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Abstract In this paper, the Adomian decomposition method is developed for the numerical solutions of a class of

nonlinear evolution equations with nonlinear term of any order, utt +auxx + bu+ cup +du2p−1 = 0, which contains some

important famous equations. When setting the initial conditions in different forms, some new generalized numerical

solutions: numerical hyperbolic solutions, numerical doubly periodic solutions are obtained. The numerical solutions are

compared with exact solutions. The scheme is tested by choosing different values of p, positive and negative, integer and

fraction, to illustrate the efficiency of the ADM method and the generalization of the solutions.
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1 Introduction
In the past decades, great effort has been devoted

to studying the explicit and numerical solutions to non-
linear evolution equation. A number of powerful meth-
ods have been proposed, such as the Adomian decom-
position method[1−6] (in short, ADM), Bäcklund trans-
formation, Darboux transformation, Cole–Hopf transfor-
mation, various tanh methods, variable separation ap-
proach, Painlevé method, rational expansion method, and
so on.[7−14] Among them, the Adomian decomposition
method provides an effective procedure to investigate ap-
proximate solutions, or even closed-form analytical solu-
tions of nonlinear differential equations. It provides more
realistic solutions by solving the nonlinear problem with-
out simplification and series solutions which generally con-
verge very rapidly in real physics models. More recently,
some papers[4−6] focus on improving the ADM to investi-
gate many nonlinear differential equations (even the frac-
tional differential equations) with different initial condi-
tions such that solitary wave solutions, rational solutions,
compacton solutions and other types of solutions were
found. In this paper, by the ADM, we discuss a class
of nonlinear evolution equations with nonlinear term of
any order,[14]

utt + auxx + bu + cup + du2p−1 = 0 , (1)

where a, b, c, d, and p 6= 1 are arbitrary con-
stants. A different equation can be got when p takes
a different constant. It is easily to see that equa-
tion (1) contains some important nonlinear mathemati-
cal physics equations such as Duffing equation,[7] Klein–
Gordon equation,[15] Landau–Ginburg–Higgs equation,[16]

sin-Gordon equation[15,16] and φ4 equation.[7] In Ref. [14],

Chen et al. presented and investigated Eq. (1), and some

exact solutions are obtained by improved tanh method.

The goal of the paper is, without any transformation and

just using the ADM with different initial conditions, to

investigate some new numerical solutions regarding to dif-

ferent p. The numerical solutions are compared with the

theoretical exact solutions by analyzing the absolute error

and relative error. It is organized as follows. In Sec. 2,

some necessary details on the ADM are given. In Sec. 3,

we extend the ADM to investigate the numerical solutions

of the nonlinear evolution Eq. (1) and obtain some new

results. Moreover we make the error analysis using the

tables and graphs to the efficiency of the ADM method.

Finally, conclusions are followed.

2 Description of the ADM

The Adomian method[1,2] is described like this: con-

sidering the differential equation

Lu + Ru + Nu = g , (2)

where L is the highest order derivative and invertible, R

is a linear differential operator and its order is less than

L, Nu are the nonlinear terms and g is the source term.

Setting Lu the single left term, we have

Lu = g − Ru − Nu . (3)

Applying the inverse operator L−1 on both sides of Eq. (3)

and using the initial conditions yield

u = f(x) + L−1g − L−1(Ru) − L−1(Nu) , (4)
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where the function f(x) is the term arising from the given
conditions. It must be noted that if L is a second-order
operator, L−1 will be a twofold integration operator and
L−1Lu = u(x, 0) + tut(x, 0). So f = u(x, 0) + tut(x, 0)
and u0 = f + L−1g. For nonlinear equation, according to
the ADM,[1,2] the unknown solution u(x, t) is given in an
infinity series form,

u(x, t) =
∞
∑

n=0

un(x, t) , (5)

and the nonlinear terms Nu are usually decomposed into
another infinity series form

Nu =

∞
∑

n=0

Bn , (6)

where Bn is the so-called Adomian polynomials. These
Adomian polynomials can be calculated for all forms
of nonlinear terms according to specific algorithms con-
structed by Adomian. Usually, the general form of the
Adomian polynomial Bn is defined as

Bn =
1

n!

dn

dλn

[

N
(

∞
∑

k=0

λkuk

)]

λ=0
, n = 0, 1, 2, . . . (7)

We note that the nonlinear terms of the nonlinear evo-
lution (1) to be discussed later all have the form Nu =
F (u) = um. The first few expressions for the Adomian
polynomials, defined as Cn for the nonlinear term um,
are[2]

C0 = F (u0)) ,

C1 = u1F
′(u0) ,

C2 = u2F
′(u0) +

u2
1

2!
F ′′(u0) ,

C3 = u3F
′(u0) + u1u2F

′′(u0) +
u3

1

3!
F ′′′(u0) . (8)

It is important to note that Cn only depends on ui (i =
0, . . . , n−1) and the sum of the subscripts in each term of
Cn is n. Substituting the initial condition and the Ado-
mian polynomials (6) into Eq. (4) yields the following re-
cursive relations:

u0 = f(x) + L−1g ,

un+1 = −L−1(Run) − L−1(Bn), n ≥ 0 . (9)

3 Applications of the ADM for Numerical
Solutions of Nonlinear Evolution Equations
with Nonlinear Term of Any Order
For the class of nonlinear evolution equations with non-

linear term of any order[14]

utt + auxx + bu + cup + du2p−1 = 0 ,

where a, b, c, d, and p 6= 1 are arbitrary constants, first
we write it in the operator form

Lu + auxx + bu + cup + du2p−1 = 0 ,

where L = ∂2/∂t2. The inverse operator L−1 is a twofold
integral operator and defined as

L−1(·) =

∫ t

0

∫ t

0

(·)dtdt .

Applying the inverse operator L−1 on the above equation

and solving u yields

u = f − L−1(auxx + bu + cup + du2p−1) , (10)

where f = u(x, 0) + tut(x, 0) arises from the given con-

ditions. For convenience, we assume the Adomian poly-

nomials Cn and Dn for the two nonlinear terms up and

u2p−1 have the forms of

up =
∞
∑

n=0

Cn , u2p−1 =
∞
∑

n=0

Dn .

Because the nonlinear terms up and u2p−1 can be written

in the form um, the Adomian polynomials can be easily

calculated by the expressions (8). As a result, the recur-

sive relations for Eq. (10) become

u0 = f(x) ,

un+1 = −L−1(aun,xx + bun)

− L−1(cCn + dDn) , n ≥ 0 . (11)

In the following, we will discuss the ADM for the nu-

merical solutions of the nonlinear evolution Eq. (1) with

different particular initial conditions.

3.1 Initial Condition Is in Jacobi Elliptic Function

sn Form

Considering the operator form of the nonlinear evolu-

tion (1)

u = f − L−1(auxx + bu + cup + du2p−1) ,

where f = u(x, 0) + tut(x, 0) with the initial condition

u(x, 0) =

[

√

−2m2k2(λ2 + a)

d
sn (kx, m)

]2/p

.

Substituting the initial value and Adomian polynomials

into the recursive relations (11) yields

u0 = u(x, 0) + tut(x, 0)

=

[

√

−2m2k2(λ2 + a)

d
sn (kx, m)

]2/p

,

un+1 = −L−1(aun,xx + bun) − L−1(cCn + dDn) .

With the aid of symbolic computation system Maple, the

first few terms of the decomposition series are

u0 = A ,

u1 = −L−1(au0,xx + bu0) − L−1(cC0 + dD0)

=
t2

2p2
sn−2(kx, m)(a0+ a1sn

2(kx, m)+ a2sn
4(kx, m)) ,

u2 = −L−1(au1,xx + bu1) − L−1(cC1 + dD1)

=
t4

24p2A2
sn−4(kx, m)

× [a3 + a4sn
2(kx, m) + a5sn

4(kx, m)

+ a6sn
6(kx, m) + a7sn

8(kx, m)] , (12)
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where

A =

[

√

−2m2k2(λ2 + a)

d
sn(kx, m)

]2/p

,

a0 = 2aAk2(p − 2) ,

a1 = bAp2 + cApp2 − 4aAk2 − 4aAk2m2 + dA2p−1p2 ,

a2 = 2aAk2m2(2 + p) , a3 = −12a2k4A3(p − 2) ,

a4 = 2ak2(p − 2)(4ak2A3 + 4am2k2A3 − bA3

+ dA2p+1 − cpAp+2 − 2dA2p+1) ,

a5 = A3(b2p2 − 4abk2 − 4abk2m2 + 16a2k4m2)

+ cpAp+2(bp2 + bp − 4ak2m2 − 4ak2)

+ A2p+1(c2p3 − 8apdk2 + 4adk2

+ 4adk2m2 + 2bdp3 − 8adpk2m2)

+ cdp2A3p(3p − 1) + d2p2A4p−1(2p − 1) ,

a6 = −2am2k2A3(p + 2)(4am2k2 + 4ak2 − b)

+ 2am2k2Ap+2(p + 2)(cp − dAp−1 + 2dAp−1) ,

a7 = 12a2k4m4A3(p + 2) .

So we have the generalized numerical solution of
Eq. (10) in a series form

u(x, t) = A +
t2

2p2
sn−2(kx, m)(a0 + a1sn

2(kx, m)

+ a2sn
4(kx, m)) +

t4

24p2A2
sn−4(kx, m)

× [a3 + a4sn
2(kx, m) + a5sn

4(kx, m)

+ a6sn
6(kx, m) + a7sn

8(kx, m)] + · · · . (13)

Remark 1 p in the solution (12) is arbitrary. When
a < 0, p = 2, and c = 0, the solution (12) becomes the
corresponding solution for the well-known Klein–Gordon
equation u + auxx + bu + du3 = 0. It admits the doubly
periodic exact solution

u(x, t) =

√

−2m2k2(λ2 + a)

d

× sn
[

√

b

(λ2 + a)(1 + m2)
(x − λt), m

]

, (14)

obtained by Jacobi elliptic function expansion method by
Liu et al.[18] However, except this, we also discuss the
other cases of the values for p and get the correspond-
ing solution. In order to verify numerically whether the
proposed methodology leads to accurate solutions, we will
evaluate the ADM solutions using the N -term approxima-
tion for the well-known Klein–Gordon equation to com-
pare the exact solution (13). The results show that we
achieved a very good approximation to the actual solution
of the equations by using only few terms of the decompo-
sition series solution derived above.

Table 1 The numerical solution φn, exact solution u(x, t), absolute error and relative error when p = 2, (a, b, c, d) =
(−2 , 26/25, 0,−2/25), (k, m , λ) = (1 , 1/5,−

√

3).

xi ti φn u(x, t) |u(x, t) − φn|
|u(x, t) − φn|

|u(x, t)|

2 0.001 0.919 009 995 6 0.918 338 800 7 0.671 194 9×10−3 0.730 879 387 3×10−3

2 0.002 0.919 005 974 0 0.917 663 586 0 0.134 238 80×10−2 0.146 283 237 2×10−2

2 0.003 0.918 999 271 3 0.916 985 693 9 0.201 357 74×10−2 0.219 586 566 4×10−2

5 0.001 −0.972 594 761 9 −0.972 199 750 7 0.395 011 2×10−3 0.406 306 625 5×10−3

5 0.002 −0.972 590 541 1 −0.971 800 520 0 0.790 021 1×10−3 0.812 945 747 3×10−3

5 0.003 −0.972 583 506 8 −0.971 398 477 7 0.118 502 91×10−2 0.121 992 068 9×10−2

10 0.001 −0.460 087 258 3 −0.461 618 574 2 0.153 131 59×10−2 0.331 727 531 3×10−2

10 0.002 −0.460 085 140 2 −0.463 147 767 3 0.306 262 71×10−2 0.661 263 492 2×10−2

10 0.003 −0.460 081 609 8 −0.464 675 539 2 0.459 392 94×10−2 0.988 631 639 2×10−2

From Table 1, we can obviously see the approximate

numerical solution φn in Eq. (12), the exact solution (13),

as well as the absolute and relative errors between them,

when (a, b, c, d) = (−2 , 26/25, 0,−2/25), (k, m , λ) =

(1 , 1/5,−
√

3). Figure 1 shows the generalized Jacobi el-

liptic function numerical solution (12) for φ2 = u0+u1+u2

when p = 1/2. Figure 2(a) and 2(b) are the figures for the

Klein–Gordon equation u+auxx + bu+du3 = 0 of the ap-

proximate solution (12) φ2 = u0+u1+u2 and the exact so-

lution (13) with p = 2, (a, b, c, d) = (−2 , 26/25, 0,−2/25),

(k, m, λ) = (1, 1/5,−
√

3), respectively. Figure 3 is the

comparison of them at t = 0.05. From the comparison

figure, it shows that the solution obtained by us rapidly

converges to the solution obtained by Liu et al.

Fig. 1 The figure of the generalized approximate
numerical solution (12) with p = 1/2, (a, b, c, d) =

(−1 , 1/3, 1,−2), (m , λ, k) = (1/2,−
√

2, 1).
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Fig. 2 (a) The figure of the approximate numerical so-
lution (12) for φ2; (b) The exact solution (13), when
p = 2, (a, b, c, d) = (−2 , 26/25, 0,−2/25), (k, m , λ) =

(1 , 1/5,−
√

3).

Fig. 3 The comparison of numerical solution (12) for
φ2 and exact solutions (13) at t = 0.05. Line stands for
the numerical solution figure and point the exact one.

3.2 Initial Condition Is in the m − k tanh(αx)

Form

Rewrite the operator form of the nonlinear evolution

Eq. (1)

u = f − L−1(auxx + bu + cup + du2p−1) .

Here we assume the initial condition

u(x, 0) = [m − k tanh(αx)]1/(p−1) .

Substituting the initial value and corresponding Ado-

mian polynomials into the recursive relations (11), with

the aid of symbolic computation system Maple, the first

few terms of the decomposition series are

u0 = A ,

u1 = −L−1(au0,xx + bu0) − L−1(cC0 + dD0)

=
t2

2A(p − 1)2
(a0 + a1 tanh(αx) + a2 tanh2(αx)

+ a3 tanh3(αx) + a4 tanh4(αx)) ,

u2 = −L−1(au1,xx + bu1) − L−1(cC1 + dD1)

= − t4

24A(p − 1)2
(a5 + a6 tanh(αx)

+ a7 tanh2(αx) + · · · + a11 tanh6(αx)) ,

where

A = (m − k tanh(αx))1/(p−1) , a0 = −dk2A2(p − 1)2 ,

a1 = −2km(p − 1)[dA2(1 − p) + cA3−p(1 − p)

+ A4−2p(b − bp + aα2)] ,

a2 = m2[dA2(2p − d − p2) − cA3−p(p − 1)2

+ 2aα2A4−2p − bA4−2p(p − 1)2] ,

a3 = 2amkα2A4−2p(p − 1) , a4 = −apm2α2A4−2p ,

· · ·

a10 = 24mka2α4A4−2p(p − 1) ,

a11 = −20pm2a2α4A4−2p .

So the generalized numerical solution of Eq. (10) with the

initial condition u(x, 0) = (m − k tanh(αx))1/(p−1) in a

series form is

u(x, t) = A+
t2

2A(p − 1)2
[a0 + a1 tanh(αx)+ a2 tanh2(αx)

+ a3 tanh3(αx) + a4 tanh4(αx)]

− t4

24A(p − 1)2
[a5 + a6 tanh(αx) + · · ·

+ a7 tanh2(αx) + a11 tanh6(αx)) + · · · . (15)

Remark 2 Because of the arbitrariness of p, we can

choose p = 5/2. In this case, equation (1) has the exact

solution

u =

[

− 5c

14d
∓

√

5b

8d

× tanh

(√
−R

(

x ∓ t

√

−a +
9b

16R
+ ξ0

))]2/3

, (16)

obtained by Chen et al.[14] using the improved method

through a proper transformation in Case 3 and this solu-

tion is the convergent solution (14) obtained by ADM. In

order to verify numerically whether the proposed method-

ology leads to accurate solutions, we will evaluate the

ADM solutions using the N -term approximation for the

Eq. (10) (p = 5/2) to compare the exact solution (15).

The results show that we achieved a very good approx-

imation to the actual solution of the equation by using

only few terms of the decomposition series solution de-

rived above.
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Figure 4 shows the generalized numerical solution

(14) with p = −6, (a, b, c, d) = (−1/2, 1/5, 2/3, 1/8),

(m , α, k) = (1, 1, 2).

Fig. 4 The figure of the generalized approximate
numerical solution (14) with p = −6, (a, b, c, d) =
(−1/2, 1/5, 2/3, 1/8), (m , α, k) = (1, 1, 2).

Fig. 5 (a) The figure of the approximate numeri-
cal solution (14) for φ2; (b) The exact solution (15),
when p = 5/2, (a, b, c, d) = (−29/80, 1/5, 7/20, 1/8),
(k, m, λ, R) = (1, 1, 1,−1).

Fig. 6 The comparison of numerical solution (14) for φ2

and exact solution (15) at t = 0.05. Line is the numerical
solution figure and point the exact one.

Figure 5(a) and 5(b) are the figures for the approxi-

mate solution φ2 = u0 + u1 + u2 and the exact solution

(15) with p = 5/2, (a, b, c, d) = (−29/80, 1/5, 7/20, 1/8),

(k, m , λ, R) = (1, 1, 1,−1), respectively.

Figure 6 is the comparison of them at t = 0.05. The

comparison figure shows that the solution obtained by us

rapidly converges to the solution obtained by Chen et al.

3.3 Initial Condition Is in the sech(kx) Form

Setting the initial condition as

u(x, 0) = [sech(kx)]1/(p−1) ,

for the nonlinear evolution Eq. (1) operator form

u = f − L−1(auxx + bu + cup + du2p−1) .

The steps are similar to the above. Substitute the initial

value and corresponding Adomian polynomials into the

recursive relations and then get the solution. With the

help of Maple and omitting the heavy calculation, we just

give the result

u = A − t2

2A(p − 1)2
[(p − 1)2(cAp+1 + dA2p−1)

−A2(p−1)(b+ak2−bp)+apk2A2 tanh2(kx))+· · · , (17)

where A = [sech(kx)]1/(p−1).

Remark 3 When we give the arbitrary value of p and

c = 0, for example p = 3/2, the numerical solution (16)

and the exact solution obtained by Chen[14] in Case 4

u =

{

±
√

bp

d

× sech

[

−
√

R
(

x∓ t

√

b(p − 1)2 − aR

R

)]}1/(p−1)

, (18)

can be considered as the same. However the exact solu-

tion given by Chen holds when c = 0, he does not discuss

the case of c 6= 0. Our solution (16) considers this case, so

we predict that the solution (16) converges to the solution

(17) in special case and it is a generalized solution.

Figure 7 shows the generalized numerical solution (16)

with p = 5, (a, b, c, d) = (−3/4, 2, 1, 3), (p, k) = (5, 1).

Fig. 7 The figure of the generalized approximate nu-
merical solution (16) with (a, b, c, d) = (−3/4, 2, 1, 3),
(p, k) = (5, 1).
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Figure 8(a) and 8(b) are the figures for the approxi-

mate solution φ2 and the exact solution (17) with p = 3/2,

(a, b, c, d) = (−3/4, 2, 0, 3), (k, R) = (1,−1), respectively.

Figure 9 is the comparison of them at t = 0.05. The

comparison figure shows the two solutions obtained by the

ADM and the improved method are nearly the same.

Fig. 8 (a) The figure of the approximate numerical solution for φ2; (b) The exact solution (17) with p = 3/2,
(a, b, c, d) = (−3/4, 2, 0, 3), (k, R) = (1,−1).

Fig. 9 The comparison of numerical solution φ2 in
Eq. (16) and exact solution (17) at t = 0.05. Line is
the numerical solution figure and point the exact.

4 Conclusion
In summary, by using the ADM and choosing differ-

ent forms of the initial condition values, we have obtained

some new generalized numerical solutions of the nonlinear
evolution equations utt+auxx+bu+cup+du2p−1 = 0 with
nonlinear term of any order. This equation includes many
important nonlinear equations of mathematical physics,
so we think that the study to Eq. (1) is very significant.
The numerical solutions obtained by us are more realis-
tic series solution, resulting computation shows that the
numerical solutions generally converge very rapidly. In
particular, by choosing different forms of the initial con-
dition values, the ADM solutions converge to the previ-
ous solutions derived in Refs. [14] and [18], but also the
rich ADM solutions corresponding to different p are ob-
tained without other efforts. In addition, we compare the
approximate numerical solutions obtained with the previ-
ous known exact solutions to predict the effectiveness of
the ADM and the solutions are more accurate solutions.
Whether existing another new operators and algorithms
to solve this kind of nonlinear evolution equation with the
initial conditions, we will further study these questions.
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