© 2020 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing Printed in China and the UK

Communications in Theoretical Physics

Commun. Theor. Phys. 72 (2020) 105005 (11pp)

https://doi.org/10.1088/1572-9494 /aba243

Solving second-order nonlinear evolution
partial differential equations using deep

learning™

Jun Li &%)' and Yong Chen (F&5)>>*

! Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062,

China

2 School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, Shanghai Key Laboratory of
Trustworthy Computing, East China Normal University, Shanghai, 200062, China
3 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao,

266590, China

4Depalrtment of Physics, Zhejiang Normal University, Jinhua, 321004, China

E-mail: ychen@sei.ecnu.edu.cn

Received 17 March 2020, revised 11 May 2020
Accepted for publication 27 May 2020
Published 2 October 2020

Abstract

®

CrossMark

Solving nonlinear evolution partial differential equations has been a longstanding computational
challenge. In this paper, we present a universal paradigm of learning the system and extracting
patterns from data generated from experiments. Specifically, this framework approximates the
latent solution with a deep neural network, which is trained with the constraint of underlying

physical laws usually expressed by some equations. In particular, we test the effectiveness of the

approach for the Burgers’ equation used as an example of second-order nonlinear evolution
equations under different initial and boundary conditions. The results also indicate that for
soliton solutions, the model training costs significantly less time than other initial conditions.

Keywords: deep learning, nonlinear evolution equations, data-driven solutions, solitons,

nonlinear dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Deep learning has garnered remarkable advances across diverse
areas, including computer vision, speech recognition, language
translation, natural language understanding, and other tasks [1],
with the recent growth of big data and computing resources. It
represents the data using multi-layer neural networks, i.e. deep
neural networks. Despite the remarkable success in these and
related areas, deep learning has not yet been widely used in the
field of scientific computing. Moreover, its use in solving non-
linear evolution partial differential equations (PDEs) has
emerged more recently [2-5].

* The project is supported by the National Natural Science Foundation of China
(No. 11675054), Shanghai Collaborative Innovation Center of Trustworthy
Software for Internet of Things (Grant No. ZF1213) and Science and Technology
Commission of Shanghai Municipality (No. 18dz2271000).

0253-6102/20,/105005+-11$33.00

PDEs have important applications in physics, engineering,
biology, finance and other areas. Solving these equations has still
been a computational challenge because many of these equations
are difficult to be solved analytically or their analytical solution
does not exist. Accordingly, solving them with neural networks
as nonlinear approximators [6—10] is a very natural idea, and has
been considered in several different forms previously [14—18].
The solution via deep learning method is closed analytic, dif-
ferentiable and easy to be used in subsequent calculations
compared with some traditional numerical approaches. In addi-
tion, the deep learning method does not require the discretization
of spatial and temporal domains compared with other traditional
numerical approaches.

Specifically, in this work, we solve nonlinear evolution
equations by approximating the unknown solution with a
deep neural network [26-28]. The network is trained to
satisfy the equation and corresponding initial-boundary

iopscience.org/ctp | ctp.itp.ac.cn

mailto:ychen@sei.ecnu.edu.cn
https://doi.org/10.1088/1572-9494/aba243
https://crossmark.crossref.org/dialog/?doi=10.1088/1572-9494/aba243&domain=pdf&date_stamp=2020-10-02
https://crossmark.crossref.org/dialog/?doi=10.1088/1572-9494/aba243&domain=pdf&date_stamp=2020-10-02

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

conditions. That is to say, with the help of the automatic
differentiation techniques [11], the equation is embedded into
the loss function in order to utilize the underlying laws of
physics to discover patterns from experimental data. More-
over, this method requires much less data than ones proposed
in other previous works [12].

Known that a specific setting that yields impressive results
for certain equations could fail for some others, we just study
second-order nonlinear evolution PDEs in one time and one
space variable; that is, we consider the equations where each
contains the dissipative term in addition to other partial deriva-
tives. This family of equations has gained its importance because
of applications across a range of scientific areas. Specifically, the
equations that will be discussed in this paper, is of the form

U — e = P(u), ey

where the solution u is a function of the space variable x and the
time variable 7, and the term P(u) is a function of u and its
derivatives. When P(u) = —2uu,, we obtain the well-known
Burgers’ equation as the example in this paper. In addition,
we will get the famous Fisher equation [13] when P(u) =
u(l — u).

The paper is organized as follows. In section 2, we
introduce the neural network architecture and briefly present
some problem setups. In section 3, we consider a simple
initial condition of the Burgers’ equation to illustrate the
algorithm. Then we give our main focus on the soliton phe-
nomena of the Burgers’ equation in section 4. In section 5, we
demonstrate the capabilities of the algorithm for more general
initial conditions of the Burgers’ equation. Finally, we con-
clude the paper in section 6.

2. Method

Although the existence of similar ideas for constraining
neural network frameworks using some underlying physical
laws (see, e.g. [14]), we revisit them using some more
advanced tools, and then apply them to more challenging
problems described by nonlinear evolution equations. Speci-
fically, in this method, we approximate the solution u with a
deep neural network and accordingly define a residual net-
work to be given by

f=ur — Nu, uy, uy), ()

where N is a nonlinear function. The Burgers’ equation
corresponds to the case where N = u,, — 2uu,. Reference
[26] also made more detailed analysis when including time ¢
or space x, or both in /. By the way, A can also be regarded
as a nonlinear differential operator.

We obtain the derivatives of the network u with respect
to time ¢ and space x using automatic differentiation with the
aid of Tensorflow [19], which is a very popular and open-
source deep learning software library.

Our main goal is to minimize the loss function

1 Qe o , 1 N o
L=—> lultyx,) — 'l +=>"1f¢}, xHF. ()
Nuizh Ny j=1

where {t/, x/, u'} lN: | denote the initial-boundary training data
on the solution network u and {tj{, x}} jvf: , specify the collo-
cation points for the network f. The first term of the right hand
side of equation (3) attempts to fit the solution data and the
second term learns to satisfy the residual f. Much research has
been done on the convergence of the loss function (see, for
example, [21]). In addition, whether there are other candidate
objective functions or not will be the future research. In this
paper, we just choose to optimize the loss function (3) using
the L-BFGS algorithm. In addition, for larger datasets, more
efficient algorithms can be readily employed, such as the
stochastic gradient descent and Adam [20].

Throughout this work, we use relatively simple multi-
layer perceptrons with the Xavier initialization and the
hyperbolic tangent (tanh) activation function. Commonly
used initializations also include Gaussian initialization and He
initialization; commonly used activations also include the
sigmoid (o) function and the rectified linear unit. In addition,
we have tried some regularizations, such as batch normal-
ization and dropout, it could not improve the expressiveness
of the model and the performance sometimes becomes even
worse. Therefore, we do not use additional regularizations
except for the underlying laws expressed by the given
equation in this paper. More detailed analysis will be con-
ducted in future work.

In the following of this paper, we consider the (1+1)-
dimensional Burgers’ equation along with Dirichlet boundary
conditions (other common boundary conditions also includ-
ing Neumann boundary conditions and mixed boundary
conditions):

u, + 2uu, — u,, = 0, x € [—20, 20], t € [—10, 10],
u(to, x) = uo(x),
u(t, —20) = a, u(t, 20) = b,

“

where ug(x) is certain initial function, and a, b are constants.
Now, define f(z, x) to be given by

f=u + 2uu, — Uy, S)

To obtain the training and testing datasets, we simulate
equation (4) using conventional spectral methods (for some
kink-type soliton solutions, we just use certain PDE solvers in
Matlab). Specifically, starting from an initial condition
up(x), x € [—20, 20] and assuming Dirichlet boundary con-
ditions, we use the Chebfun package [22] with a Fourier
discretization with 512 modes and a 4th-order explicit
Runge—Kutta integrator with time-step size 1 x 10~%*, and
then integrate the equation up to the final time # = 10. The
solution is saved every Ar = 0.1 to give us a total of 201
snapshots. Out of this dataset, we generate a smaller training
subset by randomly subsampling N,, = 100 (usually relatively
small) initial-boundary data and Ny = 10 000 collocation data
points generated usually using the Latin hypercube sampling
strategy [23].

In this work, we choose the neural network’s archi-
tectures in a consistent fashion throughout the paper. Speci-
fically, we represent the latent solution by a 13-layer deep

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

Exact Dynamics

° -‘-
S (0] »
N
. .
—10 —5 0

Learned Dynamics

—

10

]

—10
—10

—20 -1 T —20 -1 T —1
5 10 —5 0 5 10
t t
t = —7.50 t = —2.50 t ="7.50
0.5
0.5 1
0.5
5 0.0- 0.0 - 0.0
=
3
—0.5 1
—0.5 1
T T T T T T 70-5 T T T
—20 0 20 —20 0 20 —20 0 20
xT xT
— Fixact == == Prediction

Figure 1. Cosine initial condition. Top: an exact solution to the Burgers’ equation is compared to the corresponding solution of the learned
PDE. The model correctly captures the dynamics behavior and accurately reproduces the solution with a relative L, error of 9.21 x 107°
Bottom: comparison between the predicted solutions and exact solutions at the three snapshots (corresponding to the vertical lines in the top

panel). The model training took about 19 min.

neural network with 40 neurons per hidden layer. Further-
more, let N be a specific physical prior, which is expressed
by an equation rather than a neural network like with that of u
[26]. We use tanh(x) as the activation function only in the
hidden layers rather than the output layer. In addition, all
experiments are conducted on a MacBook Pro computer with
2.4 GHz Dual-Core Intel Core i5 processor.

3. A simple example: trigonometric function

Let us start with a simple initial and boundary condition in
order to highlight the ability of the method. Here, we consider
a cosine initial condition and periodic boundary condition of
equation (4) which are given by

o w(x+ 10)
up(x) = cos (—20),

u(t, =20) = u(t, 20) = 0.

(6)

We know that the exact solution in this case is analyti-
cally available and relatively easy to solve. Figure 1 illustrates
our result for the data-driven solution to the Burgers’
equation. Specifically, given a set of initial and boundary
data, we attempt to learn the latent solution u by training all
learnable parameters of the network using the loss func-
tion (3). The top panel of figure 1 compares between the exact
solution and the predicted spatiotemporal behavior. The
resulting prediction error is measured at 9.21 x 107 in the
relative L,-norm. Note that this prediction error is much
lower than one reported in some previous works where they
used other methods such as Gaussian processes [4]. A more

detailed assessment of the predicted solution is presented in
the bottom panel of figure 1. In particular, we present a
comparison between the exact solution and predicted solution
at different time points t = —7.5, —2.5, 7.5. Moreover, the
algorithm can accurately capture the intrinsic and intricate
nonlinear behavior of the Burgers’ equation that leads to a
shock around # = —2.0 using only a handful of data, while it
is notoriously hard to accurately resolve with classical num-
erical methods and requires a laborious discretization of the
equation [32].

4. Soliton solutions

The soliton phenomena exist widespread in physics, biology,
communications and other scientific disciplines. Although
some exact and explicit soliton solutions of evolution
equations can be obtained by the Darboux transformation,
Hirota’s direct method, and inverse scattering transform (see,
e.g. [25]), these methods are relatively difficult to extend
directly to other equations and there exist more unknown
types of solitons. Specifically, we study the soliton behaviors
of the Burgers’ equation here.

4.1. One-soliton solution

First, we consider the one-soliton initial condition:

k exp (k(x — 10k))
1 + exp(k(x — 10k))

(N

up(x) = —

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

Exact Dynamics

Learned Dynamics

20 20 0.0
50 0 —0.5
—20 —20 ~1.0
t
t = —7.50 t = —2.50
— —0.25 —0.25 - —0.25 -
S —0.50 ~0.50 ~0.50
S —0.75 1 ~0.75 ~0.75
L L L L -0 r 1
—20 0 20 —20 0 20 —20 0 20
— 0.2 2 0.2
S 0
= 0.1 1 0.1 4 0.1 -
3
L L L L -0 r 1
—20 0 20 —20 0 20 —20 0 20
x x

= Exact

x . .
== == Prediction

Figure 2. One-soliton solution. Top: an exact one-soliton solution to the Burgers’ equation is compared to the solution of the learned PDE
(right panel). The system correctly captures the dynamics and accurately reproduces the solution with a relative L, error of 2.45 x 107%.
Middle: comparison of the predicted solutions and exact solutions at the three temporal snapshots. Bottom: comparison between the
corresponding predicted and exact solutions of the potential. The training process took approximately half a minute.

A reconstructed one-soliton solution to the Burgers’ equation

(a)

20 10

(b)

20 10

Figure 3. (a) The spatiotemporal behavior of the reconstructed single soliton. (b) The spatiotemporal dynamics of the corresponding potential.

Let k = 1, then we know that a = 0 and b = —1.

Figure 2 summarizes our results for one-soliton solution
(the soliton is an anti-kink) to the Burgers’ equation. The top
panel of figure 2 compares between the exact solution and
the predicted spatiotemporal behavior. The resulting pre-
diction error is measured at 2.45 x 10°° in the relative
L,-norm. More detailed assessments of the predicted
dynamics are presented in the middle and bottom panels,

where the potential v = —u, is observed, of figure 2. In
particular, we present a comparison between the exact
solutions and predicted solutions at the three different time
instants t = —7.5, —2.5, 7.5. The result indicates that the
model can accurately capture the single soliton behavior of
the Burgers’ equation.

From figure 3, we can observe the single solitary wave
motion better.

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

Exact Dynamics

20

Learned Dynamics

—20 -1
t
t = —2.50 t =7.50

0.5 0.5 0.5
S 004 0.0 - 0.0
=
S —0.5 —0.5 —0.5

I I . - 1 - 1

—20 0 20 —20 0 20 —20 0 20

0.75 0.75
“s 0.50 0.50 0.75
) 0.50 -
§ 0.25 + M 0.25 A 0.25
1 1 1 1 T 1 [I R B
—20 0 20 —20 0 20 —20 0 20
T T T
— Exact == == Prediction

Figure 4. Two-soliton solution. Top: an exact two-soliton solution to the Burgers’ equation (left panel) is compared to the corresponding
reconstructed solution of the learned PDE. The system correctly captures the nonlinear dynamics and reproduces the solution with a relative
LL, error of 4.23 x 107, Middle: comparison between the predicted and exact dynamics at the temporal snapshots. Bottom: comparison
between the potential behaviors. The training took approximately 6.5 min.

4.2. Two-soliton solutions
Then, we also consider the two-soliton initial condition:
kyexp (ki(x — 10ky)) + ko exp (k2 (x — 10k3))

1 + exp (ki(x — 10k)) + exp (ko (x — 10k))
3

up(x) = —

When k; = 1 and k, = —1, we obtaina = 1, b = —1.

Figure 4 summarizes our results for the two-soliton
solution to the Burgers’ equation. The top panel of figure 4
compares between the exact dynamics and the predicted
spatiotemporal behavior and the resulting prediction error is
measured at 4.23 x 107°% in the relative L,-norm. More
detailed assessments of the predicted behavior are presented
in the middle and bottom panels of figure 4. Moreover, we
present a comparison between the exact solution and pre-
dicted solution at different time instants t = —7.5, —2.5, 7.5.
The algorithm accurately recovers the two-soliton behavior of
the Burgers’ equation.

From figure 5, we can observe the soliton interaction
better. In particular, we clearly see that the two solitons with
same amplitudes fuse to one single soliton with a different
amplitude at certain specific instant.

We consider another two-soliton solution when k; = 1.5
and k, = —1, which results ina =1, b = —1.5.

Figure 6 summarizes our results for another two-soliton
solution to the Burgers’ equation. The top panel of figure 6
compares between the exact dynamics and the predicted spa-
tiotemporal behavior. The prediction error is measured at
3.50 x 107 in the relative LL,-norm. More detailed assessments

of the predicted solution are presented in the middle and bottom
panels of figure 6. In particular, we present a comparison
between the exact solution and predicted solution at different
instants t = —7.5, —2.5, 7.5. We find that the algorithm can also
accurately capture the two-soliton behavior. From these experi-
ments above, we just observe the soliton fusion behaviors of the
Burgers’ equation. More detailed analysis have been made, for
example in [25]. In addition, the solution degenerates into a
simple one-soliton solution whose wave dynamics is like that of
section 4.1 when k; = 1.5 and k, = 1.0.

From figure 7, we observe that the two single solitons
with different amplitudes fuse into one soliton with an
amplitude different from the first two again.

5. More complicated cases

More complicated and even unstable solutions rather than
simple and stable solutions (e.g. solitons) often occur in the
real world.

5.1. Exponential functions

First, we consider an exponential initial condition and peri-
odic boundary condition of equation (4) given by

®

up(x) = —2exp(—(x + 5)?),
u(t, —20) = u(t, 20).

Figure 8 summarizes our results for the data-driven
solution to the Burgers’ equation. The top panel of figure 8

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

A reconstructed two-soliton solution to the Burgers’ equation

(a)

Figure 5. (a) The spatiotemporal behavior of the reconstructed two-

potential.

Exact Dynamics

20
H | -
—20
—10 —5 0 5 10

(b)

1.0

)

0.5

0.0

20 10

soliton solution. (b) The nonlinear interaction of the corresponding

Learned Dynamics

20
0 -
—20
—10 —5 0 5 10
t

1
6]

—1

t
t = —7.50 t = —2.50 t ="7.50
. 0.5 1 0.5 1 0.5 1
8 0.0 1 0.0 1 0.0 1
= —0.5 —0.5 —0.5
S —1.0 1 —1.0 1 —1.0 1
T 1T — T 1T ——— 1 T
—20 0 20 —20 0 20 —20 0 20
1.0 1.0
/é\ 1'0 -
& 0.5 1
= A
1 1 1 1 T 1 - 1
—20 0 20 —20 0 20 —20 0 20
x x o x
— Fxact == == Prediction

Figure 6. Another two-soliton solution. Top: an exact two-soliton solution to the Burgers’ equation (left panel) is compared to the solution of
the learned PDE. The system correctly captures the nonlinear dynamics and accurately reproduces the solution with a relative IL, error of
3.50 x 107°%. Middle: comparison between the predicted and exact solutions at the three temporal snapshots. Bottom: comparison between
the corresponding predicted and exact solutions of the potential. The model training took about 3.5 min.

compares between the exact dynamics and the recovered
behavior. The resulting prediction error is measured at
1.05 x 107" in the relative L,-norm, which is very large. A
more detailed assessment of the predicted solution is pre-
sented in the bottom panel of figure 8. In particular, we
present a comparison between the exact solution and the

predicted solution at three different instants t = —7.5, —2.5,
7.5. From the bottom panel, we find that the algorithm can
approximately capture the nonlinear behavior of the Burgers’
equation. However, the dynamics is hard to accurately resolve
from about ¢t = —2.0, which remains unsolved in the current
algorithm. It may require more finer-grained spatiotemporal

Commun. Theor. Phys. 72 (2020) 105005 J Liand Y Chen

Another reconstructed two-soliton solution to the Burgers’ equation

(a) (b)

—20 —10

Figure 7. (a) The spatiotemporal behavior of another reconstructed two-soliton solution. (b) The nonlinear interaction of the corresponding
potential.

Exact Dynamics Learned Dynamics
0.0
10 —0.5
8 0 —1.0
—10 —1.5
—20
—10 —5 0 5 10
t t
t = —7.50 t = —2.50 t =7.50
\/ \/rs
—0.5 —0.5 —0.5
B
=
= —1.0 1 —1.0 A —1.0 1
—1.5 =1 T T —1.5 = T T —1.5 -7 T T
—20 0 20 —20 0] 20 —20 6] 20
x T x
— Fxact == == Prediction

Figure 8. Exponential initial condition. Top: a solution to the Burgers’ equation is compared to the corresponding solution to the learned
PDE. The model approximately captures the nonlinear dynamics and reproduces the solution with a relative L, error of 1.05 x 107°".
Bottom: comparison between the predicted solution and exact solution at the snapshots. The model training took approximately 12 min.

data to be sampled [28], more network layers and hidden Then, we consider another exponential initial condition and
neurons [24, 29], even specific random seeds and more periodic boundary condition of equation (4) which are given by
advanced network architectures [30-32]. We have made some

preliminary experimental attempts, and more detailed analysis {uo(x) = —2(x + 5)exp (—(x + 5)%),

10
will be our future work. u(t, —20) = u(t, 20). (10)

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

Exact Dynamics

Learned Dynamics

10 10 A
- - 0
8 0 0 -
P —
—10 —10 _9
—20 T T T —20 T T T
—2 0] 2 —2 0 2
t t
t = —2.25 t= —0.75 t =225
0.5
0.5
0.5
B
- —0.5
= - —0.5
= 0.5
—1.5 4
T T T —1.5 T T —1.5 -9 T T
—20 0 20 —20 0 20 —20 0 20
X X

— Fixact

== == Prediction

Figure 9. Another exponential initial condition. Top: a solution to the Burgers’ equation is compared to the solution of the learned PDE. The
system correctly captures the dynamics and reproduces the solution with a relative L, error of 1.97 x 107°% Bottom: comparison between
the predicted and exact solutions at the three temporal snapshots. The training took about half an hour.

Unlike other cases considered in this paper, we just consider
the nonlinear dynamics of the equation from # = —3.0 up to
t = 3.0 here.

Figure 9 summarizes our results for the data-driven
solution to the Burgers’ equation. The top panel of figure 9
compares between the exact dynamics and the reconstructed
spatiotemporal solution. Then the resulting error is measured
at 1.97 x 107°% in the relative L,-norm. A more detailed
assessment of the predicted solution is presented in the bot-
tom panel of figure 9. In particular, we present a comparison
between the exact solution and the predicted solution at dif-
ferent moments t = —2.25, —0.75, 2.25. Compared to the
previous case, the algorithm can accurately capture the
complex nonlinear behavior of the Burgers’ equation.

5.2. Hyperbolic secant functions

In the following, we will study the hyperbolic secant (sech)
function and related functions.

First, we consider a single sech initial condition and
periodic boundary condition of equation (4) given by

ug(x) = 3sech?(x + 5), (11
u(t, —20) = u(t, 20).

Figure 10 summarizes our results for the data-driven
solution to the Burgers’ equation. The top panel of figure 10
compares between the exact dynamics and the predicted
behavior and the resulting error is measured at 3.99 x 10~
in the relative L,-norm. A more detailed assessment of the
predicted behavior is presented in the bottom panel of
figure 10. In particular, we present a comparison between the

exact solution and the predicted solution at different instants
t = —17.5,-2.5,7.5. We see that the algorithm can accurately
capture the nonlinear behavior of the Burgers’ equation.
Unlike the case (9), the model accurately resolve the non-
linear dynamics from about t = —2.0.

Then, we consider a summation of two hyperbolic secant
function and periodic boundary condition of equation (4)
given by
uo(x) = 2sech®(x — 2) + 3sech*(x + 5), (12)

u(t, —20) = u(t, 20).

Figure 11 summarizes our results for the data-driven
solution to the Burgers’ equation. The top panel of figure 11
compares between the exact dynamics and the predicted
spatiotemporal solution. The prediction error is measured at
3.83 x 107% in the relative L,-norm. A more detailed
assessment of the predicted solution is presented in the bot-
tom panel of figure 11. In particular, we present a comparison
between the exact dynamics and the predicted behavior at
different time instants t = —7.5, —2.5, 7.5. The algorithm can
accurately capture the nonlinear dynamics of the equation.

Furthermore, we also consider another initial condition
and periodic boundary condition which are given by

{uo(x) = 2sech®(x — 2) — 3sech(x + 5),

(13)
u(t, —20) = u(z, 20).

Figure 12 summarizes our results for the data-driven solu-
tion to the Burgers’ equation. The top panel of figure 12 com-
pares between the exact dynamics and the predicted
spatiotemporal dynamics and the resulting error is measured at

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

Exact Dynamics

Learned Dynamics

t = —7.50 t = —2.50 t = 17.50
2.25 2.25 2.25
1.50 - 1.50 1.50
a5
=
S 0.75 0.75 0.75
T T T A T I—A
—20 0 20 —20 0 20 —20 0 20
xTr x xr

Exact

== == Prediction

Figure 10. Hyperbolic secant initial condition. Top: a solution to the Burgers’ equation is compared to the solution to the learned PDE. The
system correctly captures the dynamics behavior and reproduces the solution with a relative L, error of 3.99 x 10~°%. Bottom: comparison
between the predicted dynamics and the exact solution at the three temporal snapshots. The model training took approximately 7 min.

Exact Dynamics

Learned Dynamics

10 5
= 0
1
—10
—20 0
t
t = —7.50 t = —2.50 t = 17.50
2.25 2.25 2.25
1.50 1.50 1.50
s
=
S 0.75 0.75 - 0.75
N /\
T T T T T T T T T
—20 0 20 —20 0 20 —20 0 20
xr

Exact

== == Prediction

Figure 11. Second hyperbolic secant initial condition. Top: a solution to the Burgers’ equation is compared to the solution of the learned
PDE. The system correctly captures the dynamics and reproduces the solution with a relative L, error of 3.83 x 10~°2 Bottom: comparison
between the predicted solution and the exact solution corresponding to the snapshots. The training took about 48 min.

4.59 x 107° in the relative L,-norm. A more detailed assess-
ment of the predicted dynamics is presented in the bottom panel
of figure 12. In particular, we present a comparison between the
exact solution and the predicted solution at different time
instants t = —7.5, —2.5, 7.5. The algorithm can also accurately
capture the nonlinear behavior of the Burgers’ equation. In
addition, it took much more time than the case (10).

6. Remarks and discussion

In this paper, we present a neural network architecture for
extracting nonlinear dynamics of PDEs from spatiotemporal
data. The framework provides a universal treatment of (14-1)-
dimensional second-order nonlinear evolution equations. The
resulting method shows a pile of significant results for a

Commun. Theor. Phys. 72 (2020) 105005

J Liand Y Chen

Exact Dynamics

Learned Dynamics

10 10
(6]
5 04 o
I b
—10 —10 + L
—20 T T T —20 T T T
—10 —5 0 5 10 —10 —5 0 5 10
t t
t = —7.50 t = —2.50 t ="7.50
2 2 2
1 14 14
504 0 \/\ 0 /\
=
3
—1 —1 —1
72 T T T 72 T T T 72 T T T
—20 (6] 20 —20 0 20 —20 (0] 20
X X xT

— Exact

== == Prediction

Figure 12. Another hyperbolic secant initial condition. Top: a solution to the Burgers’ equation is compared to the solution of the learned
PDE. The system correctly captures the dynamics and reproduces the solution with a relative L, error of 4.59 x 1072 Bottom: comparison
between the predicted solution and the exact solution at the snapshots. The training process took approximately 42 min.

diverse collection of initial-boundary conditions, including
soliton solutions and other initial data. Relatively speaking,
the more complex the initial data, the more time the model
training takes. In particular, compared with other initial
conditions, the training costs much less time for some soliton
solutions perhaps because of the intrinsic structures of
solitons.

Note that some of nonlinear evolution PDEs consist of
terms like u,, u,;, sin(u) and some others. It would be very
interesting to extend the network framework to incorporate
such cases. It will be our future research.

Acknowledgments

We would like to express our sincere thanks to S Y Lou, E G
Fan and other members of our discussion group for their
valuable comments.

References

[1] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning
(Cambridge, MA: MIT Press)

Bongard J and Lipson H 2007 Proc. Natl Acad. Sci. USA 104
9943-8

Raissi M, Perdikaris P and Karniadakis G E 2017 J. Comput.
Phys. 348 683-93

Raissi M, Perdikaris P and Karniadakis G E 2018 SIAM J. Sci.
Comput. 40 A172-98

Raissi M and Karniadakis G E 2018 J. Comput. Phys. 357
12541

Cybenko G 1989 Math. Control Signals Syst. 2 303-14

(2]
(3]
(4]
(3]
(6]

10

(7]
(8]

(9]
[10]

[11]
[12]

[13]
[14]

[15]

[16]
(7]
[18]
[19]
[20]

[21]

[22]
(23]
[24]
[25]

[26]

Hornik K, Stinchcombe M and White H 1989 Neural Netw. 2
359-66

Hornik K, Stinchcombe M and White H 1990 Neural Netw. 3
551-60

Hornik K 1991 Neural Netw. 4 251-7

Petersen P and Voigtlaender F 2018 Neural Netw. 108
296-330

Baydin A G, Pearlmutter B A, Radul A A and Siskind] M
2018 J. Mach. Learn. Res. 18 1-43

Rudy S H, Brunton S L, Proctor J L and Kutz J N 2017 Sci.
Adv. 3 1602614

Murray J D 1993 Mathematical Biology (Berlin: Springer)

Lagaris I E, Likas A and Fotiadis D I 1998 IEEE Trans. Neural
Netw. 9 987-1000

Yadav N, Yadav A and Kumar M 2015 An Introduction to
Neural Network Methods for Differential Equations (Berlin:
Springer)

Sirignano J and Spiliopoulos K 2018 J. Comput. Phys. 375
1339-64

Han J, Jentzen A and Weinan E 2018 Proc. Natl Acad. Sci.
USA 115 8505-10

Bar-Sinai Y, Hoyer S, Hickey J and Brenner M P 2019 Proc.
Natl Acad. Sci. USA 116 15344-9

Abadi M et al 2016 12th USENIX Symp. on Operating Systems
Design and Implementation 16, 265-83

Kingma D P and Ba J 2015 Int. Conf. on Learning
Representations (ICLR)

Choromanska A, Henaff M, Mathieu M, Arous G B and
Lecun Y 2015 Proc. 18th Int. Conf. on Artificial Intelligence
and Statistics (AISTATS) vol 38

Driscoll T A, Hale N and Trefethen L N 2014 Chebfun Guide
(Oxford: Pafnuty Publications)

Stein M L 1987 Technometrics 29 143-51

Raghu M, Poole B, Kleinberg J, Ganguli S and
Sohl-Dickstein J 2017 Proc. 34th Int. Conf. on Machine
Learning (ICML)

Wang S, Tang X and Lou S 2004 Chaos Solitons Fractals 21
231-9

Raissi M 2018 J. Mach. Learn. Res. 19 932-55

https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1016/j.chaos.2003.10.014
https://doi.org/10.1016/j.chaos.2003.10.014
https://doi.org/10.1016/j.chaos.2003.10.014
https://doi.org/10.1016/j.chaos.2003.10.014

Commun. Theor. Phys. 72 (2020) 105005 J Liand Y Chen

[27] Raissi M, Perdikaris P and Karniadakis G E 2019 J. Comput. [30] Mallat S 2016 Phil. Trans. R. Soc. A 374 20150203

Phys. 378 686-707 [31] Hagge T, Stinis P, Yeung E and Tartakovsky A M 2017
[28] Lu L, Meng X, Mao Z and Karniadakis G E 2019 DeepXDE: a Solving differential equations with unknown constitutive

deep learning library for solving differential equations. relations as recurrent neural networks (arXiv:1710.02242)

(arXiv:1907.04502) [32] Michoski C, Milosavljevi¢ M, Oliver T and Hatch D 2019
[29] Lin H W, Tegmark M and Rolnick D 2017 J. Stat. Phys. 168 Solving irregular and data-enriched differential equations

122347 using deep neural networks (arXiv:1905.04351)

11

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
http://arxiv.org/abs/1907.04502
https://doi.org/10.1007/s10955-017-1836-5
https://doi.org/10.1007/s10955-017-1836-5
https://doi.org/10.1007/s10955-017-1836-5
https://doi.org/10.1007/s10955-017-1836-5
https://doi.org/10.1098/rsta.2015.0203
http://arxiv.org/abs/1710.02242
http://arxiv.org/abs/1905.04351

	1. Introduction
	2. Method
	3. A simple example: trigonometric function
	4. Soliton solutions
	4.1. One-soliton solution
	4.2. Two-soliton solutions

	5. More complicated cases
	5.1. Exponential functions
	5.2. Hyperbolic secant functions

	6. Remarks and discussion
	Acknowledgments
	References

