A new four-dimensional chaotic system*

Chen Yong(陈勇)⁴ and Yang Yun-Qing(杨云青)⁴

a) Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
b) Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo 315211, China

(Received 26 January 2010; revised manuscript received 3 August 2010)

A new four-dimensional chaotic system with a linear term and a 3-term cross product is reported. Some interesting figures of the system corresponding different parameters show rich dynamical structures.

Keywords: chaotic system, Lyapunov exponent, attractor

PACC: 0545, 0200

1. Introduction

In 1963, Lorenz found the first chaotic attractor in a three-dimensional (3D) autonomous system.¹ Later Rössler constructed an even simpler three-dimensional chaotic system.² Since then, chaos as an important nonlinear phenomenon has been studied in science, mathematics, engineering communities, and so on.³ As chaos is useful and has great potential applications in many technological disciplines, the discovery and the creation of chaos are important. In the past few years, Chen⁴ constructed a 3D chaotic system via a simple state feedback to the second equation in the Lorenz system, followed by a closely related Lü system constructed by Lü,⁵ and a unified system⁶ that combines Lorenz system, Chen system and Lü system as its special cases. Some other 3D chaotic systems are also constructed. Recently, Qi et al.¹⁰ constructed a new 3D chaotic system and 4D chaotic system with cubic terms. Here we report a new 4D chaotic system with a linear term and a cubic term, which also takes on good symmetries and similarities.

2. New 4D system and its properties

The new 4D system is described by

\[\dot{x}_1 = ax_1 - bx_1x_2x_3, \]
\[\dot{x}_2 = bx_2 - bx_1x_3x_4, \]
\[\dot{x}_3 = cx_3 - bx_1x_2x_4, \]
\[\dot{x}_4 = cx_4 - bx_1x_2x_3. \] (1)

(i) Symmetry

The system is invariant for the following coordinate transformations:

\[(x_1, x_2, x_3, x_4) \mapsto (-x_1, -x_2, -x_3, -x_4), \]
\[(-x_1, x_2, -x_3, x_4), \]
\[(x_1, -x_2, -x_3, x_4), \]
\[(x_1, -x_2, x_3, -x_4). \] (2)

So, it is of symmetry.

(ii) Dissipation

Since

\[\nabla V = \frac{\partial \dot{x}_1}{\partial x_1} + \frac{\partial \dot{x}_2}{\partial x_2} + \frac{\partial \dot{x}_3}{\partial x_3} + \frac{\partial \dot{x}_4}{\partial x_4} = a + b + c + d, \] (3)

when \(a + b + c + d < 0 \), system (1) is dissipative, with an exponential contraction rate

\[\frac{dV}{dt} = a + b + c + d. \] (4)

It means that a volume element \(V_0 \) is contracted into a \(V_0 e^{(a+b+c+d)t} \) at time \(t \). Therefore, orbits near the chaotic attractor are ultimately restricted within a specific fractal-dimensional subspace of zero volume.

(iii) Equilibria

The equilibria of system (1) can be obtained by solving the following equation:

\[ax_1 - bx_1x_2x_3 = 0, \]
\[bx_2 - bx_1x_3x_4 = 0, \]
\[cx_3 - bx_1x_2x_4 = 0, \]
\[cx_4 - bx_1x_2x_3 = 0. \]
respect to plane $x_1 - x_4$, S_1 and S_5 are symmetric with respect to $(0,0,0,0)$, S_1 and S_6 are symmetric with respect to plane $x_3 - x_4$, S_1 and S_7 are symmetric with respect to plane $x_2 - x_4$, S_1 and S_8 are symmetric with respect to plane $x_2 - x_3$.

(iv) Jacobian matrix

By linearizing system (1) at $S_i = (x_1, x_2, x_3, x_4)$, one can obtain the Jacobian as follows:

$$A_i = \begin{bmatrix}
 a & b_1 x_3 x_4 & b_1 x_2 x_4 & b_1 x_2 x_3 \\
 b_2 x_3 x_4 & b & b_2 x_1 x_4 & b_2 x_1 x_3 \\
 b_3 x_2 x_4 & b_3 x_1 x_4 & c & b_3 x_1 x_2 \\
 b_4 x_2 x_3 & b_4 x_1 x_3 & b_4 x_1 x_2 & d
\end{bmatrix}. \quad (10)$$

If $i = 0$, $x_1 = x_2 = x_3 = x_4 = 0$, then the eigenvalues of A_0 are

$$\lambda_01 = a, \quad \lambda_{02} = b, \quad \lambda_{03} = c, \quad \lambda_{04} = d. \quad (11)$$

Therefore, when $abcd < 0$, the equilibrium S_0 is a saddle point. Given the values of x_1, x_2, x_3, x_4 at $S_i (i = 1, \ldots, 8)$, one can calculate the eigenvalues of A_i. By calculating, it is seen that $A_i (i = 1, \ldots, 8)$ have the same eigenvalues.

3. Observation of new chaotic attractor

By choosing the parameters from system (1), a great deal of dynamics can be observed, which is listed together with some discoveries as follows:

(I) $a = -35, b = 10, c = -1, d = -10, b_1 = 1, b_2 = -1, b_3 = 1$ and $b_4 = 1$.

In this case, $a + b + c + d = -35 + 10 - 1 - 10 = -36$, so the system is dissipative, and the eigenvalues of the Jacobian matrix at S_0 are

$$\lambda_{01} = -35, \quad \lambda_{02} = 10, \quad \lambda_{03} = -1, \quad \lambda_{04} = -10, \quad (12)$$

and one can easily find $\lambda_{02} = 10 > 0$, implying that S_0 is a saddle point. By calculating with Maple, we can obtain the eigenvalues of the Jacobian matrix at $S_i (i = 1, \ldots, 8)$ as

$$\lambda_1 = 3.4903 + 12.1911i, \quad \lambda_{12} = 3.4903 - 12.1911i, \quad \lambda_{13} = -3.9551, \quad \lambda_{14} = -44.0254, \quad (13)$$

the real part of λ_1, λ_{12} is $3.49026006 > 0$, so $S_i (i = 1, \ldots, 8)$ is also a saddle point. By calculating with Matlab, the Lyapunov exponents of this system with these parameters are obtained to be

$$l_1 = 4.3614, \quad l_2 = 0.0000,$$
We can easily find that the maximum Lyapunov exponent is positive, so the system is chaotic. Figure 1 shows numerical results for projections on different phase planes and phase spaces. Especially, we can obtain two chaotic attractors when we choose different initial values, which can be seen in Figs. 1(a)–1(k).

![Chaos system projections](image)

Fig. 1. Chaos system projections on different phase planes and phase spaces with the parameters: $a = -35, b = 10, c = -1, d = -10, b_1 = 1, b_2 = -1, b_3 = 1$ and $b_4 = 1$. (a) 3D view in the $x_1-x_2-x_4$ space; (b) 3D view in the $x_1-x_2-x_3$ space; (c) 3D view in the $x_2-x_3-x_4$ space; (d) 3D view in the $x_1-x_3-x_4$ space; (e) Projection in the x_1-x_2 plane; (f) Projection in the x_1-x_3 plane; (g) Projection in the x_1-x_4 plane; (h) Projection in the x_2-x_3 plane; (i) Projection in the x_2-x_4 plane; (j) Projection in the x_3-x_4 plane; (k) two coexisting chaotic attractor.

When a varies from -35 to -20, the Lyapunov exponents are

$$
l_1 = 0.0022, \quad l_2 = -2.2532, \quad l_3 = -4.7042, \quad l_4 = -14.0448.
$$

(15)

The maximum Lyapunov equals zero, implying that the system has a periodic orbit. Figure 2 shows numerical results for projections on different phase spaces.

(II) $a = -15, b = 5, c = -1, d = -9, b_1 = 1, b_2 = -1, b_3 = 1$ and $b_4 = 1$.

Similar to the first case, the system by choosing the above parameters is also chaotic. Here, only the 3D view figure (see Fig. 3) in the $x_1-x_2-x_4$ space is given, the other figures are omitted for the sake of concision.
Fig. 2. Chaos system projections on different phase planes and phase spaces with the parameters: $a = -20, b = 10, c = -1, d = -10, b_1 = 1, b_2 = -1, b_3 = 1$ and $b_4 = 1$. (a) 3D view in the $x_1-x_2-x_3$ space; (b) 3D view in the $x_1-x_3-x_4$ space; (c) Projection in the x_1-x_2 plane; (d) Projection in the x_1-x_3 plane.

Fig. 3. 3D view in the $x_1-x_2-x_4$ space with parameters: $a = -15, b = 5, c = -1, d = -9, b_1 = 1, b_2 = -1, b_3 = 1$ and $b_4 = 1$.

(III) $a = -10, b = 3, c = -1, d = -2, b_1 = 1, b_2 = -1, b_3 = 1$ and $b_4 = 1$.

Similar to the first case, this system under the above parameters is chaotic. The 3D view figures (see Fig. 4) in the $x_1-x_2-x_4$ space with one initial value and two initial values are given, the other figures are omitted for the sake of concision.

Fig. 4. 3D view in the $x_1-x_2-x_4$ space with parameters: $a = -10, b = 3, c = -1, d = -2, b_1 = 1, b_2 = -1, b_3 = 1$ and $b_4 = 1$: (a) one initial value; (b) two initial values.
In summary, we first constructed a new 4D chaotic system and studied its properties. Some interesting figures are given, in which one can see that the new system possesses very rich dynamical structures. Hopf bifurcation, Poincaré map, synchronization and so on will be our further study.

References