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Abstract Two Darboux transformations of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka (CDGKS)
equation and (2+1)-dimensional modified Korteweg-de Vries (mKdV) equation are constructed through the Darboux
matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux trans-
formations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking
collisions of the (2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going
bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and
kink soliton solutions of the (2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate
the interactions of water waves in shallow water.
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1 Introduction

The study of finding explicit solutions for diverse soli-

ton equations has been extremely important but compli-

cated in the nonlinear science. So far, several system-

atic methods have been developed to obtain explicit so-

lutions for the 1+1 dimensional soliton equations such

as the inverse scattering transformations(IST),[1] Dar-

boux transformation (DT),[2−11] bilinear method,[12−13]

symmetry approach,[14−20] nonlinearization approach of

Lax pairs,[21] symmetry constraint approach,[22−23] al-

gebraic curve method,[24−25] extended-tanh function

method[26−27] and so on. Among them, DT is one of

the most effective and powerful approaches, since start-

ing from one trivial seed solution, explicit nontrivial N -

soliton solution can be obtained by applying the DT

N times.[2−3] But for the (2+1)-dimensional case, the

situation is not so good that it becomes more compli-

cated and difficult to find its explicit solutions.[2] Nev-

ertheless, the nonlinearization approach of Lax pairs

and symmetry constraint approach provide an effective

way to solve the (2+1)-dimensional nonlinear equations,

which separate the (2+1)-dimensional nonlinear equa-

tions into two (1+1)-dimensional integrable nonlinear

equations.[22−23,28−29]

In this paper, we consider two (2+1)-dimensional non-

linear equations, which are both closely related to the

modified Korteweg-de Vries equation and have important

applications in the study of the shallow water.[10,28−29]

The first equation is the (2+1)-dimensional Caudrey–

Dodd–Gibbon–Kotera–Sawaka (CDGKS) equation

36qt = −qxxxxx − 15(qqxx)x − 45q2qx + 5qxxy + 15qqy

+ 15qx∂−1
x qy + 5∂−1

x qyy , (1)

and when introducing the constraint[23,28] q = −2u2,

Eq. (1) can be decomposed into two (1+1)-dimensional

integrable equations, which are the modified Korteweg-de

Vries equation and one high-order equation in the mKdV

hierarchy

uy = uxxx − 6u2ux , (2)

4ut = uxxxxx − 10u2uxxx − 40uuxuxxx

− 10u3
x + 30u4ux . (3)

Equation (1) was firstly proposed by Konopelchenko and

Dubovsky,[30] and many important results of it have been

obtained[23,28,30−35] such as the DT and the Bäcklund

transformation based on a third-order linear operator

by Geng,[32] quasi-periodic solutions by Cao, Wu, and

Geng,[28] nonlocal symmetries by Lou and Hu,[31] multiple

soliton solutions by Wazwaz[33] and so on.

The other (2+1)-dimensional nonlinear equation dis-

cussed in the present paper is the (2+1)-dimensional mod-

ified Korteweg-de Vries (mKdV) equation

4qt = qxxx − 6q2qx − 6qx∂−1
x qy + 3∂−1

x qyy − 18qqy , (4)
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which is different from the modified Kadomtsev–

Petviashvili (mKP) equation.[10] The equation was pro-

posed by Geng and Cao[29] with the help of first two non-

trivial equations in the Kaup-Newell(KN) hierarchy[36]

uy = −uxx − 2(u2v)x, vy = vxx − 2(uv2)x , (5)

ut = uxxx + 6(uvux + u3v2)x ,

vt = vxxx − 6(uvvx − u2v3)x , (6)

and if u and v are the solutions of Eqs. (5) and (6),

the constraint[29] q = uv gives the solution of Eq. (4).

Some crucial results have been obtained for the KN

system[29,37−44] or the corresponding equations. For in-

stance, the nonlinearization of the KN eigenvalue prob-

lem under the Bargmann constraint and the involutive

solution of the well-known derivative Schrödinger (NLS)

equation were given by Qiao,[40] the quasi-periodic solu-

tion of Eq.(4) through introducing the Abel–Jacobi coor-

dinates was obtained by Geng and Cao.[29] Especially, in

Ref. [39] some one and two-soliton solutions of Eqs. (5)

and (6) were given.

In this paper, based on the DTs in Refs. [32], [37]–[39],

two different forms of DTs for Eqs. (1) and (4) are con-

structed through the Darboux matrix method,[2] respec-

tively. N -soliton solutions of these two (2+1)-dimensional

nonlinear equations can be given by applying the DTs

N times. By choosing adequate seed solutions and spec-

tral parameters, the right-going bright single-soliton so-

lution and interactions of two and three-soliton overtak-

ing collisions of Eq. (1) are studied, and what is inter-

esting is that the small-amplitude solitons overtake the

large-amplitude ones. The right-going bright and left-

going dark single-soliton solutions, the interactions of two

and three-soliton overtaking collisions of Eq. (4) are re-

searched, the large-amplitude solitons naturally overtake

the small-amplitude ones. Moreover, some kink soliton

solutions[41−42] of Eq. (4) are given by choosing different

kind of seed solution.
The present paper can be organized as follows. In

Sec. 2, two DTs of the (2+1)-dimensional CDGKS equa-

tion (1) and (2+1)-dimensional mKdV equation (4) are

constructed through the Darboux matrix method. In

Sec. 3, N -soliton solutions of Eqs. (1) and (4) are given,

and some interesting figures are plotted.

2 Darboux Transformation

2.1 Darboux Transformations of (2+1)-Dimen-

sional CDGKS

In this section, we establish two DTs for the (2+1)-

dimensional CDGKS equation (1) by the Darboux matrix

method. Firstly we consider the Lax pairs of it

dφx = U(λ)φ, U(λ) =

(

u λ

1 −u

)

, (7)

φy = V1(λ)φ ,

V1(λ) =

(

4uλ + uxx − 2u3 4λ2 − (2u2 + 2ux)λ

4λ − 2u2 + 2ux −4uλ− uxx + 2u3

)

, (8)

φt = V2(λ)φ, V2(λ) =

(

V
(11)
2 V

(12)
2

V
(21)
2 −V

(11)
2

)

, (9)

here λ is the spectral parameter, u is the potential, φ =
(φ1, φ2)

T, and

V
(11)
2 = 4uλ2 + (uxx − 2u3)λ +

1

4
uxxxx −

5

2
uu2

x −
5

2
u2uxx +

3

2
u5,

V
(12)
2 = 4λ3 − (2u2 + 2ux)λ2 +

(1

2
u2

x − uuxx +
3

2
u4 −

1

2
uxxx + 3u2ux

)

λ ,

V
(21)
2 = 4λ2 − (2u2 − 2ux)λ − uuxx +

1

2
u2

x +
3

2
u4 +

1

2
uxxx − 3u2ux ,

by using the compatibility condition of (7), (8), and (9), one can obtain Eqs. (2) and (3) naturally.

Next, in order to construct the Darboux matrix for the above spectral problem, we consider the gauge transforma-

tion[2,10−11]

φ̄ = Tφ , (10)

where T = T (x, y, t, λ) is a 2 × 2 matrix, and under the above transformation the original Lax pairs can be changed

into the following new ones

φ̄x = Ū φ̄, Ū = (Tx + TU)T−1 , (11)

φ̄y = V̄1φ̄, V̄1 = (Ty + TV1)T
−1, (12)

φ̄t = V̄2φ̄, V̄2 = (Tt + TV2)T
−1. (13)

If the new Lax pairs have the same type as the original ones, we call the gauge transformation Darboux transformation.

To this end, by considering the form of U , two DTs of Eq. (1) can be constructed.

(i) The first Darboux transformation

Denote that

T =

(

−λ1σ λ

1 −σ−1

)

, (14)
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here σ = φ2/φ1, and (φ1 = φ1(x, y, t, λ1), φ2 = φ2(x, y, t, λ1))
T is one basic solution of the spectral problem (7)–(9)

with λ = λ1. Then from the above definitions, we have

detT = −(λ − λ1) , (15)

and the following Riccati equations

σx = 1 − 2σu − λ1σ
2, (16)

σy = 4λ1 − 2u2 + 2ux + (4u3 − 8λ1u − 2uxx)σ − [4λ2
1 − (2u2 + 2ux)λ1]σ

2, (17)

σt = 4λ2
1 − 2λ1u

2 + 2λ1ux − uuxx +
1

2
u2

x +
3

2
u4 +

1

2
uxxx − 3u2ux

+
(

4λ1u
3 − 8uλ2

1 − 2λ1uxx −
1

2
uxxxx + 5uu2

x + 5u2uxx − 3u5
)

σ

−
[

4λ3
1 − (2u2 + 2ux)λ2

1 +
(1

2
u2

x − uuxx +
3

2
u4 −

1

2
uxxx + 3u2ux

)

λ1

]

σ2. (18)

Based on the above facts, the following theorem can be directly given.

Theorem 1 From a known solution u of Eqs. (2) and (3), the following explicit formula

ū = −u − λ1σ + σ−1 (19)

gives the new special solution of Eqs. (2) and (3), then the new solution of the (2+1)-dimensional CDGKS equation

(1) can be obtained by the constraint q̄ = −2ū2.

(ii) The second Darboux transformation

Let

T =

(

λ −σ−1λ

−λ1σ λ

)

, (20)

ū = u + λ1σ − σ−1. (21)

Here

detT = λ(λ − λ1) , (22)

and σ is the same one defined in (14). Similar to first DT, we can also find that the gauge transformation (10)

determined by the above matrix (20) is also the Darboux transformation, the transformation between the old potential

and the new one is presented by (21).

2.2 Darboux Transformations of (2+1)-Dimensional mKdV

In this section, we study DTs for the (2+1)-dimensional mKdV equation (4). The Lax pairs of it are

φx = M(λ)φ, M(λ) =

(

− 1
2λ λu

v 1
2λ

)

, (23)

φy = N1(λ)φ, N1(λ) =

(

− 1
2λ2 + uvλ uλ2 − (ux + 2u2v)λ

vλ + vx − 2uv2 1
2λ2 − uvλ

)

, (24)

φt = N2(λ)φ, N2(λ) =

(

N
(11)
2 N

(12)
2

N
(21)
2 −N

(11)
2

)

, (25)

with

N
(11)
2 = −

1

2
λ3 + uvλ2 + (uvx − uxv − 3u2v2)λ ,

N
(12)
2 = uλ3 − (ux + 2u2v)λ2 + (uxx + 6uvux + 6u3v2)λ ,

N
(21)
2 = vλ2 + (vx − 2uv2)λ + vxx − 6uvvx + 6u2v3.

Here λ is the spectral parameter, u and v are potentials, φ = (φ1, φ2)
T. By using the compatibility condition of the

above Lax pairs, one can directly obtain Eqs. (5) and (6).

Similarly to the above section, two DTs can be obtained according to the form of M .

(i) The first Darboux transformation

Suppose that

T =

(

(1 − δu)−1λ − λ1 −u(1 − δu)−1λ

−δ 1

)

, (26)
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here δ = φ2/φ1, and (φ1 = φ1(x, y, t, λ1), φ2 = φ2(x, y, t, λ1))
T is one basic solution of the spectral problem (23)–(25)

with λ = λ1. Then it follows that

detT = (λ − λ1) , (27)

and the Riccati equations

δx = v + λ1δ − λ1uδ2, (28)

δy = vλ1 + vx − 2uv2 + (λ2
1 − 2uvλ1)δ − [uλ2

1 − (ux + 2u2v)λ1]δ
2, (29)

δt = vλ2
1 + (vx − 2uv2)λ1 + vxx − 6uvvx + 6u2v3 + [λ3

1 − 2uvλ2
1 − 2(uvx − uxv)λ1

+ 6u2v2λ1]δ − [uλ3
1 − (ux + 2u2v)λ2

1 + (uxx + 6uvux + 6u3v2)λ1]δ
2. (30)

Based on the above facts, the following theorem can be given similar to the one given in the above section.

Theorem 2 For a known solution (u, v) of Eqs. (5) and (6), the explicit calculation form

ū =
−uλ1 + λ1u

2δ − ux − u2v

(−1 + δu)2
, v̄ = δ(1 − δu) (31)

gives the new special solution of Eqs. (5) and (6), and the new solution of the (2+1)-dimensional mKdV equation (4)

can be obtained by the constraint q̄ = ūv̄.

(ii) The second Darboux transformation

Assume that

T =

(

−δλ λ

1 −λ−1
1 δ−1λ

)

, (32)

ū = λ1δ(−1 + δu), v̄ =
v + λ1δ

λ1δ2
. (33)

Here

detT = λ
( λ

λ1
− 1
)

, (34)

and δ is the same one defined in (26). Equally, we can also find that T determined by (32) is the Darboux matrix, the

transformation from the old potentials into the new ones is given by (33).

3 Explicit Solutions

In this section, we apply the DTs (14) and (26) given in Subsecs. 2.1 and 2.2 to construct new analytical soliton

solutions for Eqs. (1) and (4). The interactions of three-soliton solutions for this two equations are shown. The DTs

(20) and (32) can be similarly discussed, here we refrain from presenting it.

3.1 Explicit Solutions of (2+1)-Dimensional CDGKS

We start from a constant solution u = u0 (u0 6= 0) of Eqs. (2) and (3), and substituting it into the linear Lax pairs

(7)–(9) with λ = λj , two basic solutions can be chosen

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

cosh ξj
√

u2
0 + λj sinh ξj/λj − u0 cosh ξj/λj

)

, j is odd number ,

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

sinh ξj
√

u2
0 + λj cosh ξj/λj − u0 sinh ξj/λj

)

, j is even number ,

with

ξj =
√

u2
0 + λj

[

x + 2(2λj − u2
0)y +

1

2
(8λ2

j − 4u2
0λj + 3u4

0)t
]

.

Case 1 Using the DT (14) one time, we have

σ1 =
1

λ1

√

u2
0 + λ1 sinh ξ1 − u0 cosh ξ1

cosh ξ1
=

1

λ1

(

√

u2
0 + λ1 tanh ξ1 − u0

)

.

With the aid of (19), we obtain single-soliton solution of Eqs. (2) and (3)

u1 = −u0 − λ1σ1 + σ−1
1 = −

√

u2
0 + λ1 tanh ξ1 +

λ1

(
√

u2
0 + λ1 tanh ξ1 − u0)

, (35)

and the constraint q1 = −2u2
1 gives the single-soliton solution of Eq. (1).



No. 4 Communications in Theoretical Physics 427

Case 2 Using DT (14) two times, we have

φ2[1] = T (λ1, λ2)φ
(2) =

(

−λ1σ1 λ2

1 −σ−1
1

)(

sinh ξ2
√

u2
0 + λ2 cosh ξ2/λ2 − u0 sinh ξ2/λ2

)

=

(

−λ1σ1 sinh ξ2 +
√

u2
0 + λ2 cosh ξ2 − u0 sinh ξ2

sinh ξ2 − (
√

u2
0 + λ2/σ1λ2) cosh ξ2 + (u0/σ1λ2) sinh ξ2

)

,

σ2 =
σ1λ2 sinh ξ2 −

√

u2
0 + λ2 cosh ξ2 + u0 sinh ξ2

(−λ1σ1 sinh ξ2 +
√

u2
0 + λ2 cosh ξ2 − u0 sinh ξ2)σ1λ2

=
σ1λ2 tanh ξ2 −

√

u2
0 + λ2 + u0 tanh ξ2

(−λ1σ1 tanh ξ2 +
√

u2
0 + λ2 − u0 tanh ξ2)σ1λ2

.

By using (19), we obtain two-soliton solution of Eqs. (2) and (3)

u2 = −u1 − λ2σ2 + σ−1
2 =

√

u2
0 + λ1 tanh ξ1 −

λ1

(
√

u2
0 + λ1 tanh ξ1 − u0)

−
σ1λ2 tanh ξ2 −

√

u2
0 + λ2 + u0 tanh ξ2

(−λ1σ1 tanh ξ2 +
√

u2
0 + λ2 − u0 tanh ξ2)σ1

+
(−λ1σ1 tanh ξ2 +

√

u2
0 + λ2 − u0 tanh ξ2)σ1λ2

σ1λ2 tanh ξ2 −
√

u2
0 + λ2 + u0 tanh ξ2

, (36)

then the constraint q2 = −2u2
2 gives the two-soliton solution of Eq. (1).

Fig. 1 (a), (b), and (c) Interaction of the right-going bright three-soliton overtaking collision of u0 = 2, λ1 = −2,
λ2 = −1.5, λ3 = −1 at t = 0, y = −3, 0 and 3; The small-amplitude solitons overtake the large-amplitude ones.

Continuing the above process, we get the three-soliton solution of Eq. (1), see Fig. 1. Next we have

φj [j − 1] =

(

−λj−1σj−1 λj

1 −σ−1
j−1

)(

−λj−2σj−2 λj

1 −σ−1
j−2

)

· · ·

(

−λ1σ1 λj

1 −σ−1
1

)(

φ
(j)
1

φj
2

)

,

σj =
φj2[j − 1]

φj1[j − 1]
, j = 3, 4, . . . , N ,

therefore the following formula can be given.

Case N Using DT (14) N times, N -soliton solution of Eqs. (2) and (3) can be expressed as follows

uN = −u0 −

N
∑

j=1

λjσj +
N
∑

j=1

σ−1
j , (37)

and the N -soliton solution of Eq. (1) is given by the constraint qN = −2u2
N .

3.2 Explicit Solutions of (2+1)-Dimensional mKdV

In this section, we consider three different kinds of constant seed solutions of Eq. (4), then three different types of

soliton solutions of Eq. (4) are obtained.

(i) Choose (u, v) = (u0, 1) (u0 6= 0) as the seed solution, substituting it into the linear equations (23)–(25), two

basic solutions can be chosen

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

cosh ξj
Aj

Cj
sinh ξj −

Bj

Cj
cosh ξj

)

, j is odd number ,

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

sinh ξj
Aj

Cj
cosh ξj −

Bj

Cj
sinh ξj

)

, j is even number .

Here

ξj =

√

(λj + 4u0)λj [x + (λj − 2u0)y + (λ2
j − 2λju0 + 6u2

0)t]

2
,
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Aj = (6
√

λju
2
0 + λ

3/2
j (λj − 2u0))

√

λj + 4u0, Bj = −λ3
j + 2u0λ

2
j − 6u2

0λj , Cj = 2u0λ
3
j − 4u2

0λ
2
j + 12u3

0λj .

Case 1 Using DT (26) one time, we have

δ1 =
A1 sinh ξ1 − B1 cosh ξ1

C1 cosh ξ1
=

A1

C1
tanh ξ1 −

B1

C1
.

With the aid of (31), we obtain single-soliton solution of Eqs. (5) and (6)

u1 =
−u0λ1 + λ1u

2
0δ1 − u2

0

(−1 + δ1u0)2
=

λ1u0

−1 + δ1u0
−

u2
0

(−1 + δ1u0)2
,

v1 = δ1(1 − δ1u0) =
(A1

C1
tanh ξ1 −

B1

C1

)[

1 − u0

(A1

C1
tanh ξ1 −

B1

C1

)]

, (38)

and the constraint q1 = u1v1 gives the single-soliton solution of Eq. (4).

Case 2 Using DT (26) two times, we get

φ2[1] = T (λ1, λ2)φ
(2) =

(

(1/(1 − δ1u0))λ2 − λ1 −(u0/(1 − δ1u0))λ2

−δ1 1

)(

sinh ξ2

(A2/C2) cosh ξ2 − (B2/C2) sinh ξ2

)

=

(

((1/(1 − δ1u0))λ2 − λ1) sinh ξ2 − ((u0/(1 − δ1u0))λ2)((A2/C2) cosh ξ2 − (B2/C2) sinh ξ2)

−δ1 sinh ξ2 + (A2/C2) cosh ξ2 − (B2/C2) sinh ξ2

)

,

then it holds that

δ2 =
−δ1 sinh ξ2 + (A2/C2) cosh ξ2 − (B2/C2) sinh ξ2

((1(1 − δ1u0))λ2 − λ1) sinh ξ2 − ((u0(1 − δ1u0))λ2)((A2/C2) cosh ξ2 − (B2/C2) sinh ξ2)

−δ1 tanh ξ2 + (A2/C2) − (B2/C2) tanh ξ2

((1(1 − δ1u0))λ2 − λ1) tanh ξ2 − ((u0(1 − δ1u0))λ2)((A2/C2) − (B2/C2) tanh ξ2)
.

By using (31), we obtain two-soliton solution of Eqs. (5) and (6)

u2 =
−u1λ2 + λ2u

2
1δ2 − u1x − u2

1v1

(−1 + δ2u1)2
, v2 = δ2(1 − δ2u1) , (39)

then the constraint q2 = u2v2 gives the two-soliton solution of Eq. (4).

Fig. 2 (a), (b), and (c) Interaction of the right-going bright three-soliton overtaking collision of u0 = 0.8, λ1 = −4,
λ2 = −4.5, λ3 = −5 at t = 0, y = −10, −0.2 and 10; The large-amplitude solitons overtake the small-amplitude ones.

Continuing the above process, three-soliton solution of Eq. (4) can be obtained, see Fig. 2. Next we have

φj [j − 1] =

(

(1/(1 − δj−1uj−2))λj − λj−1 −(uj−2/(1 − δj−1uj−2))λj

−δj−1 1

)

×

(

(1/(1 − δj−2uj−3))λj − λj−2 −(uj−3/(1 − δj−2uj−3))λj

−δj−2 1

)

· · ·

×

(

(1/(1 − δ1u0))λj − λ1 −(u0/(1 − δ1u0))λj

−δ1 1

)(

φ
(j)
1

φ
(j)
2

)

,

δj =
φj2[j − 1]

φj1[j − 1]
, j = 3, 4, . . . , N ,

therefore we have the following formula.

Case N Using DT (26) N times, N -soliton solution of Eqs. (5) and (6) can be obtained

uN =
−uN−1λN + λNu2

N−1δN − uN−1,x − u2
N−1vN−1

(−1 + δNuN−1)2
,
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vN = δN (1 − δNuN−1) , (40)

and the N -soliton solution of Eq. (4) is presented by the constraint qN = uNvN .

Fig. 3 (a), (b), and (c) Interaction of the left-going dark three-soliton overtaking collision of u0 = 0.5, λ1 = 3, λ2 = 3.5,
λ3 = 4 at t = 0, y = −10, −0.3 and 10; The large-amplitude solitons overtake the small-amplitude ones.

(ii) Choose (u, v) = (u0,−1) (u0 6= 0) as the seed solution of the (2+1)-dimensional mKdV equation (4), the basic

solutions of the linear system (23)–(25) can be chosen as

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

cosh ξj

(
√

(λj − 4u0)λj/2u0λj) sinh ξj + (1/2u0) cosh ξj

)

, j is odd number ,

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

sinh ξj

(
√

(λj − 4u0)λj/2u0λj) cosh ξj + (1/2u0) sinh ξj

)

, j is even number ,

here

ξj =

√

(λj − 4u0)λj [x + (λj + 2u0)y + (λ2
j + 2λju0 + 6u2

0)t]

2
.

Based on the above basic solutions, the single, two and three-soliton solutions of Eq. (4) can be directly given similar

to the formula (38) and (39). The interaction of the left-going dark three-soliton overtaking collision is shown in Fig. 3.

Fig. 4 (a), (b), and (c) The one-kink solution with u0 = 1, λ1 = 1, two-kink solution with u0 = 1, λ1 = 1, λ2 = 2 and
three-kink soliton with u0 = 1, λ1 = 1, λ2 = 2, λ3 = −2 at t = 0.

(iii) Choose (u, v) = (u0, 0) (u0 6= 0) as the seed solution of the (2+1)-dimensional mKdV equation (4), the basic

solutions of the linear Lax pairs (25)–(27) can be chosen as

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

(u0 e
(2λjx+λ2

jy+λ3

j t)/2
+ e

−(λ2

j y+λ3

j t)/2
) e

−λjx/2

e
(λjx+λ2

jy+λ3

j t)/2

)

, j is odd number ,

φ(j) =

(

φ
(j)
1

φ
(j)
2

)

=

(

(u0 e(2λjx+λ2

jy+λ3

j t)/2
− e−(λ2

j y+λ3

j t)/2) e−λjx/2

e
(λjx+λ2

jy+λ3

j t)/2

)

, j is even number .

Then some kink soliton solutions of Eq. (4) can be given, see Fig. 4.

4 Discussions

In this paper, we investigate two (2+1)-dimensional nonlinear equations, which are the (2+1)-dimensional CDGKS

equation (1) and (2+1)-dimensional mKdV equation (4). Two DTs of these two equations are constructed through

the Darboux matrix method, respectively. N -soliton solutions of Eqs. (1) and (4) are obtained by applying the DT N

times. For the (2+1)-dimensional CDGKS equation (1), the right-going bright single-soliton solution and interactions
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of two and three-soliton overtaking collisions are studied, the small-amplitude solitons interestingly overtake the large-

amplitude ones. For the (2+1)-dimensional mKdV equation (4), the right-going bright and left-going dark single-

solitons, the interactions of two and three-soliton overtaking collisions are investigated, the large-amplitude solitons

naturally overtake the small-amplitude ones. Moreover, by choosing different kind of seed solution, some kink soliton
solutions of Eq. (4) are plotted. Our results can be used to illustrate the interactions of water waves in shallow water.
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