well as establishing a difference-based inverse scattering transforma-
tion. Hirota [47,48] utilized the bilinear Bäcklund transformations and
their connection with Lax pairs to derive a series of discrete integrable
systems for bilinear equations. Subsequent research on NLEs have
expanded, including the nonlinear self-dual network equation under
nonlinear inductor-capacitor (LC) circuits [49,50], Ablowitz-Ladik (AL)
lattice [6,43], Błaszak-Marciniak lattice [51], Volterra lattice [52],
etc. These equations have made significant theoretical contributions
to describing physical phenomena such as crystalline phenomena and
nonlinear lattice dynamics [53,54]. Methods for solving these lattice
equations analytically, such as the inverse scattering transformation
2

method [43], Bäcklund transformation [55], Hirota method [56,57], h
and Darboux transformation [58], have been developed to better un-
derstand these mathematical structures of lattice solutions and physical
phenomena.

Discrete integrable systems share many similarities with their con-
tinuous counterparts, which possess a pair of linear spectral problems
(known as discrete Lax pairs), infinite conservation law, Hamiltonian
structure, symmetries, and other features. In this paper, some signif-
icant discrete integrable systems can converge to their corresponding
continuous integrable systems by taking the appropriate continuum
limit:

• The first equation discussed in this paper is the Toda lattice [5]:

d2

d𝑡2
(

ln 𝑢𝑛
)

= 𝑢𝑛+1 + 𝑢𝑛−1 − 2𝑢𝑛, (1)

or another coupled form:

�̇�𝑛 =
(

𝑣𝑛 − 𝑣𝑛−1
𝑢𝑛+1 − 𝑢𝑛

)

, (2)

where 𝐩𝑛 = (ln 𝑢𝑛, 𝑣𝑛)𝑇 , �̇�𝑛 = d𝐩𝑛∕d𝑡. Inspired by Refs. [47,48,59],
we give a step-size parameter 𝛿 and transformation

𝑢𝑛(𝑡) = 1 + 𝛿𝑞
(

𝛿𝑛 − 6𝛿𝑡, 𝛿2𝑡
)

∶= 1 + 𝛿𝑞 (𝑥, 𝜏) ,

𝑣𝑛(𝑡) = 1 + 𝛿𝑝
(

𝛿𝑛 + 𝛿2

4
𝑡, 𝛿𝑡

)

∶= 1 + 𝛿𝑝 (𝑦, 𝑘) .
(3)

Eliminating the linear terms in the system of equations, the
lattice (2) can approximate:

(𝑞𝜏 + 𝑞𝑥𝑥𝑥 + 6𝑞𝑞𝑥)𝛿3 + (𝛿4) = 0, (4)

which is just the famous Korteweg de-Vries (KdV) equation when
the higher-order terms are neglected. Eq. (4) was first derived
by Korteweg and de-Vries in the study of long water waves in
relatively shallow channels, which has important applications in
nonlinear science and mathematical physics [60,61].

• The second equation discussed is self-dual network equation [62]:

�̇�𝑛 =
[

(1 + 𝐼2𝑛 )(𝑉𝑛−1 − 𝑉𝑛)
(1 + 𝑉 2

𝑛 )(𝐼𝑛 − 𝐼𝑛+1)

]

, (5)

where 𝐲𝑛 = (𝐼𝑛, 𝑉𝑛)𝑇 . We give the transformation

𝐼𝑛(𝑡) = 𝛼 + 𝛥(𝛼)𝑞(𝑥, 𝜏), 𝑉𝑛(𝑡) = 𝛼 + 𝛥(𝛼)𝑝(𝑥, 𝜏), (6)

with

𝛥(𝛼) =
(𝛼2 + 1)𝛿
√

1 − 3𝛼2
, 𝑥 = 𝛿𝑛 + 𝑏𝛿𝑡, 𝜏 = −1

6
𝑏𝛿3𝑡, 0 < 𝛼 < 1, 𝑏 ∈ R,

the lattice (5) can approximate:

(𝑞𝜏 + 𝑞𝑥𝑥𝑥 + 6𝑞2𝑞𝑥)𝛿4 + (𝛿5) = 0, (7)

which is just the mKdV when the higher-order terms are ne-
glected. The mKdV equation was first introduced by Miura and
can serve as a model equation for acoustic waves in anharmonic
lattices [63]. It can also describe dust-acoustic solitary waves in
dusty plasmas and wave phenomena in nonlinear optics [64,65].

he step-size parameter 𝛿 measures the grid size of the spatial com-
onent and allows us to bring lattice points closer together to create
continuous point. It is not difficult to observe that higher-order

ispersion terms in continuous integrable equations transform into a
imple translation relationship under integrable discretization. This
reatly facilitates our numerical computations. From this perspective,
e are considering whether discrete learning methods in deep learning

an be used to further investigate the dynamical behavior of solutions
n the integrable lattice equations.

To the best of our knowledge, researches on using deep learning
o solve problems related to NLEs are relatively limited. Saqlain et al.
ave addressed the inverse problem of parameter identification in
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Fig. 1. Chain-like structure of ConvLSTM.
discrete high-dimensional systems by appropriately adjusting the PINN
method [66,67]. In data-driven mainstream learning processes, interpo-
lation and extrapolation are involved in evaluating model performance.
Interpolation requires the generalization ability within the boundaries
of the training data. Extrapolation refers to estimating unknown values
by extending beyond the known range based on known sequences or
factors [68]. PINN learns the function mappings directly in spatio-
temporal regions, which leads to a lack of spatiotemporal extrapolation
ability due to not focusing on the temporal evolution of physical pro-
cesses. However, the discrete learning method of PhyCRNet discretizes
PDEs and establishes dependencies between temporal data through
CNNs and LSTM, ensuring that the model solution possesses a certain
degree of extrapolation ability in the temporal direction. Besides, CNNs
focus on the discrete points of the input tensor, making them more
suitable for exploring discrete systems. Compared to continuous learn-
ing methods like PINN, we prefer to use discrete learning methods that
directly target the discrete grid points in lattice equations to explore the
dynamical behavior of the solutions. Enhancing extrapolation is often
achieved by altering the model structure or providing more prior condi-
tions. The pseudo grid-based physics-informed convolutional-recurrent
network (PG-PhyCRNet) method, which incorporates pseudo grid train-
ing, is based on the richer prior conditions (initial value conditions)
in the theory of discrete integrable systems. It addresses the issue of
irregular distribution of integer lattice, which causes the network to
fail to capture the potential function features and leads to prediction
failures. Thus, the motivation and highlights of this paper are:

• Our motivation is to utilize PhyCRNet methods to directly explore
integrable NLEs, which is a novel attempt. In the traditional Phy-
CRNet learning methods, it is essential to carefully consider the
stability and convergence of the discretization of continuity equa-
tions using finite difference schemes (especially for higher-order
dispersion and nonlinear terms). However, as a unique discrete
scheme of its integrable continuous equations, NLEs possess a
richer mathematical structure and retains the same integrable
properties. Moreover, under the continuous limit (3) and (6), this
may allow an indirect discussion of the dynamical behavior of
continuous solutions with the help of discrete solutions.

• PG-PhyCRNet significantly enhances the model’s extrapolation
capability to lattice points beyond the temporal domain. Based on
more prior information about initial values obtained by the inte-
grable nature of discrete lattice equations, PG-PhyCRNet enables
easier to learn the dynamical features of lattice solitons.

• The PG-PhyCRNet approach offers superior performance in cap-
turing the dynamics of high-speed, steep-profile solitons, particu-
larly in extrapolating solutions beyond the initial time domain.
3

Multi-soliton and rational soliton solutions of the Toda lattice
and self-dual network equations are investigated by using the
PhyCRNet method with and without pseudo grid (PG-PhyCRNet
and PhyCRNet). The performance of these two training methods
in different scenarios are comparatively analyzed: the PhyCRNet
method is better suited for lattice solitons with lower speeds and
smoother profiles; the PG-PhyCRNet method is better suited for
lattice solitons with higher speeds and steeper profiles, where
training with a pseudo grid gives an accuracy improvement in
the prediction of the lattice solution outside the time domain.

The structure of this paper is as follows: Section 2 provides a
model description and details PG-PhyCRNet method. Sections 3 and 4
discuss the numerical experiments of the PhyCRNet method without
and (PG-PhyCRNet and PhyCRNet) in predicting different types of
lattice solitons, respectively. In Section 5, the effect of pseudo grid
in PG-PhyCRNet method and the stability of these localized waves
are analyzed through repeated experiments. Finally, the last section
provides a discussion and summary of this paper.

2. Model description

In this section, we will introduce the PG-PhyCRNet for solving
(1+ 1)-dimensional semi-discrete integrable systems. The architecture’s
ability to handle different solutions of semi-discrete integrable sys-
tems from two perspectives are discussed. Both perspectives involve
extracting low-dimensional spatial features and learning the tempo-
ral evolution of compressed information through an encoder–decoder
convolutional-recurrent scheme.

2.1. ConvLSTM

ConvLSTM is an architecture that combines CNNs and LSTMs specif-
ically designed for processing sequential data [69,70]. Unlike tra-
ditional LSTMs, ConvLSTM applies convolution operations at each
time step, which helps capture spatial information in the sequential
data [70]. It consists mainly of input gates, forget gates, output gates,
and convolutional layers. In the gating mechanism, ConvLSTM uses
convolutional layers to compute the relevance between the input at
the current time step and the hidden state from the previous time step,
which is used to control the input and output information at the current
time step and to forget the information from the previous hidden state.
Since the paper exclusively addresses (1 + 1)−dimensional NLEs, the
convolution operations in the convolutional layers of the ConvLSTM
are all one-dimensional. For convenience, we uniformly refer to the
1𝐷-ConvLSTM as ConvLSTM.
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Fig. 2. Network architecture. ‘‘Reshape’’ represents the reshaping of the potential function tensor at each epoch. ‘‘BC padding’’ represents the boundary condition.
ConvLSTM also implements three gates (the forget gate 𝐟𝑡, input
gate 𝐢𝑡, and output gate 𝐨𝑡) to protect and control the cell state. Let
𝐗𝑡 be the input tensor, and {𝐡𝑡−1,𝐂𝑡} be the hidden state and cell state
to be updated at time step 𝑡, as shown in the chain-like structure in
Fig. 1. The forgetting gate 𝐟𝑡 reads the information from {𝐡𝑡−1,𝐗𝑡} and
passes through the sigmoid layer 𝜎(∗) to obtain a value between 0 and
1. When the forget gate is close to 1, the information in the cell state
is fully retained; otherwise, the information is completely forgotten.
This adaptive behavior allows the forget gate to clear memorized
information in the cell state 𝐂𝑡−1. The input gate 𝐢𝑡 has two parts: the
first sigmoid layer decides what to update, and the second tanh layer
updates the information into the cell state. The output gate 𝐨𝑡 uses a
sigmoid layer determines how much of the current cell state to output.
The mathematical formula for the ConvLSTM unit can be expressed as:

𝐢𝑡 = 𝜎(𝐖𝐢 ∗ [𝐗𝑡,𝐡𝑡−1] + 𝐛𝑖), 𝐟𝑡 = 𝜎(𝐖𝐟 ∗ [𝐗𝑡,𝐡𝑡−1] + 𝐛𝑓 ),

�̃�𝑡−1 = tanh(𝐖𝐜 ∗ [𝐗𝑡,𝐡𝑡−1] + 𝐛𝑐 ), 𝐂𝑡 = 𝐟𝑡 ⊙ 𝐂𝑡−1 + 𝐢𝑡 ⊙ �̃�𝑡−1,
𝐨𝑡 = 𝜎(𝐖𝐨 ∗ [𝐗𝑡,𝐡𝑡−1] + 𝐨𝑖), 𝐡𝑡 = 𝐨𝑡 ⊙ tanh(𝐂𝑡),

(8)

where ∗ is the convolutional operation and ⊙ denotes the Hadamard
product. The presence of ConvLSTM ensures that in the process of
solving integrable lattice equations, the dependence relationship be-
tween the potential function and the preceding and succeeding states
is preserved. Moreover, the information flowing into ConvLSTM is
compressed and latent features are extracted by an encoder.

2.2. Network architecture

PhyCRNet is a discrete learning method for solving multi-
dimensional spatiotemporal PDEs without any labeled data [38]. The
architecture mainly includes an encoder–decoder structure, residual
connections, autoregressive processes, and differentiation based on
gradient-free convolutional kernels. The exploration of integer lattice
points in integrable NLEs is essential. Therefore, the initial consid-
eration is to directly apply PhyCRNet to train and predict integer
lattice points. However, due to the irregular distribution of many lattice
solitons near the wave peaks, more prior information needs to be
incorporated into the model for joint training. This approach can lead
to better predictions for integer lattice points. Therefore, we propose
the PG-PhyCRNet method to solve the integrable lattice equation in
two different situation:
4

• We prefer to focus on the dynamical behavior of integer lattice
sites in the spatial part of the NLE. Hence, we illustrate this
approach using the initial–boundary value problem of (1+1)-
dimensional NLE as an example:

⎧

⎪

⎨

⎪

⎩

�̇�𝑛 + [𝑢𝑛, 𝑢𝑛±1, 𝑢𝑛±2...] = 0,
𝑢𝑛(0) = 𝑢(𝑛, 0), 𝑛 ∈ 𝛺,
𝑢𝑛1 = 𝑢𝑏1, 𝑢𝑛𝑁 = 𝑢𝑏2, 𝑡 ∈ [𝑡0, 𝑡𝑇 ],

(9)

where 𝑢𝑛 = 𝑢(𝑛, 𝑡) denotes the solution of NLE,  is the nonlinear
operator, 𝑛 ∈ Z stands for lattice site and the region 𝛺 = [𝑛1, 𝑛𝑁 ]
is a finite one-dimension lattice, 𝑢𝑏1 and 𝑢𝑏2 are constants.

• If the additional information beyond the initial values of the
integer lattice sites can be obtained, such as the initial value sam-
ples of the integer lattice sites following a certain distribution or
empirical regression function (i.e., the initial condition in Eq. (9)
are changed to 𝑢𝑛(0) = 𝑢(𝑛, 0), 𝑛 ∈ 𝛺′, 𝛺′ = [𝑛1, 𝑛1 + 𝑖

𝑛𝑁−𝑛1
𝑁𝑛−1

], 𝑖 =

1,… , 𝑁𝑛−1), then the trend of integer lattice sites with help with
non-integer grid can be studied. We refer to these non-integer
grid points as ‘‘pseudo grid’’ of the network. This operation is
actually to better fit the continuous potential function 𝑢(𝑛, 𝑡) with
respect to variables 𝑛 and 𝑡 through model training. For cases like
solitary waves with fast wave speeds and narrow wave widths,
it is often difficult to capture their propagation characteristics
near the peak using integer lattice sites. The addition of pseudo
grid avoids this problem and enables the solution 𝑢𝑛 based on the
well-trained model to have good extrapolation ability in the time
direction. However, the drawback of this method is that it may
lose prediction accuracy within the given region.

By utilizing the exact solutions of discrete integrable systems to provide
rich training samples, both training methods under different prior
conditions can be satisfied. Fig. 2 illustrates the PG-PhyCRNet ar-
chitecture for solving discrete integrable systems. The encoder struc-
ture consists of three convolutional operations, which are used to
learn low-dimensional latent features from the input state variables
𝑢𝑛(𝑡𝑖)(𝑖 = 0, 1,…), with a ReLU function applied after each convolution
for non-linearity. The ConvLSTM layer receives the feature information
passed by the encoder and propagates the temporal feature information
through the latent features ℎ𝑖 and cell states 𝐶𝑖. The decoder includes
a pixel shuffle operation [71] and a convolution operation with a
large kernel size, aiming to scale the low-resolution feature information
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Fig. 3. The translation operations in the spatial direction (left) and the discrete numerical differentiation in the time direction (right).
passed by the ConvLSTM layer back to the original size of interest
and reconstruct it as the information for the next time step in high
resolution. Finally, a simple autoregressive process is achieved by using
residual connections to update the potential function states for adjacent
time steps, where 𝑢𝑛(𝑡𝑖+1) = 𝑢𝑛(𝑡𝑖)+𝛿𝑡 ∗  [⋅], where  denotes the
trained network operator and 𝛿𝑡 is the time interval.

2.3. Translation operation and derivative approximation

After obtaining the output from the model on the left side of Fig. 2,
the outputs are concatenated at each time step and the boundary con-
ditions (BCs) is hard imposed. This is done to facilitate the subsequent
use of translation operation and gradient-free convolution filters to
represent the translation operations (𝐸𝑘𝑓𝑛 = 𝑓𝑛+𝑘, 𝑛, 𝑘 ∈ Z) in the
spatial direction and discrete numerical differentiation in the time
direction.

Due to the higher-order dispersion terms in continuous integrable
equations can transform into a simple translation relationship under
integrable discretization, the translation operator is very important as
a surrogate in the network. We give the following two ways of handling
the translation operator based on model training methods without and
with pseudo grid:
(1) Translated potential function 𝑢𝑛±1, 𝑢𝑛±2,… can be obtained by di-
rectly shifting the concatenated predicted values. It is worth noting that
for the first training method without adding pseudo grid, we simply
shift the predicted solution forward or backward by 𝑘 steps to obtain
𝑢𝑛±𝑘.
(2) For the training method with pseudo grid, we need to shift the
predicted solution forward or backward by 𝑘∕𝛿𝑛 (𝛿𝑛 ∈ ) steps to obtain
𝑢𝑛±𝑘, where

 =
{

𝛿𝑛
|

|

|

|

𝛿𝑛 =
𝑛𝑁 − 𝑛1
𝑁𝑛 − 1

, 𝑁𝑛 ≥ 2, 𝑁𝑛 ∈ Z+,
1
𝛿𝑛

∈ Z+

}

. (10)

The corresponding processes of tensor recombination, hard-imposed of
BCs, and translation operators are illustrated in Fig. 3. The left side
in Fig. 3 shows the translation operation in the training method with
pseudo grid, where the red dashed part represents the potential func-
tion 𝑢𝑛 that will enter the loss function. And the translation operator in
NLEs can be replaced by a proper slicing operation on the output.

Besides, we use forward differential format from the finite differ-
ence method to approximate the derivatives in the time direction.
From the right side of Fig. 3, it can be seen that we decompose the
two-dimensional potential function into a one-dimensional potential
function that varies with time. We approximate the derivative in the
time direction by applying a one-dimensional gradient-free convolution
kernel of size 2 to the reorganized potential function.
5

2.4. Parameter optimization and capability evaluation of PG-PhyCRNet

The essence of training a neural network or deep learning model
lies in updating its weights and biases. Based on the training data, our
goal is to minimize the value of the loss function by optimizing the
parameters of the neural network. The presence of the loss function
indicates the direction of training for deep learning models.

Due to the imposition of strict initial boundary conditions, there is
no longer a need to include these conditions as constraints in the loss
function. Therefore, the loss function only needs to define the required
physical information to be satisfied. Building upon the two training
methods mentioned in the previous section, we uniformly define their
residual (𝐧, 𝑡;𝜽) as:

(𝐧, 𝑡;𝜽) = �̇�𝑛 + [𝐮𝑛,𝐮𝑛±1,𝐮𝑛±2...]. (11)

This expression actually represents the left-hand side of Eq. (9), where
𝜽 = {𝐰,𝐛} denotes the parameters to be optimized in the neural
network. Building upon the two training methods mentioned in the
previous subsection, we define the following two loss functions:

MSE1(𝜽) =
1

𝑁𝑇𝑁

𝑁𝑇 −1
∑

𝑖=0

𝑁−1
∑

𝑗=0

|

|

|

(𝑛𝑗𝑓1 , 𝑡
𝑖
𝑓 ;𝜽)

|

|

|

2
,

MSE2(𝜽) =
1

𝑁𝑇𝑁𝑛

𝑁𝑇 −1
∑

𝑖=0

𝑁𝑛−1
∑

𝑗=0

|

|

|

(𝑛𝑗𝑓2 , 𝑡
𝑖
𝑓 ;𝜽)

|

|

|

2
, (12)

where the independent variables 𝑛𝑗𝑓1 ∈ 𝛺, 𝑛𝑗𝑓2 ∈ 𝛺′, and 𝑡𝑖𝑓 ∈
[𝑡0, 𝑡0 + 𝑖 𝑡𝑇 −𝑡0𝑁𝑇 −1

](𝑖 = 1, 2,… , 𝑁𝑇 − 1). By minimizing the mean squared
error criterion, we optimize the parameters of the neural network to
satisfy the provided physical information. We choose to use the Adam
optimization algorithm to optimize the loss function. Ultimately, the
trained PG-PhyCRNet model can not only provide numerical solutions
within the specified region but also forecast and provide numerical
solutions outside the time domain except for the boundary values.

We need to use the exact solution of the physical equations to evalu-
ate the application performance of PG-PhyCRNet in discrete integrable
systems and assess the propagation error through two stages: training
and extrapolation. Although the use of PhyCRNet involves the above
two methods to meet different needs, the ultimate goal is to evaluate
the predictive accuracy of the model on integer grid sites. The first stage
involves evaluating the model’s training generalization ability through
the relative L2 error of 𝑁 × 𝑁𝑡 (𝑁𝑡 = (𝑁𝑇 + 1)∕2) data points on the
given computational grid 𝛺 × [𝑡0, 𝑡0 + 𝑖

𝑡𝑇 ∕2−𝑡0
𝑁𝑡−1

](𝑖 = 1, 2,… , 𝑁𝑡 − 1):

𝑅𝐸𝑡 =

√

∑𝑁−1
𝑘=0

∑𝑁𝑡−1
𝑙=0

|

|

|

|

�̂�𝑘,𝑙 − 𝑢
(

𝑛𝑘+1, 𝑡0 + 𝑙
𝑡𝑇 ∕2−𝑡0
𝑁𝑡−1

)

|

|

|

|

2

√

∑𝑁−1
𝑘=0

∑𝑁𝑡−1
𝑙=0

|

|

|

𝑢
(

𝑛𝑘+1, 𝑡0 + 𝑙
𝑡𝑇 ∕2−𝑡0

)

|

|

|

2
, (13)
|

𝑁𝑡−1
|
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Fig. 4. The schematic diagram of the internal region training and extrapolation
prediction.

the second stage involves evaluating the model’s extrapolation gener-
alization ability through the relative L2 error of 𝑁 ×𝑁 ′

𝑡 (𝑁 ′
𝑡 = 𝑁𝑡) data

points on the given computational grid 𝛺 × [𝑡𝑇 ∕2, 𝑡𝑇 ∕2 + 𝑖
𝑡𝑇 −𝑡𝑇 ∕2
𝑁 ′
𝑡−1

](𝑖 =
1, 2,… , 𝑁 ′

𝑡 − 1):

𝑅𝐸𝑒 =

√

√

√

√

∑𝑁−1
𝑘=0

∑𝑁 ′
𝑡−1

𝑙=0

|

|

|

|

|

�̂�𝑘,𝑁𝑡+𝑙−1 − 𝑢
(

𝑛𝑘+1, 𝑡1 + 𝑙
𝑡𝑇 −𝑡𝑇 ∕2
𝑁 ′
𝑡−1

)

|

|

|

|

|

2

√

√

√

√

∑𝑁−1
𝑘=0

∑𝑁 ′
𝑡−1

𝑙=0

|

|

|

|

|

𝑢
(

𝑛𝑘+1, 𝑡1 + 𝑙
𝑡𝑇 −𝑡𝑇 ∕2
𝑁 ′
𝑡−1

)

|

|

|

|

|

2
, (14)

where �̂� and 𝑢 (⋅) stand for predictive value and true value respectively.
Fig. 4 illustrates the schematic diagram of the internal region training
and extrapolation prediction. Fig. 4 clearly shows that the model
trained through iterations within the time domain 𝑡 ∈ [𝑡0, 𝑡𝑇 ∕2] can be
used for extrapolation predictions in the time domain 𝑡 ∈ [𝑡𝑇 ∕2, 𝑡𝑇 ].

2.5. Network settings

For the numerical results of any lattice equation presented below,
we adopted the following network settings: in the encoder structure,
the number of convolutional kernels in the three one-dimensional
convolutional layers is 16, 64, 256, the number of channels in the first
convolution operation is 2 (all discussed are coupled lattice equations),
and the kernel size of the three convolution operations is 4, with a
stride of 2 and zero-padding applied. A ConvLSTM layer is applied on
the latent space with 128 nodes/cell/hidden states, with kernel sizes
of 3, a stride of 1, and zero-padding applied. The decoder consists of
a pixel shuffle operation with an upsampling factor of 8 and a convo-
lution operation with a stride of 1, including two convolution kernels
of size 5, with the number of channels matching the corresponding
number of channels after the pixel shuffle operation. We chose the time
steps in the interval [𝑡0, 𝑡𝑇 ∕2] for training and internal prediction, and
in the interval [𝑡𝑇 ∕2, 𝑡𝑇 ] for extrapolation prediction. The learning rate
was set to 1 × 10−3.

All code was executed in an environment with Python 3.9 and
PyTorch 1.13. The numerical experiments were conducted on a pro-
fessional computer equipped with GPU NVIDIA GeForce RTX 3090.

3. Numerical results without pseudo grid training

In this section, our aim is to obtain high-precision numerical results
for integer grid points within a given domain and reliable extrapolated
results beyond their time domain. To achieve this, we consider the
training method with initial condition data from 𝑛 ∈ Z.
6

3.1. One-soliton solution of Toda lattice

The Toda equation describes a one-dimensional chain of particles,
where each particle with a mass of 1 interacts with its nearest neighbors
through an exponential potential. We consider the initial boundary
value problem for one-dimensional Toda lattice with coupled form [5]:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̇�𝑛 = 𝑢𝑛(𝑣𝑛 − 𝑣𝑛−1),
�̇�𝑛 = 𝑢𝑛+1 − 𝑢𝑛, 𝑛 ∈ 𝛺, 𝑡 ∈ [𝑡0, 𝑡𝑇 ],
𝑢𝑛(𝑡0) = 𝑢(𝑛, 𝑡0), 𝑣𝑛(𝑡0) = 𝑣(𝑛, 𝑡0),
𝑢𝑛1 = 𝑢𝑏1 , 𝑢𝑛𝑁 = 𝑢𝑏2 ,
𝑣𝑛1 = 𝑣𝑏1 , 𝑣𝑛𝑁 = 𝑣𝑏2 .

(15)

This model finds applications in describing the dynamical properties
of various systems such as LC transmission lines [5], biopolymers
(e.g., DNA chains [72]), excitations in anharmonic lattices, and lattices
of optical solitons in fibers [73]. Besides, in the continuous limit
(3), Eq. (15) approximates the KdV equation. Therefore, the discrete
solutions of Eq. (15) can be used to indirectly explore the dynamical
behavior of the solutions to the KdV equation. One soliton solution of
Eq. (15) is [74]:

𝑢𝑛 =
cosh

[

𝑞0
(

𝑛 − 𝑛0(𝑡)
)]

{

sinh(𝑞0)𝑒𝑞0(𝑛−𝑛0(𝑡)−2) + cosh
[

𝑞0
(

𝑛 − 𝑛0(𝑡) − 1
)]

}

𝑒−𝑞0

cosh
[

𝑞0
(

𝑛 − 𝑛0(𝑡) − 1
)]2

,

𝑣𝑛 =
sinh

(

𝑞0
)2

cosh
[

𝑞0
(

𝑛 − 𝑛0(𝑡) − 1
)]

cosh
[

𝑞0
(

𝑛 − 𝑛0(𝑡)
)] ,

(16)

where 𝑛0(𝑡) = 𝑛0 − sinh(𝑞0)∕𝑞0𝑡. In this case, let 𝑞0 = 1∕2, 𝑛0 = 0,
𝛺 = [−12, 13] is a finite one-dimension lattice and [𝑡0, 𝑡1] = [−0.5, 0.5].
Substituting these conditions into Eq. (16), we can obtain the initial
value for Eq. (15). In addition, we default the boundary values of the
potential functions 𝑢𝑛 and 𝑣𝑛 (in the constant background) to 𝑢𝑏1 = 𝑢𝑏2 =
1 and 𝑣𝑏1 = 𝑣𝑏2 = 0. A time step size of 𝛿𝑡 = 0.005 is chosen in the time
domain to account for the approximation of derivatives in the lattice
equation and the implicit time progression in ConvLSTM. Therefore, the
region we use as training is 𝑅𝑖𝑛(𝑅𝑖𝑛 = [𝑛, 𝑡], 𝑛 ∈ [−11, 12], 𝑡 ∈ [−0.5, 0])
and the training is conducted with 100 time steps per epoch in the
time interval 𝑡 ∈ [−0.5, 0]. Additionally, predictions are made in region
𝑅𝑜𝑢𝑡(𝑅𝑜𝑢𝑡 = [𝑛, 𝑡], 𝑛 ∈ [−11, 12], 𝑡 ∈ [0, 0.5]) to assess the extrapolation
capability of the trained model.

After training for 2000 epochs, PhyCRNet achieves a significant
reduction in the loss function, reaching 2.320𝐸 − 08 after 1003 s.
Subsequently, we conduct the predictions in the time domain 𝑡 ∈
[−0.5, 0] and obtained excellent numerical results, in which the L2 error
of component 𝑢𝑛 reaches 2.0567724𝐸 − 05, and that of component 𝑣𝑛
reaches 2.2417906𝐸 − 04. Moreover, extrapolation predictions in the
time domain 𝑡 ∈ [0, 0.5] also yield good numerical results, with the L2
error for component 𝑢𝑛 at 1.0692835𝐸 − 03, and for component 𝑣𝑛 at
1.3986321𝐸 − 02.

Figs. 5 and 6 respectively present the density plots, cross-sectional
plots (temporal evolution plots), and error dynamics plots of one-
soliton solutions for Toda lattice based on the PhyCRNet method. The
density plot in (a) illustrates the evolution of the line soliton along
the negative direction of the 𝑛-axis, which is clearly evident in the
figure. Additionally, the consistency between the predicted and exact
solutions in the cross-sectional plots (b1)–(b2) indicates that the model
has achieved good performance in learning the one-soliton solution
within the time domain 𝑡 ∈ [−0.5, 0], while (b3) demonstrates successful
extrapolation of the one-soliton solution within the time domain 𝑡 ∈
[0, 0.5]. From (c), it can be observed that the model’s generalization er-
ror mainly arises from the long-term evolution of the soliton, suggesting
that the neural network’s ability to transmit information at different
time steps needs improvement, and this error partly originates from
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Fig. 5. The numerical one-soliton solution of the Toda lattice for the component 𝑢𝑛 is presented. (a) illustrates the density plot of component 𝑢𝑛, with the lower sub-figure depicting
the prediction within the time domain 𝑡 ∈ [−0.5, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 0.5]. The white dashed lines
indicate the selected moments at 𝑡 = −0.45 and 𝑡 = 0.45; (b1)–(b3) show the temporal evolution of one-soliton at three different moments, where ‘‘Lps’’ stands for lattice points. (c)
presents the density plot of the error (predicted solution minus exact solution).
Fig. 6. The numerical one-soliton solution of the Toda lattice for the component 𝑣𝑛 is presented. (a) illustrates the density plot of component 𝑣𝑛, with the lower sub-figure depicting
the prediction within the time domain 𝑡 ∈ [−0.5, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 0.5]. The white dashed lines
indicate the selected moments at 𝑡 = −0.45 and 𝑡 = 0.45; (b1)–(b3) show the temporal evolution of one-soliton at three different moments. (c) presents the density plot of the error
(predicted solution minus exact solution).
Fig. 7. Three-dimensional plots of the numerical solution of one-soliton for Toda lattice, where the solid black line indicates the prediction within the time domain 𝑡 ∈ [−0.5, 0],
and the gray dashed line indicates the extrapolated prediction within the time domain 𝑡 ∈ [0, 0.5].
the differential results in the temporal direction. Furthermore, Fig. 7
shows the three-dimensional plots of the numerical solutions 𝑢𝑛 and 𝑣𝑛,
providing a clearer depiction of the line soliton’s dynamic behavior. It
can be found in Table 1 the neural network has successfully learned the
dynamic behavior of the single soliton solution on the Toda lattice, as
supported by the evidence presented above.
7

Table 1
Errors of learning the one-soliton solution for Toda lattice.

𝑢𝑛 𝑣𝑛 Total

Interior 2.0567724E−05 2.2417906E−04 2.7090538E−05
Extrapolation 1.0692835E−03 1.3986321E−02 1.5350957E−03
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3.2. Dark–bright rational soliton solution of self-dual network equation

We investigate the self-dual network equation with the initial
boundary value problem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̇�𝑛 = (1 + 𝐼2𝑛 )(𝑉𝑛−1 − 𝑉𝑛),
�̇�𝑛 = (1 + 𝑉 2

𝑛 )(𝐼𝑛 − 𝐼𝑛+1), 𝑛 ∈ 𝛺, 𝑡 ∈ [𝑡0, 𝑡1],
𝐼𝑛(𝑡0) = 𝐼(𝑛, 𝑡0), 𝑉𝑛(𝑡0) = 𝑉 (𝑛, 𝑡0),
𝐼𝑛1 = 𝐼𝑏1 , 𝐼𝑛𝑁 = 𝐼𝑏2 ,
𝑉𝑛1 = 𝑉𝑏1 , 𝑉𝑛𝑁 = 𝑉𝑏2 .

(17)

The nonlinear self-dual network equation describes the propagation
of electrical signals in a ladder-type electric circuit, where 𝑉𝑛 and 𝐼𝑛
represent the voltage and current [62]. Besides, in the continuous limit
(6), Eq. (17) approximates the mKdV equation. Therefore, the discrete
solutions of Eq. (17) can be used to indirectly explore the dynamical
behavior of the solutions to the mKdV equation. Based on the Lax pair
of Eq. (17) [6]

𝐸𝜓𝑛 = 𝑈𝑛𝜓𝑛 =
(

𝜆 + 𝐼𝑛𝑉𝑛 −𝐼𝑛 + 𝑉𝑛∕𝜆
𝐼𝑛 − 𝜆𝑉𝑛 1∕𝜆 + 𝐼𝑛𝑉𝑛

)

𝜓𝑛,

�̇�𝑛 = 𝑊𝑛𝜓𝑛 =
(

𝜆 − 𝐼𝑛𝑉𝑛−1 −𝐼𝑛 + 𝑉𝑛−1∕𝜆
𝐼𝑛 − 𝜆𝑉𝑛−1 1∕𝜆 − 𝐼𝑛𝑉𝑛−1

)

𝜓𝑛, (18)

where 𝐸 stands for shift operator, 𝜓𝑛(𝑡) = (𝜓1,𝑛, 𝜓2,𝑛) is the vector eigen-
function, 𝜆 is the eigenvalue parameter, the Darboux matrix 𝑇𝑛(𝑡; 𝜆) can
be defined as [75]:

𝑇𝑛(𝑡; 𝜆) =

(

𝜆𝑁 +
∑𝑁−1
𝑗=0 𝐴(𝑗)

𝑛 𝜆𝑗
∑𝑁−1
𝑗=0 𝐵(𝑗)

𝑛 𝜆𝑗

−𝜆𝑁
∑𝑁−1
𝑗=0 𝐵(𝑗)

𝑛 𝜆−𝑗 1 + 𝜆𝑁
∑𝑁−1
𝑗=0 𝐴(𝑗)

𝑛 𝜆−𝑗

)

, (19)

where 𝐴(𝑗)
𝑛 and 𝐵(𝑗)

𝑛 can be determined by 2𝑁 linear system of equations
obtained by Taylor expanding lim𝜖→0 𝑇 (𝑡; 𝜆1+𝜖)𝜓𝑛(𝑡; 𝜆1+𝜖)∕𝜖𝑘1 = 0(𝑘1 =
0, 1,… , 𝑣1, 𝑒.𝑔. 𝑁 = 1+ 𝑣1) at 𝜖 = 0. Hence, the 𝑁-order rational soliton
solution can be obtained by Darboux transformation of Eq. (17):

𝐼 (𝑁)
𝑛 =

𝐼𝑛 + 𝐵
(𝑁−1)
𝑛

𝐴(0)
𝑛

, 𝑉 (𝑁)
𝑛 = 𝐵(0)

𝑛+1 + 𝑉𝑛𝐴
(0)
𝑛+1. (20)

Let 𝑁 = 1, the unknown functions 𝐴(0)
𝑛 = 𝛿𝐴(0)

𝑛 ∕𝛿𝑛 and 𝐵(0)
𝑛 = 𝛿𝐵(0)

𝑛 ∕𝛿𝑛
are

𝛿𝐴(0)
𝑛 =

|

|

|

|

|

|

−𝜆1𝜓
(0)
1,𝑛 𝜓 (0)

2,𝑛
−𝜓 (0)

2,𝑛 −𝜆1𝜓
(0)
1,𝑛

|

|

|

|

|

|

, 𝛿𝐵(0)
𝑛 =

|

|

|

|

|

|

𝜓 (0)
1,𝑛 −𝜆1𝜓

(0)
1,𝑛

𝜆1𝜓
(0)
2,𝑛 −𝜓 (0)

2,𝑛

|

|

|

|

|

|

,

𝛿𝑛 =
|

|

|

|

|

|

𝜓 (0)
1,𝑛 𝜓 (0)

2,𝑛
𝜆1𝜓

(0)
2,𝑛 −𝜆1𝜓

(0)
1,𝑛

|

|

|

|

|

|

, (21)

where the non-zero seed solutions 𝐼𝑛 = 𝛼 = 11
60 , 𝑉𝑛 = 0. The vector

igenfunction of Eq. (18) 𝜓 (0)
𝑛 = (𝜓 (0)

1,𝑛 , 𝜓
(0)
2,𝑛) can be determined by

𝜓𝑛(𝑡; 𝜆, 𝜖)|𝜆=𝜆1+𝜖 =
⎛

⎜

⎜

⎝

𝜓 (0)
1,𝑛

𝜓 (0)
2,𝑛

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝜓 (1)
1,𝑛

𝜓 (1)
2,𝑛

⎞

⎟

⎟

⎠

𝜖+
⎛

⎜

⎜

⎝

𝜓 (2)
1,𝑛

𝜓 (2)
2,𝑛

⎞

⎟

⎟

⎠

𝜖2+⋯ , 𝜆1 = 𝛼+
√

1 + 𝛼2, (22)

ith

𝜓 (0)
1,𝑛 = 𝛽𝑛(𝑡)

671𝑡 + 660𝑛 + 3660
60390

, 𝜓 (0)
2,𝑛 = 𝛽𝑛(𝑡)

61𝑡 + 60𝑛
5490

,

𝛽(𝑛, 𝑡) =
61𝑛+

1
2
√

11

15𝑛−
1
2 4𝑛

𝑒
61
60 𝑡. (23)

ubstituting Eq. (23) into (21) (20) and eliminating 𝛽(𝑛, 𝑡), we find that
he mathematical expression for a rational soliton is entirely composed
f rational polynomials. This is in contrast to traditional soliton expres-
ions, which involve hyperbolic functions (in Eq. (16)). Of particular
nterest is whether the PhyCRNet method can effectively approximate
his function and explore its dynamic behavior.

In this case, let 𝛺 = [−31, 26] be a finite one-dimension lattice
nd [𝑡 , 𝑡 ] = [−1, 1]. The initial value for Eq. (15) can be obtained by
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0 1
able 2
rrors of learning the first-order rational solution for self-dual network equation.

𝑢𝑛 𝑣𝑛 Total

Interior 8.877356E−04 9.527011E−04 9.160831E−04
Extrapolation 3.014642E−02 2.244632E−02 2.1315258E−02

Eq. (20). In addition, we default the boundary values of the potential
functions 𝐼𝑛 and 𝑉𝑛 (in the constant background) to 𝐼𝑏1 = 𝐼𝑏2 = 0 and
𝑉𝑏1 = 𝑉𝑏2 = −𝛼. A time step size of 𝛿𝑡 = 0.01 is chosen in the time
domain to account for the approximation of derivatives in the lattice
equation and the implicit time progression in ConvLSTM. Therefore,
the region we use as training is 𝑅𝑖𝑛(𝑅𝑖𝑛 = [𝑛, 𝑡], 𝑛 ∈ [−30, 25], 𝑡 ∈ [−1, 0])
and the training is conducted with 100 time steps per epoch in the
time interval 𝑡 ∈ [−1, 0]. Additionally, predictions are made in region
𝑅𝑜𝑢𝑡(𝑅𝑜𝑢𝑡 = [𝑛, 𝑡], 𝑛 ∈ [−30, 25], 𝑡 ∈ [0, 1]) to assess the extrapolation ca-
pability of the trained model. After training for 2000 epochs, PhyCRNet
achieves a significant reduction in the loss function, reaching the order
of 5.951𝐸 − 07 after 1138 s. Subsequently, we conduct the predictions
in the time domain 𝑡 ∈ [−1, 0] and obtain excellent numerical results,
in which the L2 error of component 𝐼𝑛 reaches 8.877356𝐸 − 04, and
that of component 𝑉𝑛 reaches 9.527011𝐸 − 04. Moreover, extrapolation
predictions in the time domain 𝑡 ∈ [0, 1] also yield good numerical
results, with the L2 error for component 𝐼𝑛 at 3.014642𝐸 − 02, and for
component 𝑉𝑛 at 2.244632𝐸 − 02.

Figs. 8 and 9 respectively present the density plots, cross-sectional
plots (temporal evolution plots), and error dynamics plots of dark–
bright rational soliton solutions for self-dual network equation based on
the PhyCRNet method. The density plot in (a) illustrates the evolution
of the rational soliton along the negative direction of the 𝑛-axis, which
is clearly evident in the figure. Additionally, the consistency between
the predicted and exact solutions in the cross-sectional plots (b1)–(b2)
indicates that the model has achieved good performance in learning the
rational soliton solution within the time domain 𝑡 ∈ [−1, 0], while (b3)
demonstrates successful extrapolation of the rational soliton solution
within the time domain 𝑡 ∈ [0, 1]. In panel (c), errors arising from
the propagation of rational soliton solutions over time can also be
observed. Furthermore, Fig. 10 shows the three-dimensional plots of
the numerical solutions 𝐼𝑛 and 𝑉𝑛, providing a clearer depiction of the
dark–bright rational soliton’s dynamic behavior. It can be found in Ta-
ble 2 the neural network has successfully learned the dynamic behavior
of the rational soliton solution on the self-dual network equation, as
supported by the evidence presented above.

4. Numerical results with pseudo grid training

After conducting several repeated experiments, it was observed
that the model exhibited slight deficiencies in its extrapolation capa-
bilities when dealing with soliton solutions characterized by higher
wave speeds, narrower widths, or other complex features. Motivated
by this observation, we aim for PG-PhyCRNet to effectively capture
the evolution of solitons over time (i.e., its extrapolation capability
in the temporal direction) in the training of soliton solutions with
higher wave speeds or complexity. This may involve sacrificing a small
portion of the training error within the given spatiotemporal region.
In this section, we will continue to discuss different complex solitary
waves using these two lattice models. The introduction of pseudo
grid necessitates partitioning the spatial domain grid in Eqs. (15) and
(17) as 𝛺 = [𝑛1, 𝑛1 + 𝑖 𝑛𝑁−𝑛1

𝑁𝑛−1
], 𝑖 = 1,… , 𝑁𝑛 − 1. To investigate the

effects of pseudo grid on the PG-PhyCRNet framework, we evaluate the
performance differences between PhyCRNet with and without pseudo
grid for the cases of two solitons in the Toda lattice and one- or
two-solitons in the self-dual network equation.
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Fig. 8. The numerical dark rational soliton solution of the self-dual network equation for the component 𝐼𝑛 is presented. (a) illustrates the density plot of component 𝐼𝑛, with the
lower sub-figure depicting the prediction within the time domain 𝑡 ∈ [−1, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 1].
The white dashed lines indicate the selected moments at 𝑡 = −0.5 and 𝑡 = 0.5; (b1)–(b3) show the temporal evolution of rational soliton solution at three different moments. (c)
presents the density plot of the error (predicted solution minus exact solution).

Fig. 9. The numerical bright rational soliton solution of the self-dual network equation for the component 𝑉𝑛 is presented. (a) illustrates the density plot of component 𝑉𝑛, with
the lower sub-figure depicting the prediction within the time domain 𝑡 ∈ [−1, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 1].
The white dashed lines indicate the selected moments at 𝑡 = −0.5 and 𝑡 = 0.5; (b1)–(b3) show the temporal evolution of rational soliton solution at three different moments. (c)
presents the density plot of the error (predicted solution minus exact solution).

Fig. 10. Three-dimensional plots of the numerical solution of dark–bright rational soliton for self-dual network equation, where the solid black line indicates the prediction within
the time domain 𝑡 ∈ [−1, 0], and the gray dashed line indicates the extrapolated prediction within the time domain 𝑡 ∈ [0, 1].
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4.1. Two-soliton solution of Toda lattice under the non-zero background

In this section’s numerical experiments, we will continue to discuss
the initial–boundary value problem (15) for the one-dimensional Toda
lattice. Based on the Darboux transformation in Ref. [76], we give the
two-soliton solution of Toda lattice under the non-zero background:

𝑛 = 𝑢𝑛 − 𝑎𝑛 + 𝑎𝑛+1, 𝑣𝑛 =
𝑣𝑛 + 𝑏𝑛
1 + 𝑐𝑛

. (24)

where

𝑎𝑛 =
𝜆2𝛿1,𝑛 − 𝜆1𝛿2,𝑛
𝛿2,𝑛 − 𝛿1,𝑛

, 𝑏𝑛 =
𝜆1 − 𝜆2
𝛿2,𝑛 − 𝛿1,𝑛

, 𝑐𝑛 =
(𝜆2 − 𝜆1)𝛿1,𝑛𝛿2,𝑛

(𝜆1 − 𝜆2)𝛿1,𝑛𝛿2,𝑛 + 𝛿2,𝑛 − 𝛿1,𝑛
,

𝛿𝑖,𝑛 =
𝑟𝑖𝜏−(𝜆𝑖)𝑛𝑒𝜌−(𝜆𝑖)𝑡 − 𝜏+(𝜆𝑖)𝑛𝑒𝜌+(𝜆𝑖)𝑡

𝜏+(𝜆𝑖)𝑛𝑒𝜌+(𝜆𝑖)𝑡 − 𝑟𝑖𝜏−(𝜆𝑖)𝑛+1𝑒𝜌−(𝜆𝑖)𝑡
,

±(𝜆𝑖) = 1 + 𝜆𝑖 ±
1
2

√

𝜆2𝑖 + 2𝜆𝑖 − 3, 𝜌(𝜆𝑖)± =
𝜆𝑖𝜏± − 2

2𝜏±
(𝑖 = 1, 2).

n this case, let 𝑟1 = −1, 𝑟2 = 1, 𝜆1 = 2, 𝜆2 = 2.1, the spatial domain
= [−12, 13] is divided into 225 segments (𝑛1 = −12, 𝑛𝑁 = 13, 𝛿𝑛 = 1

9 ),
hile the time domain [𝑡0, 𝑡1] = [−1, 1] is divided into 200 segments

with a training time step of 100 and the remaining 100 segments
sed for extrapolation predictions). Substituting these conditions into
q. (24), we can obtain the initial boundary value problem for Eq. (15).
n addition, we default the boundary values of the potential functions
𝑛 and 𝑣𝑛 (in the constant background) to 𝑢𝑏1 = 𝑢𝑏2 = 1 and 𝑣𝑏1 =
𝑏2 = −1. A time step size of 𝛿𝑡 = 0.005 is chosen in the time domain
o account for the approximation of derivatives in the lattice and the
mplicit time progression in ConvLSTM. Therefore, the region we use
s training is 𝑅𝑖𝑛(𝑅𝑖𝑛 = [𝑛, 𝑡], 𝑛 ∈ [−12 + 𝛿𝑛, 13 − 𝛿𝑛], 𝑡 ∈ [−1, 0])
nd the training is conducted with 100 time steps per epoch in the
ime interval 𝑡 ∈ [−1, 0]. Additionally, the predictions are made in
egion 𝑅𝑜𝑢𝑡(𝑅𝑜𝑢𝑡 = [𝑛, 𝑡], 𝑛 ∈ [−12 + 𝛿𝑛, 13 − 𝛿𝑛], 𝑡 ∈ [0, 1]) to assess
he extrapolation capability of the trained model. After training for
000 epochs, the loss reaches 2.446500𝐸 − 06 after 688 s. Similarly,
raining and predictions are conducted in the time domain 𝑡 ∈ [−1, 0].
he L2 error for component 𝑢𝑛 reaches 1.462330𝐸 − 03, while that
or component 𝑣𝑛 reaches 1.363670𝐸 − 03. We further conduct the
xtrapolation predictions for the next 100 time steps. The L2 error of
omponent 𝑢𝑛 in the time domain 𝑡 ∈ [0, 1] reaches 2.730460𝐸 −03, and
or component 𝑢𝑛 reaches 2.687530𝐸 − 03.

Figs. 11 and 12 respectively present the density plots, temporal
volution plots, and error dynamics plots of two-soliton solutions for
oda lattice based on the PG-PhyCRNet method. From (a), it can be
bserved that two nearly parallel solitons move towards the negative
irection of space as time evolves. Figs. (b1)–(b3) respectively show
he time evolution of lattice points with the assistance of pseudo
rid (gray dashed lines), where (b1)–(b2) represent predictions within
he training region, and (b3) represents extrapolation results outside
he time domain. The consistency between the predicted and exact
olutions indicates that the model has achieved good performance in
earning the two-soliton solution. Furthermore, Fig. 13 shows the three-
imensional plots of the numerical solutions 𝑢𝑛 and 𝑣𝑛. With an overall
verage generalization error of 1.431510𝐸−03 for predictions within the
ime domain 𝑡 ∈ [−1, 0] and 2.716800𝐸−03 for extrapolation outside the
raining range 𝑡 ∈ [0, 1], the neural network has successfully learned
he dynamic behavior of two-soliton solution on the Toda lattice, as
upported by the evidence presented above. The prediction accuracy
or extrapolation is comparable to that within the region and does not
xhibit significant differences.

Additionally, Table 3 compares the PG-PhyCRNet model’s perfor-
ance in learning the two-soliton solution of the Toda lattice with and
ithout the assistance of pseudo grid. It is evident that while the PG-
hyCRNet model without grid assistance achieves higher precision in
redicting the two-soliton solution within the training region, its accu-
acy in extrapolation beyond this region is unsatisfactory. Conversely,
he PG-PhyCRNet model with grid assistance, although sacrificing some
10
recision in learning the two-soliton solution within the specified re-
ion, maintains a highly reliable extrapolation capability outside this
egion.

.2. Multi-soliton solutions of self-dual network equation under the zero
ackground

In this section’s numerical experiments, we will continue to discuss
he initial–boundary value problem (17). The 𝑁-soliton solution of
oda lattice under the zero background 𝐼𝑛 = 𝑉𝑛 = 0 also can be given

by Eq. (20) and 𝐴(0)
𝑛 = 𝛥𝐴(0)

𝑛 ∕𝛥𝑛, 𝐵
(0)
𝑛 = 𝛥𝐵(0)

𝑛 ∕𝛥𝑛, where

𝛥𝑛 =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜆𝑁−1
1 𝜆𝑁−2

1 ⋯ 1 𝜆𝑁−1
1 𝛿1,𝑛 𝜆𝑁−2

1 𝛿1,𝑛 ⋯ 𝛿1,𝑛
𝜆𝑁−1
2 𝜆𝑁−2

2 ⋯ 1 𝜆𝑁−1
2 𝛿2,𝑛 𝜆𝑁−2

2 𝛿2,𝑛 ⋯ 𝛿2,𝑛
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝑁−1
𝑁 𝜆𝑛−2𝑁 ⋯ 1 𝜆𝑛−1𝑁 𝛿𝑁,𝑛 𝜆𝑁−2

𝑁 𝛿𝑁,𝑛 ⋯ 𝛿𝑁,𝑛
𝜆1𝛿1,𝑛 𝜆21𝛿1,𝑛 ⋯ 𝜆𝑁1 𝛿1,𝑛 −𝜆1 −𝜆21 ⋯ −𝜆𝑁1
𝜆2𝛿2,𝑛 𝜆22𝛿2,𝑛 ⋯ 𝜆𝑁2 𝛿2,𝑛 −𝜆2 −𝜆22 ⋯ −𝜆𝑁2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜆𝑁𝛿𝑁,𝑛 𝜆2𝑁𝛿𝑁,𝑛 ⋯ 𝜆𝑁𝑁𝛿𝑁,𝑛 −𝜆𝑁 −𝜆2𝑁 ⋯ −𝜆𝑁𝑁

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

,

𝛿𝑖,𝑛 = 𝜆−2𝑛𝑖 𝑒−
(𝜆−1)(𝜆+1)𝑡

𝜆𝑖 . (25)

Here 𝛥𝐴(0)
𝑛 , 𝛥𝐵(0)

𝑛 , and 𝛥𝐵(𝑁−1)
𝑛 can be obtained by replacing columns𝑁 ,

2𝑁 , and 𝑁+1 of 𝛥𝑛 with the vector (−𝜆𝑁1 ,−𝜆
𝑁
2 ,… ,−𝜆𝑁𝑁 ,−𝛿1,𝑛,−𝛿2,𝑛,… ,

𝛿𝑁,𝑛)𝑇 . Next, we primarily apply the PG-PhyCRNet method to verify the
cases when 𝑁 = 1 and 𝑁 = 2, and utilize the pseudo-lattice training
method to develop the one-, two-soliton model architecture of Eq. (17),
demonstrating good extrapolation ability.

4.2.1. One-soliton solution
When 𝑁 = 1 and 𝜆1 = 2, the one-soliton solution can be given by

Eq. (20). The spatial domain 𝛺 = [−12, 13] is divided into 325 segments,
while the time domain [𝑡0, 𝑡1] = [−1, 1] is divided into 200 segments
(with a training time step of 100 and the remaining 100 segments used
for extrapolation predictions). After training for 1000 epochs, the loss
reaches 6.717000𝐸 − 07 after 698 s. Similarly, training and predictions
are conducted in the time domain 𝑡 ∈ [−1, 0]. The L2 error for compo-
nent 𝐼𝑛 reaches 2.672990𝐸 − 03, while that for component 𝑉𝑛 reaches
3.255200𝐸 − 03. We further conduct the extrapolation predictions for
the next 100 time steps. The L2 error of component 𝐼𝑛 in the time
domain 𝑡 ∈ [0, 1] reaches 5.417660𝐸−03, and for component 𝑉𝑛 reaches
6.182490𝐸 − 03.

Figs. 14 and 15 present the density plots, temporal evolution plots,
and error dynamics plots of the one-soliton solutions for Eq. (17) based
on the PG-PhyCRNet method with pseudo grid. In (a), a line soliton
can be seen moving in the negative spatial direction over time. Figures
(b1)–(b3) depict the temporal evolution of lattice points with the aid of
pseudo grid (gray dashed lines); (b1) and (b2) show predictions within
the training region, while (b3) shows extrapolation results outside the
time domain. The close match between predicted and exact solutions
demonstrates that the model performs well in learning the one-soliton
solution. Additionally, Fig. 16 provides three-dimensional plots of the
numerical solutions 𝐼𝑛 and 𝑉𝑛. With an overall average generalization
error of 1.431510𝐸−03 for predictions within the time domain 𝑡 ∈ [−1, 0]
and 2.716800𝐸 − 03 for extrapolation outside the training range 𝑡 ∈
[0, 1], the neural network successfully captures the dynamic behavior
of the one-soliton solution. The prediction accuracy for extrapolation
is comparable to that within the region and does not exhibit significant
differences.

Table 4 compares the PG-PhyCRNet model’s performance in learn-
ing the one-soliton solution of Eq. (17) with and without the assistance
of pseudo grid. Similar to the numerical results in the previous sub-
section, the PG-PhyCRNet method assisted by pseudo grid performs
significantly better in capturing the lattice point features outside the
time domain when training the one-soliton of Eq. (17). It is observed

that the one-soliton with a narrower wave width is more effectively
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Fig. 11. The numerical two-soliton solution of Toda lattice for the component 𝑢𝑛 is presented. (a) illustrates the density plot of component 𝑢𝑛, with the lower sub-figure depicting
the prediction within the time domain 𝑡 ∈ [−1, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 1]. The white dashed lines
indicate the selected moments at 𝑡 = −0.9 and 𝑡 = 0.9; (b1)–(b3) show the temporal evolution of two-soliton solution at three different moments. (c) presents the density plot of
the lattice error (predicted solution minus exact solution).
Fig. 12. The numerical two-soliton solution of Toda lattice for the component 𝑣𝑛 is presented. (a) illustrates the density plot of component 𝑣𝑛, with the lower sub-figure depicting
the prediction within the time domain 𝑡 ∈ [−1, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 1]. The white dashed lines
indicate the selected moments at 𝑡 = −0.9 and 𝑡 = 0.9; (b1)–(b3) show the temporal evolution of two-soliton solution at three different moments. (c) presents the density plot of
the lattice error (predicted solution minus exact solution).
Fig. 13. Three-dimensional plots of the numerical solution of two-soliton for Toda lattice, where the solid black line indicates the prediction within the time domain 𝑡 ∈ [−1, 0],
and the gray dashed line indicates the extrapolated prediction within the time domain 𝑡 ∈ [0, 1]. Colored surfaces represent predicted solutions with pseudo grid.
Table 3
Errors of two-soliton solution for Toda lattice with or without the assistance of pseudo grid training (1000 epoch).

Without pseudo grid (670 s for training time) With pseudo grid (688 s for training time)

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

Interior 1.287950E−03 1.509930E−03 1.362890E−03 1.462330E−03 1.363670E−03 1.431510E−03
Extrapolation 9.076977E−02 1.046573E−01 9.543207E−02 2.730460E−03 2.687530E−03 2.716800E−03
11
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Fig. 14. The numerical one-soliton solution of self-dual network equation for the component 𝐼𝑛 is presented. (a) illustrates the density plot of component 𝐼𝑛, with the lower
sub-figure depicting the prediction within the time domain 𝑡 ∈ [−1, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 1]. The
white dashed lines indicate the selected moments at 𝑡 = −0.9 and 𝑡 = 0.9; (b1)–(b3) show the temporal evolution of one-soliton solution at three different moments. (c) presents
the density plot of the lattice error (predicted solution minus exact solution).
Fig. 15. The numerical one-soliton solution of self-dual network equation for the component 𝑉𝑛 is presented. (a) illustrates the density plot of component 𝑉𝑛, with the lower
sub-figure depicting the prediction within the time domain 𝑡 ∈ [−1, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 1]. The
white dashed lines indicate the selected moments at 𝑡 = −0.9 and 𝑡 = 0.9; (b1)–(b3) show the temporal evolution of one-soliton solution at three different moments. (c) presents
the density plot of the lattice error (predicted solution minus exact solution).
Fig. 16. Three-dimensional plots of the numerical solution of one-soliton for self-dual network equation, where the solid black line indicates the prediction within the time domain
𝑡 ∈ [−1, 0], and the gray dashed line indicates the extrapolated prediction within the time domain 𝑡 ∈ [0, 1]. Colored surfaces represent predicted solutions with pseudo grid.
learned using the PG-PhyCRNet method with pseudo grid assistance.
In contrast, the one-soliton solution trained using PhyCRNet without
pseudo grid assistance is poorly predicted outside the time domain.

4.2.2. Two-soliton solution
When 𝑁 = 2, 𝜆1 = 1∕5 and 𝜆2 = 6, the two-soliton solution

also can be given by Eq. (20). The spatial domain 𝛺 = [−12, 13] is
divided into 425 segments, while the time domain [𝑡 , 𝑡 ] = [−0.5, 0.5]
12

0 1
is divided into 200 segments (with a training time step of 100 and
the remaining 100 segments used for extrapolation predictions). After
training for 1000 epochs, the loss reaches 1.678600𝐸 − 06 after 702 s.
Similarly, training and predictions are conducted in the time domain
𝑡 ∈ [−0.5, 0]. The L2 error for component 𝐼𝑛 reaches 1.162890𝐸 − 03,
while that for component 𝑉𝑛 reaches 7.419600𝐸−04. We further conduct
the extrapolation predictions for the next 100 time steps. The L2 error
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Table 4
Errors of one-soliton solution of self-dual network equation with or without the assistance of pseudo grid training (1000 epoch).

Without pseudo grid (681 s for training time) With pseudo grid (698 s for training time)

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

Interior 2.973470E−03 2.349200E−03 2.679000E−03 2.672990E−03 3.255200E−03 2.978890E−03
Extrapolation 2.519825E−01 2.248192E−01 2.387621E−01 5.417660E−03 6.182490E−03 5.813380E−03
Fig. 17. The numerical two-soliton solution of self-dual network equation for the component 𝐼𝑛 is presented. (a) illustrates the density plot of component 𝐼𝑛, with the lower
sub-figure depicting the prediction within the time domain 𝑡 ∈ [−0.5, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 0.5]. The
white dashed lines indicate the selected moments at 𝑡 = −0.45 and 𝑡 = 0.45; (b1)–(b3) show the temporal evolution of two-soliton solution at three different moments. (c) presents
the density plot of the lattice error (predicted solution minus exact solution).
Table 5
Errors of two-soliton solution of self-dual network equation with or without the assistance of pseudo grid training (1000 epoch).

Without pseudo grid (674 s for training time) With pseudo grid (702 s for training time)

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

Interior 6.788400E−04 4.168900E−04 5.639000E−04 1.162890E−03 7.419600E−04 9.763600E−04
Extrapolation 6.503445E−02 1.116403E−01 9.125480E−02 9.618850E−03 1.556281E−02 1.292342E−02
of component 𝐼𝑛 in the time domain 𝑡 ∈ [0, 0.5] reaches 9.618850𝐸 −03,
and for component 𝑉𝑛 reaches 1.556281𝐸 − 02.

Figs. 17 and 18 present the density plots, temporal evolution plots,
and error dynamics plots of the two-soliton solutions for Eq. (17) based
on the PG-PhyCRNet method with pseudo grid. In (a), two soliton
can be seen moving in the negative spatial direction over time. (b1)–
(b3) depict the temporal evolution of lattice points with the aid of
pseudo grid (gray dashed lines); (b1) and (b2) show predictions within
the training region, while (b3) shows extrapolation results outside the
time domain. The close match between predicted and exact solutions
demonstrates that the model performs well in learning the two-soliton
solution. Additionally, Fig. 19 provides three-dimensional plots of the
numerical solutions 𝐼𝑛 and 𝑉𝑛. With an overall average generalization
error of 9.763600𝐸 − 04 for predictions within the time domain 𝑡 ∈
[−0.5, 0] and 1.292342𝐸−02 for extrapolation outside the training range
𝑡 ∈ [0, 0.5], the neural network successfully captures the dynamic
behavior of the two-soliton solution. The prediction accuracy for ex-
trapolation is comparable to that within the region and does not exhibit
significant differences.

Table 5 compares the PG-PhyCRNet model’s performance in learn-
ing the two-soliton solution of Eq. (17) with and without the assistance
of pseudo grid. Similar to the numerical results in the previous sub-
section, the PG-PhyCRNet method assisted by pseudo grid performs
significantly better in capturing the lattice point features outside the
time domain when training the two-soliton of Eq. (17). It is observed
that the one-soliton with a narrower wave width is more effectively
learned using the PG-PhyCRNet method with pseudo grid assistance.
In contrast, the two-soliton solution trained using PhyCRNet without
pseudo grid assistance is poorly predicted outside the time domain.
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5. Analysis and discussion

5.1. The effect of random initialization and spatial domain griding

Since the weights of the neural network are initialized using Xavier
initialization, the setting of the parameter seed in the code will affect
the numerical results. Besides, the integer lattice points learn with
boundary information, whereas the pseudo grid lack information dur-
ing training, resulting in a high degree of freedom in their numerical
solutions. To investigate the stability of integer lattice points in the
presence of the pseudo grid in PG-PhyCRNet, numerical experiments
with different randomly generated seed values and numbers of pseudo
grid are conducted to observe their impact on the results (repeated
experiments are shown in Tables 6–20 in the Appendix):
(1) The L2 generalization errors obtained under five different random
seeds do not differ significantly, indicating that the degree of freedom
of pseudo grid does not greatly impact the prediction and extrapolation
of integer lattice points in multiple repeated experiments. Although
some accuracy within the time domain may be lost or oscillations may
appear in the background waves on pseudo grid, the PG-PhyCRNet
method with the aid of pseudo grid still performs well in predicting
solitary waves as mentioned in this paper.
(2) The prediction of different soliton solutions is affected by the
density of pseudo grid. In Fig. 20, we show the effect of spatial griding
on the prediction of soliton solutions of the Toda lattice and self-dual
network equations under different seeds. It can be observed that as
the density of pseudo grid increases, the prediction error within the
given spatiotemporal region increases until it stabilizes. Conversely, the

extrapolation prediction error outside the time region decreases until it
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Fig. 18. The numerical two-soliton solution of self-dual network equation for the component 𝑉𝑛 is presented. (a) illustrates the density plot of component 𝑉𝑛, with the lower
sub-figure depicting the prediction within the time domain 𝑡 ∈ [−0.5, 0], and the upper sub-figure representing the extrapolated prediction within the time domain 𝑡 ∈ [0, 0.5]. The
white dashed lines indicate the selected moments at 𝑡 = −0.45 and 𝑡 = 0.45; (b1)–(b3) show the temporal evolution of two-soliton solution at three different moments. (c) presents
the density plot of the lattice error (predicted solution minus exact solution).
Fig. 19. Three-dimensional plots of the numerical solution of two-soliton for self-dual network equation, where the solid black line indicates the prediction within the time domain
𝑡 ∈ [−0.5, 0], and the gray dashed line indicates the extrapolated prediction within the time domain 𝑡 ∈ [0, 0.5]. Colored surfaces represent predicted solutions with pseudo grid.
stabilizes. Therefore, it is necessary to choose an appropriate number
of pseudo grid to participate in the model training.

5.2. Remark

The presence of excessive pseudo grid can lead to their weights be-
ing overly emphasized in the loss function, while the weights of integer
lattice points are relatively diminished. Consequently, there is a certain
loss when learning the integer lattice points within the spatiotempo-
ral domain. One significant characteristic of CNNs is weight sharing,
which imposes constraints on the weights of convolutional kernels by
the integer lattice points during the training process. Therefore, the
accuracy of learning the integer lattice points within the spatiotemporal
domain does not suffer severely. However, the existence of pseudo grid
makes it easier for the convolutional kernels to capture the dynamic
behavioral characteristics of solitons. In other words, the PG-PhyCRNet
method trained with pseudo grid learns a regression problem of curves
rather than the dynamics of individual lattice points. Consequently,
when the width of a soliton is small, too few trend characteristics of
integer lattice points are captured at its steep position (where the slope
of the function at a certain point is sufficiently large). This explains
why the extrapolated performance of PG-PhyCRNet without the assis-
tance of pseudo grid is poor or significantly worse (see Tables 6–20).
Conversely, PG-PhyCRNet with the assistance of pseudo grid makes it
easier for the convolutional kernels to capture the evolutionary trend
of solitons, thereby enhancing the extrapolation capability of integer
lattice points beyond the time domain.
14
6. Conclusions

In conventional discrete learning methods, most discussions fo-
cus on continuous nonlinear PDEs. The dynamics of the solutions to
the corresponding continuous equations are indirectly explored by di-
rectly discretizing (using difference schemes) the continuous equations.
Therefore, another discrete format of nonlinear integrable equations:
integrable NLEs, are discussed via the discrete deep learning methods
(PhyCRNet method) in this paper. These NLEs avoid the stability and
convergence issues that arise from discretizing continuous equations
with finite difference schemes in numerical calculations.

In integrable NLEs, the translation operator replaces the higher-
order dispersion terms in continuous equations. Therefore, based on
the ideas presented in Ref. [38], we propose the PG-PhyCRNet method
specifically designed for solving integrable lattice equations. This
method also cleverly addresses the difficulties that different waveforms
of lattice solitons present to discrete learning training. The addition of
pseudo grid enables the model to comprehensively learn various lattice
soliton solutions:

• For lattice solitons with slower wave speeds and smoother wave-
forms, we train and predict directly on integer lattice points.
In numerical experiments, we used a one-soliton of the Toda
lattice and rational solitons of the self-dual network equation. The
numerical results show that both the internal predictions and ex-
trapolated predictions are excellent within the given space–time
domain.

• For lattice solitons with faster wave speeds and steeper wave-
forms, we train and predict using both pseudo grid and integer
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Fig. 20. Effect of spatial griding on the prediction of soliton solutions of the Toda lattice and self-dual network equations under different seeds. The red region indicates the L2
error range predicted inside the given time domain, while the blue region indicates the L2 error range predicted outside the time domain.
lattice points. In numerical experiments, we used two-solitons
of the Toda lattice and one- and two-solitons of the self-dual
network equation. The numerical results indicate that the method
of training with pseudo grid significantly outperforms the method
without pseudo grid in terms of extrapolation capability.

The weight sharing in CNNs alleviates the errors’ balance be-
tween pseudo grid and integer lattice points in PG-PhyCRNet training.
Through the repeated experiments, PG-PhyCRNet with pseudo grid
method sacrifices a small portion of training accuracy in the spa-
tiotemporal domain compared to the version without pseudo grid.
However, it exhibits excellent performance in capturing soliton trends
and enhancing the model’s extrapolation capability for solitons.

The PG-PhyCRNet method proposed for integrable NLEs is very
necessary, as it provides a new perspective for solving continuous
integrable systems using discrete deep learning methods. Of course,
the numerical experiments in this paper only involve solving different
types and structures of solitons. It is worth studying the generalization
capability of this model for more complex localized wave solutions,
such as rogue waves, breathers, and interaction solutions. Additionally,
embedding certain properties of integrable discrete equations (such as
discrete conservation laws, discrete Hamiltonian structures, continuous
limits, and recursion operators) into the network to achieve different
goals is something we aim to explore in the future.
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Appendix A. Repeated experimental and relative L𝟐 errors for
training two-soliton solution for Toda lattice in the spatial domain
[−𝟏𝟐, 𝟏𝟑]

See Tables 6–10.

Appendix B. Repeated experimental and relative L𝟐 errors for
training one-soliton solution for self-dual network equation in the
spatial domain [−𝟏𝟐, 𝟏𝟑]

See Tables 11–15.
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Table 6
Based on 25 grid numbers’ training.

Seed Interior Extrapolation

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

100 1.004390E−03 1.066160E−03 1.024560E−03 9.199270E−02 1.062825E−01 9.679334E−02
1100 1.141840E−03 1.187920E−03 1.156780E−03 9.432476E−02 1.106409E−01 9.983428E−02
2100 1.287950E−03 1.509930E−03 1.362890E−03 9.076977E−02 1.046573E−01 9.543207E−02
3100 1.166190E−03 1.433770E−03 1.257990E−03 1.198982E−01 1.246799E−01 1.214482E−01
4100 1.620150E−03 1.387780E−03 1.549620E−03 1.182343E−01 1.264537E−01 1.209242E−01
Table 7
Based on 125 grid numbers’ training.

Seed Interior Extrapolation

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

100 1.358250E−03 1.373920E−03 1.363290E−03 9.823230E−03 1.318727E−02 1.101165E−02
1100 1.290880E−03 1.225100E−03 1.270210E−03 2.419791E−02 3.235194E−02 2.707461E−02
2100 1.295460E−03 1.089890E−03 1.233440E−03 1.211099E−02 1.750363E−02 1.406270E−02
3100 1.346560E−03 1.188820E−03 1.298190E−03 1.712007E−02 2.405495E−02 1.960698E−02
4100 1.891910E−03 1.528060E−03 1.783620E−03 1.975810E−02 2.388229E−02 2.116490E−02
Table 8
Based on 225 grid numbers’ training.

Seed Interior Extrapolation

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

100 1.454350E−03 1.575410E−03 1.494140E−03 3.424500E−03 3.625440E−03 3.490030E−03
1100 1.783300E−03 1.573400E−03 1.718950E−03 3.590040E−03 3.274400E−03 3.492180E−03
2100 1.462330E−03 1.363670E−03 1.431510E−03 2.730460E−03 2.687530E−03 2.716800E−03
3100 1.462900E−03 1.434220E−03 1.453790E−03 3.558970E−03 3.347580E−03 3.492750E−03
4100 1.597290E−03 1.370320E−03 1.528360E−03 3.498280E−03 3.283320E−03 3.430990E−03
Table 9
Based on 325 grid numbers’ training.

Seed Interior Extrapolation

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

100 1.789990E−03 1.458460E−03 1.691030E−03 3.454720E−03 3.451360E−03 3.453650E−03
1100 1.762830E−03 1.286240E−03 1.625650E−03 3.959900E−03 2.963380E−03 3.670690E−03
2100 1.523710E−03 1.285470E−03 1.451770E−03 2.942450E−03 3.027140E−03 2.969800E−03
3100 1.479490E−03 1.489380E−03 1.482660E−03 2.669840E−03 3.111110E−03 2.818510E−03
4100 1.748590E−03 1.844100E−03 1.779700E−03 4.281690E−03 4.658000E−03 4.405560E−03
Table 10
Based on 425 grid numbers’ training.

Seed Interior Extrapolation

𝑢𝑛 𝑣𝑛 Total 𝑢𝑛 𝑣𝑛 Total

100 1.645460E−03 1.670310E−03 1.653450E−03 3.941530E−03 3.485480E−03 3.801610E−03
1100 1.760540E−03 1.628470E−03 1.719400E−03 3.398780E−03 3.257960E−03 3.354380E−03
2100 1.559400E−03 1.554180E−03 1.557730E−03 3.227280E−03 3.319680E−03 3.257120E−03
3100 1.570980E−03 1.491500E−03 1.546000E−03 2.995290E−03 3.611780E−03 3.205410E−03
4100 1.588130E−03 1.524420E−03 1.568030E−03 2.973770E−03 3.200140E−03 3.048010E−03
Table 11
Based on 25 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 2.973470E−03 2.349200E−03 2.679000E−03 2.519825E−01 2.248192E−01 2.387621E−01
1100 3.114740E−03 2.687380E−03 2.908520E−03 3.546937E−01 3.933042E−01 3.745328E−01
2100 2.545430E−03 3.396040E−03 3.001810E−03 2.538650E−01 2.427684E−01 2.483683E−01
3100 2.603690E−03 3.033760E−03 2.827310E−03 2.831439E−01 2.339709E−01 2.596781E−01
4100 2.919450E−03 2.578170E−03 2.753790E−03 2.595958E−01 2.557138E−01 2.576585E−01
16
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Table 12
Based on 125 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝐼𝑛 𝑉𝑛 Total

100 2.089710E−03 3.179500E−03 2.691360E−03 2.655297E−02 1.768221E−02 2.254981E−02
1100 2.173330E−03 2.301320E−03 2.238360E−03 6.974361E−02 3.462078E−02 5.502694E−02
2100 2.144920E−03 2.278520E−03 2.212860E−03 3.404159E−02 4.308837E−02 3.883774E−02
3100 2.269970E−03 3.865790E−03 3.171380E−03 1.751873E−01 9.917303E−02 1.422795E−01
4100 3.288780E−03 3.420710E−03 3.355510E−03 3.574693E−02 3.701973E−02 3.639008E−02
Table 13
Based on 225 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 2.028130E−03 3.893660E−03 3.106000E−03 9.274210E−03 8.104070E−03 8.707720E−03
1100 1.755860E−03 2.602480E−03 2.220680E−03 5.947070E−03 7.775850E−03 6.923810E−03
2100 2.720080E−03 3.534910E−03 3.154680E−03 6.701000E−03 7.475810E−03 7.099710E−03
3100 2.570200E−03 3.872700E−03 3.287810E−03 1.070728E−02 9.861580E−03 1.029233E−02
4100 2.356570E−03 3.270510E−03 2.851250E−03 6.671430E−03 6.627350E−03 6.649380E−03
Table 14
Based on 325 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 2.672990E−03 3.255200E−03 2.978890E−03 5.417660E−03 6.182490E−03 5.813380E−03
1100 2.551020E−03 3.415600E−03 3.015270E−03 6.496750E−03 8.152780E−03 7.372960E−03
2100 2.662000E−03 3.262530E−03 2.978000E−03 5.536020E−03 6.573370E−03 6.077840E−03
3100 2.680300E−03 3.684550E−03 3.222720E−03 8.051520E−03 8.241780E−03 8.147390E−03
4100 1.864270E−03 3.125680E−03 2.574600E−03 6.860780E−03 8.198070E−03 7.560300E−03
Table 15
Based on 425 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 4.203370E−03 3.599190E−03 3.912400E−03 1.030187E−02 9.803130E−03 1.005513E−02
1100 2.693260E−03 3.412580E−03 3.074700E−03 6.672860E−03 6.490600E−03 6.582190E−03
2100 2.395680E−03 3.745470E−03 3.145100E−03 1.060885E−02 8.064490E−03 9.420590E−03
3100 2.415120E−03 3.642350E−03 3.091390E−03 2.550555E−02 1.864582E−02 2.233421E−02
4100 2.034670E−03 2.896380E−03 2.503680E−03 5.263380E−03 5.644690E−03 5.457720E−03
Table 16
Based on 25 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 6.723700E−04 3.469900E−04 5.357300E−04 6.196126E−02 1.012896E−01 8.387203E−02
1100 6.788400E−04 4.168900E−04 5.639000E−04 6.503445E−02 1.116403E−01 9.125480E−02
2100 6.811500E−04 4.732600E−04 5.869600E−04 6.264318E−02 1.059869E−01 8.695842E−02
3100 6.901300E−04 3.579200E−04 5.504500E−04 6.329838E−02 1.111489E−01 9.033848E−02
4100 6.852900E−04 4.495200E−04 5.800600E−04 6.519826E−02 1.171786E−01 9.470403E−02
Table 17
Based on 125 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 6.849500E−04 5.057600E−04 6.024700E−04 5.959053E−02 1.000647E−01 8.226188E−02
1100 6.144300E−04 6.327200E−04 6.236000E−04 4.975587E−02 1.059173E−01 8.262451E−02
2100 7.169700E−04 1.080460E−03 9.160800E−04 3.486782E−02 9.738489E−02 7.301121E−02
3100 7.115200E−04 4.221800E−04 5.856700E−04 3.314541E−02 8.553515E−02 6.475365E−02
4100 6.964000E−04 5.303800E−04 6.193600E−04 6.024640E−02 1.116978E−01 8.962430E−02
Appendix C. Repeated experimental and relative L𝟐 errors for
training two-soliton solution for self-dual network equation in the
spatial domain [−𝟏𝟐, 𝟏𝟑]
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See Tables 16–20.
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Table 18
Based on 225 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 9.330600E−04 6.861400E−04 8.195200E−04 4.437688E−02 4.155745E−02 4.299681E−02
1100 6.980900E−04 6.734000E−04 6.859100E−04 1.297905E−02 2.655921E−02 2.087294E−02
2100 9.907600E−04 1.158130E−03 1.077310E−03 1.468222E−02 3.614822E−02 2.754275E−02
3100 1.015390E−03 1.683930E−03 1.388930E−03 4.295351E−02 2.244343E−02 3.431418E−02
4100 7.889300E−04 6.640200E−04 7.294500E−04 4.236627E−02 5.771308E−02 5.058945E−02
Table 19
Based on 325 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 8.840300E−04 1.253540E−03 1.083790E−03 1.548189E−02 2.359871E−02 1.993888E−02
1100 1.013320E−03 1.068150E−03 1.040970E−03 1.521999E−02 2.901112E−02 2.313511E−02
2100 6.687600E−04 1.028990E−03 8.669600E−04 1.875190E−02 2.473241E−02 2.193309E−02
3100 1.055200E−03 1.688590E−03 1.406540E−03 1.844988E−02 2.791708E−02 2.364030E−02
4100 8.523800E−04 8.927600E−04 8.727100E−04 2.094418E−02 4.615326E−02 3.578369E−02
Table 20
Based on 425 grid numbers’ training.

Seed Interior Extrapolation

𝐼𝑛 𝑉𝑛 Total 𝑇𝑛 𝑉𝑛 Total

100 9.886800E−04 1.558600E−03 1.303840E−03 9.613700E−03 1.143157E−02 1.055762E−02
1100 1.162890E−03 7.419600E−04 9.763600E−04 9.618850E−03 1.556281E−02 1.292342E−02
2100 6.929300E−04 1.483680E−03 1.156170E−03 1.360377E−02 2.164958E−02 1.806173E−02
3100 1.106100E−03 1.597920E−03 1.373070E−03 9.200870E−03 1.103213E−02 1.015362E−02
4100 9.166300E−04 1.315060E−03 1.132580E−03 2.262608E−02 3.000274E−02 2.655471E−02
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