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A B S T R A C T

We propose gradient-enhanced PINNs based on transfer learning (TL-gPINNs) for inverse problems of the
function coefficient discovery in order to overcome deficiency of the discrete characterization of the PDE loss
in neural networks and improve accuracy of function feature description, which offers a new angle of view
for gPINNs. The TL-gPINN algorithm is applied to infer the unknown variable coefficients of various forms
(the polynomial, trigonometric function, hyperbolic function and fractional polynomial) and multiple variable
coefficients simultaneously with abundant soliton solutions for the well-known variable coefficient nonlinear
Schrödinger equation. Compared with the PINN and gPINN, TL-gPINN yields considerable improvement in
accuracy. Moreover, our method leverages the advantage of the transfer learning technique, which can help
to mitigate the problem of inefficiency caused by extra loss terms of the gradient. Numerical results fully
demonstrate the effectiveness of the TL-gPINN method in significant accuracy enhancement, and it also
outperforms gPINN in efficiency even when the training data was corrupted with different levels of noise
or hyper-parameters of neural networks are arbitrarily changed.
1. Introduction

With the vigorous development of nonlinear science, nonlinear
models have been applied in more and more fields [1–5], such as opti-
cal fiber communication, fluid mechanics, biophysics and information
science. Among them, nonlinear evolution equations, especially the
variable coefficient ones, are an important class of nonlinear models
and have attracted widespread attention [6–8] since the model with
variable-coefficients is often preferable and suitable in describing real
phenomena in many physical and engineering situations. For example,
variable coefficient nonlinear Schrödinger model plays an important
role in the study of optical fiber system or the Rossby waves [9].
The variable coefficient higher-order nonlinear Schrödinger equation
and variable coefficient Hirota equation can be used to describe the
femtosecond pulse propagation [10] and the certain ultrashort optical
pulses propagating in a nonlinear inhomogeneous fiber [11], respec-
tively. Besides, many classical methods in the field of integrable systems
have been widely used to derive exact solutions of variable coefficient
equations, e.g., auto-Bäcklund transformation [12,13], the Riemann–
Hilbert method [14], the Hirota bilinear method [15–17], the Darboux
transformation [18–20], etc.

∗ Corresponding author at: School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (Ministry of Education) and Shanghai
Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China.

E-mail address: ychen@sei.ecnu.edu.cn (Y. Chen).

As early as the 1990s, the idea of solving partial differential equa-
tions (PDEs) by using the technique of neural networks was put for-
ward [21]. However, limited by the level of science and technology
at that time, it failed to get further development. With the explosive
growth of computing resources, there has been renewed interest in
researches of the numerical methods based on neural networks in
recent years. This idea was revived by Raissi, Perdikaris and Karni-
adakis [22] in 2019, and the physics-informed neural network (PINN)
method was proposed to solve forward and inverse problems involv-
ing nonlinear partial differential equations. Based on the universal
approximation theorems of neural networks [23], it can accurately
approximate functions with extraordinarily less data by embodying
underlying physical constraints into neural networks. Due to its high
accuracy and efficiency, the PINN method opens up a new approach for
numerically solving nonlinear PDEs and immediately sets off a new re-
search upsurge. On this foundation, variants and extensions targeted at
different application scenarios also subsequently emerged in multitude,
like fPINN [24] for solving fractional PDEs, NN-arbitrary polynomial
chaos (NN-aPC) for solving stochastic problems [25], XPINN [26]
and FBPINN [27] for multiscale problems, B-PINN [28] for forward
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and inverse PDE problems with noisy data, hp-VPINN [29] for rough
solutions/input data such as singularities, steep solution, and sharp
changes, etc. In addition, there have been many attempts to improve
accuracy of the PINN method, such as locally adaptive activation func-
tions with slope recovery [30], residual-based adaptive sampling [31,
32], gradient-enhanced PINN (gPINN) [33], PINN with multi-scale
Fourier features [34] and so on. Overall, the framework of PINNs, a
model integrating data and mathematical physics seamlessly, is ground-
breaking and has had a significant impact on the field of scientific
computing and beyond.

Integrable deep learning, a concept first brought forward by Chen,
deals with the combination of deep neural networks with integrable
systems. In 2020, Li and Chen [35,36] utilized the PINNs method to
extract intrinsic nonlinear dynamics of evolution equations (e.g., gen-
eral soliton solutions, breathers and kinks). Later, the dynamic behavior
of rogue wave solution for the nonlinear Schrödinger equation [37]
was reproduced for the first time by PINN. Abundant localized wave
solutions are also simulated including the rogue periodic wave so-
lution for the Chen–Lee–Liu equation [38], vector localized waves
for Manakov system [39], data-driven soliton solutions for the non-
local Hirota equation [40] and so on. Then the framework of the
PINN method is extended to solve the (𝑁 + 1)-dimensional initial–
boundary value problem with 2𝑁 + 1 hyperplane boundaries and is
applied to reproduce dynamic behaviors (e.g., breathers, lump and
resonance rogue) of high-dimensional integrable systems [41]. Since
integrable systems possess outstanding properties such as abundant
symmetry, infinite conservation laws, the Lax pair and transformations,
we devote to further improving the neural network method with the
advantages of integrable systems. In 2022, we proposed a training
algorithm based on the theory of integrable systems, namely a two-
stage PINN method based on conserved quantities [42]. The novelty of
this study lies in that constraints of conserved quantities, one of the
most important features of integrable systems, have been successfully
incorporated into neural networks to remarkably improve prediction
accuracy and enhance the ability of generalization compared to the
original PINN method. An implementation method of unsupervised
learning—the PINN method based on Miura transformations [43] was
also put forward to solve nonlinear PDEs. With the aid of this method,
we can simply exploit the initial–boundary data of a solution for a cer-
tain nonlinear equation to obtain the data-driven solution for another
evolution equation. It was applied to discover a new type of numerical
solution, i.e., kink-bell type solution of the defocusing mKdV equation,
by fully leveraging the many-to-one relationship between solutions
before and after Miura transformations. Apart from this, the research
on acquisition of data-driven solutions via deep learning method is still
ongoing, and meaningful research achievements include but are not
limited to [44–48]. Collectively, how to devise significant integrable-
deep learning algorithms and utilize the PINN method to pertinently
solve problems arising in the field of integrable systems that cannot be
solved by classical methods is our target to aim at.

Despite some progress, solving inverse problems by traditional nu-
merical methods still requires complex mathematics deduction and
extensive calculations. Comparatively, deep learning algorithm has
great advantages in solving inverse problems of partial differential
equations. Inverse problem refers to the task that, given some infor-
mation of the solution, it is expected to deduce the unknown quantity
(which may be the unknown coefficient or unknown term) in PDE and
the solution itself. Traditional numerical methods have many limita-
tions in solving inverse problems, especially in dealing with noisy data,
complex regions, and high-dimensional problems. However, the PINN
method is mesh-free and has been proved to be robust to noise in many
cases. Even for high-dimensional tasks, it also shows the outstanding
performance in both accuracy and computing efficiency. What is more,
the physics-informed machine learning has better interpretability and
can achieve satisfactory accuracy and better convergence with a small
2

amount of data by embedding physics into neural networks.
Most past researches on inverse problems were concentrated on
the parameter discovery (such as the inverse problem of constant
coefficient equation) rather than the function discovery, so this paper
mainly focused on studying the inverse problem of variable coeffi-
cient PDEs, an important class of equations in integrable systems,
by using deep learning algorithm. The classical methods for studying
integrable systems, e.g., the aforementioned Hirota bilinear method,
the Darboux transformation and Riemann–Hilbert method, can only
be utilized to derive the solution of the variable coefficient equation,
while the PINN method can obtain not only the solution itself but also
the corresponding unknown variable coefficients. Meanwhile, previous
studies on variable coefficient equations using PINN method are also
relatively few [49,50], especially on the improvement of the algorithm
for accuracy enhancement.

To fill in the gap, the gradient-enhanced PINN method is considered
here. The original gPINN stems from that PINNs only enforce the PDE
residual 𝑓 to be 0 and one can further utilize the property that when a
unction equals to 0, its derivatives of all orders are also 0, while our
otivation and conception of this method are entirely different. We

im to overcome deficiency of the discrete characterization of the PDE
oss in neural networks, and to improve accuracy of function feature
escription, which offers a new angle of view for gPINNs. Specifically,
he PDE constraint is characterized by some discrete points in PINNs.
ince it is impossible to consider all collocation points, the term of
DE loss can only ensure that values of the variable coefficient are
lose to the true ones at these selected points, while the accuracy at
oints outside the given points lacks adequate attention. Moreover, it is
iased to characterize a function (i.e., the unknown variable coefficient
ere) solely by the values at discrete points. Thus, loss terms of the
radients are introduced to enhance the accuracy of the identified
ariable coefficient from the perspective of gradients. Due to the lack of
artial derivative values of variable coefficient at configuration points,
straightforward and simple way is to enforce the partial derivatives

f it to satisfy the corresponding equation. However, we are inevitably
aced with the challenge of slow computation speed caused by extra
onstraints of the gradient. One viable path towards accelerating the
onvergence of training could come by adopting the technique of
ransfer learning. Therefore, the gradient-enhanced PINN method based
n transfer learning (TL-gPINNs) is brought forward in this thesis.

This paper is organized as follows. In Section 2, we propose gradient-
nhanced PINNs based on transfer learning for inverse problems of
he variable coefficient equations after a brief review of the PINN
nd gradient-enhanced PINN (gPINN) methods. Then in Section 3,
he TL-gPINN method is applied to identify the unknown variable
oefficients of various forms (e.g., the linear, quadratic, sine, hyper-
olic tangent and fractional forms) together with the soliton solutions
or the variable coefficient nonlinear Schrödinger equation. We also
ystematically compare the performance of PINNs, gPINNs and TL-
PINNs, and numerical results demonstrate the ability of TL-gPINNs
n significant accuracy enhancement. Further error analyses including
he robustness analysis and parametric sensitivity analysis of TL-gPINNs
re conducted in Section 4, where the heat map serves as an effective
isualization tool. Finally, the conclusion and expectation are given in
he last section.

. Methodology

.1. Introduction of PINNs and gradient-enhanced PINNs

The first part gives a brief overview of physics-informed neural
etworks (PINNs), an effective tool in solving forward and inverse
roblems of partial differential equations.

Let us consider the general form of a (𝑁 + 1)-dimensional partial
ifferential equation with parameters 𝝀
(

𝐱, 𝑡; 𝜕𝑢 ,… , 𝜕𝑢 , 𝜕𝑢 ; 𝜕
2𝑢
2
,… , 𝜕2𝑢 , 𝜕2𝑢 ;… ;𝝀

)

= 0,

𝜕𝑥1 𝜕𝑥𝑁 𝜕𝑡 𝜕𝑥1 𝜕𝑥1𝜕𝑥𝑁 𝜕𝑥1𝜕𝑡
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𝐱 =
(

𝑥1,… , 𝑥𝑁
)

∈ 𝛺, 𝑡 ∈ [𝑡0, 𝑡1], (1)

where 𝑢(𝐱, 𝑡) is the solution and 𝛺 is a subset of R𝑁 .
To solve the above PDE with the first kind of boundary condition

Dirichlet boundary condition)

𝑢(𝐱, 𝑡0) = 𝑢0(𝐱), ∀𝐱 ∈ 𝛺
𝑢(𝐱, 𝑡) = (𝐱, 𝑡), ∀𝐱 ∈ 𝜕𝛺, 𝑡 ∈ [𝑡0, 𝑡1],

(2)

e construct a neural network of depth 𝐿 consisting of one input
ayer, 𝐿 − 1 hidden layers and one output layer. Suppose that the 𝑙th
𝑙 = 0, 1,… , 𝐿) layer has 𝑁𝑙 neurons, and then the connection between
ayers can be achieved by the following affine transformation  and
ctivation function 𝜎(⋅)
𝑙 = 𝜎(𝑙(𝐱𝑙−1)) = 𝜎(𝐰𝑙𝐱𝑙−1 + 𝐛𝑙), (3)

here 𝐰𝑙 ∈ R𝑁𝑙×𝑁𝑙−1 and 𝐛𝑙 ∈ R𝑁𝑙 denote the weight matrix and bias
ector separately. Especially, the input is 𝐱0 =

(

𝑥1,… , 𝑥𝑁 , 𝑡
)

and the
utput 𝐨(𝐱0,𝜣) is given by

(𝐱0,𝜣) = (𝐿 ◦ 𝜎 ◦ 𝐿−1 ◦ ⋯ ◦ 𝜎 ◦ 1)(𝐱0), (4)

hich is used to approximate the solution 𝑢(𝐱, 𝑡), and 𝜣 =
{

𝐰𝑙 ,𝐛𝑙
}𝐿
𝑙=1

epresents the trainable parameters of PINN. With the initial–boundary
ataset {𝐱𝑖𝑢, 𝑡𝑖𝑢, 𝑢𝑖}

𝑁𝑢
𝑖=1 and the set of collocation points of 𝑓 (𝐱, 𝑡), denoted

y {𝐱𝑖𝑓 , 𝑡
𝑖
𝑓 }

𝑁𝑓
𝑖=1, the loss function is defined to measure the difference

etween the predicted values and the true values of each iteration

SE𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑤𝑢 MSE𝑢 +𝑤𝑓 MSE𝑓 , (5)

here

SE𝑢 =
1
𝑁𝑢

𝑁𝑢
∑

𝑖=1

|

|

�̂�(𝐱𝑖𝑢, 𝑡
𝑖
𝑢) − 𝑢𝑖|

|

2 , (6)

SE𝑓 = 1
𝑁𝑓

𝑁𝑓
∑

𝑖=1

|

|

|

𝑓 (𝐱𝑖𝑓 , 𝑡
𝑖
𝑓 )
|

|

|

2
. (7)

With regard to the inverse problem, namely, the situation that the
arameters 𝝀 are unknown, some extra measurements {𝐱𝑖𝑖𝑛, 𝑡

𝑖
𝑖𝑛, 𝑢

𝑖
𝑖𝑛}

𝑁𝑢𝑖𝑛
𝑖=1

f the internal area should be obtained and utilized to define a new loss
unction to learn the unknown parameters 𝝀

SE𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = 𝑤𝑢 MSE𝑢 +𝑤𝑓 MSE𝑓 +𝑤𝑢𝑖𝑛 MSE𝑢𝑖𝑛 , (8)

where

MSE𝑢𝑖𝑛 = 1
𝑁𝑢𝑖𝑛

𝑁𝑢𝑖𝑛
∑

𝑖=1

|

|

�̂�(𝐱𝑖𝑖𝑛, 𝑡
𝑖
𝑖𝑛) − 𝑢𝑖𝑖𝑛||

2 . (9)

The aforementioned coefficients 𝑤𝑢, 𝑤𝑓 and 𝑤𝑢𝑖𝑛 represent weights of
initial–boundary constraint, PDE constraint and data constraint of the
internal area separately.

Later, a deep learning method, gradient-enhanced physics-informed
neural networks (gPINNs) [33] was proposed for improving the ac-
curacy and training efficiency of PINNs by leveraging gradient infor-
mation of the PDE residual and embedding the gradient into the loss
function. The basic idea of gPINNs is that it enforces the derivatives of
the PDE residual 𝑓 to be zero since 𝑓 (𝐱, 𝑡) is zero for any 𝐱 and 𝑡, i.e.,

𝑓 (𝐱) =
(

𝜕𝑓
𝜕𝑥1

,
𝜕𝑓
𝜕𝑥2

,… ,
𝜕𝑓
𝜕𝑥𝑁

,
𝜕𝑓
𝜕𝑡

)

= 𝟎, 𝐱 ∈ 𝛺, 𝑡 ∈ [𝑡0, 𝑡1]. (10)

Then, based on the set of residual points {𝐱𝑖𝑔 , 𝑡
𝑖
𝑔}

𝑁𝑔
𝑖=1 for the derivatives,

he loss functions of the forward and inverse problems are separately
efined as

MSE𝑔
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑤𝑢 MSE𝑢 +𝑤𝑓 MSE𝑓 +𝑤𝑔 MSE𝑔 , (11)

MSE𝑔
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = 𝑤𝑢 MSE𝑢 +𝑤𝑓 MSE𝑓 +𝑤𝑢𝑖𝑛 MSE𝑢𝑖𝑛 +𝑤𝑔 MSE𝑔 , (12)

here

SE𝑔 = 1
𝑁𝑔

⎛

⎜

⎜

𝑁
∑

𝑁𝑔
∑

|

|

|

|

𝜕𝑓
𝜕𝑥𝑗

(𝐱𝑖𝑔 , 𝑡
𝑖
𝑔)
|

|

|

|

2

+
𝑁𝑔
∑

|

|

|

|

𝜕𝑓
𝜕𝑡

(𝐱𝑖𝑔 , 𝑡
𝑖
𝑔)
|

|

|

|

2⎞
⎟

⎟

. (13)
3

⎝

𝑗=1 𝑖=1 | | 𝑖=1
⎠

igher order derivatives of PDE residual 𝑓 (𝐱, 𝑡) can also be considered
n MSE𝑔 . The set of residual points {𝐱𝑖𝑔 , 𝑡𝑖𝑔}

𝑁𝑔
𝑖=1 for the derivatives can be

ifferent from the set of collocation points {𝐱𝑖𝑓 , 𝑡
𝑖
𝑓 }

𝑁𝑓
𝑖=1 of 𝑓 (𝐱, 𝑡), but we

sually choose the same set for convenience.

.2. Gradient-enhanced PINNs based on transfer learning for data-driven
ariable coefficients

For the inverse PDE problems with the aid of PINNs and its vari-
nts, the existing researches are mainly focused on the parameter
iscovery rather than the function discovery. Here, we propose the
radient-enhanced PINNs based on transfer learning (TL-gPINNs) to
nfer variable coefficients.

∙ Motivation
For the inverse problem of identifying the variable coefficients,

e aim to improve the neural network method to enhance prediction
recision.

Consider the (𝑁 + 1)-dimensional PDE with variable coefficients
(𝐱, 𝑡)
(

𝐱, 𝑡; 𝜕𝑢
𝜕𝑥1

,… , 𝜕𝑢
𝜕𝑥𝑁

, 𝜕𝑢
𝜕𝑡

; 𝜕
2𝑢

𝜕𝑥21
,… , 𝜕2𝑢

𝜕𝑥1𝜕𝑥𝑁
, 𝜕2𝑢
𝜕𝑥1𝜕𝑡

;… ;𝜦

)

= 0,

𝐱 =
(

𝑥1,… , 𝑥𝑁
)

∈ 𝛺, 𝑡 ∈ [𝑡0, 𝑡1]. (14)

Obviously, neural networks are constrained by the PDE loss MSE𝑓 =
1
𝑁𝑓

∑𝑁𝑓
𝑖=1 |𝑓 (𝐱

𝑖
𝑓 , 𝑡

𝑖
𝑓 )|

2 to satisfy the equation above. In other words,
PINNs enforce the PDE residual 𝑓 to be 0 to make the data-driven
variable coefficients 𝜦(𝐱, 𝑡) close to the exact ones.

Since this constraint is characterized by discrete points {𝐱𝑖𝑓 , 𝑡
𝑖
𝑓 }

𝑁𝑓
𝑖=1,

it can only ensure that values of the predicted 𝜦(𝐱, 𝑡) are close to the
true ones at these selected points. However, even if the predicted values
of the variable coefficients 𝜦(𝐱, 𝑡) are equal to the true values at these
discrete points, the values of the identified 𝜦(𝐱, 𝑡) outside the given
point set {𝐱𝑖𝑓 , 𝑡

𝑖
𝑓 }

𝑁𝑓
𝑖=1 have little direct effect on MSE𝑓 and thus the data-

driven variable coefficients may be a considerable departure from the
exact ones.

Consequently, it is biased and inaccurate to characterize a function
(i.e., the unknown variable coefficient here) solely by the values at
discrete points. It is necessary to introduce much more rigorous con-
straints considering the partial derivative values of variable coefficients
from the perspective of enhancing gradients. Due to the lack of partial
derivative values of variable coefficient at configuration points, a way
with similar effect is to enforce the partial derivatives to satisfy the
corresponding equation. Then residuals of equations satisfied by not
only variable coefficients but also the partial derivatives of them should
be taken into account in the design of loss functions. Specifically, neural
networks enforce the residual of equations satisfied by both variable
coefficients and the partial derivatives to be 0 to require the values of
them to approximate the true ones at the discrete points. It happens to
coincide with gradient-enhanced PINNs, the idea of which stems from
that derivatives of the zero-valued function, (i.e., the PDE residual 𝑓 )
should also be 0.

Note that the equations satisfied by the partial derivatives of vari-
able coefficients ( 𝜕𝜦𝜕𝑡 ,

𝜕𝜦
𝜕𝑥1

, 𝜕𝜦
𝜕𝑥2

,…) can be derived by direct differen-
tiation with respect to the equation satisfied by variable coefficients
𝜦(𝐱, 𝑡) themselves. Although our perspective and concerned aspects are
different from that of gPINNs, the implementation method is the same.

Ulteriorly, we improve the original gPINNs by means of the idea
of transfer learning since the introduction of additional constraints on
gradients probably gives rise to low efficiency. Transfer learning [51]
refers to transferring the parameters of a trained model (pre-trained
model) to a new model to assist in training. Considering that most data
or tasks are related, through transfer learning, we can share the model
parameters (which can also be understood as the knowledge learned by
this model) that we have already learned with the new model in some
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Fig. 1. The effect of gPINN compared to PINN on the optimization of loss (PDE residual) and inference of time-varying variable coefficient 𝛬(𝑡).
way to accelerate and optimize the learning efficiency, without having
to learn from scratch like most networks.

∙ Procedure
By fully leveraging the combined advantages of gradient-enhanced

effect and transfer learning, TL-gPINN is proposed.
The followings are the main steps involved:
Firstly, the traditional PINNs are constructed to obtain the data-

driven variable coefficients after defining the following loss function

MSE𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = 𝑤𝑢 MSE𝑢 +𝑤𝑓 MSE𝑓 +𝑤𝑢𝑖𝑛 MSE𝑢𝑖𝑛 +𝑤𝜦 MSE𝜦, (15)

where

MSE𝑢 =
1
𝑁𝑢

𝑁𝑢
∑

𝑖=1

|

|

�̂�(𝐱𝑖𝑢, 𝑡
𝑖
𝑢) − 𝑢𝑖|

|

2 ,

MSE𝑓 = 1
𝑁𝑓

𝑁𝑓
∑

𝑖=1

|

|

|

|

𝑓
(

𝐱𝑖𝑓 , 𝑡
𝑖
𝑓 ; �̂�(𝐱𝑖𝑓 , 𝑡

𝑖
𝑓 )
)

|

|

|

|

2
,

MSE𝑢𝑖𝑛 = 1
𝑁𝑢𝑖𝑛

𝑁𝑢𝑖𝑛
∑

𝑖=1

|

|

�̂�(𝐱𝑖𝑖𝑛, 𝑡
𝑖
𝑖𝑛) − 𝑢𝑖𝑖𝑛||

2 ,

MSE𝜦 = 1
𝑁𝜦

𝑁𝜦
∑

𝑖=1

|

|

|

�̂�(𝐱𝑖𝜦, 𝑡
𝑖
𝜦) −𝜦𝑖|

|

|

2
,

(16)

and the set {𝐱𝑖𝜦, 𝑡
𝑖
𝜦,𝜦

𝑖}𝑁𝜦
𝑖=1 denotes the boundary training data of the

variable coefficients 𝜦(𝐱, 𝑡). In particular, the networks of the solution
𝑢(𝐱, 𝑡) and the variable coefficients 𝜦(𝐱, 𝑡) are set to be separate and
named as the trunk and branch networks respectively in order to
eliminate mutual influence. What is more, with regard to the network
of variable coefficients 𝜦(𝐱, 𝑡), the width and depth of it are usually
narrower and shallower than that of the solution 𝑢(𝐱, 𝑡) since the
function expression of variable coefficient is simpler in general.

Then at the end of the iteration process, the weight matrixes and
bias vectors of PINNs are saved to initialize the gradient-enhanced
PINNs with the advantage of transfer learning. The mean squared error
loss function of gPINNs is given by

MSE𝑔
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = 𝑤𝑢 MSE𝑢 +𝑤𝑓 MSE𝑓 +𝑤𝑢𝑖𝑛 MSE𝑢𝑖𝑛 +𝑤𝜦 MSE𝜦 +𝑤𝑔 MSE𝑔 ,

(17)

where

MSE𝑔 = 1
𝑁𝑔

⎛

⎜

⎜

⎝

𝑁
∑

𝑗=1

𝑁𝑔
∑

𝑖=1

|

|

|

|

|

𝜕𝑓
𝜕𝑥𝑗

(

𝐱𝑖𝑔 , 𝑡
𝑖
𝑔 ; �̂�(𝐱𝑖𝑔 , 𝑡

𝑖
𝑔), �̂�𝑥𝑗 (𝐱

𝑖
𝑔 , 𝑡

𝑖
𝑔)
)|

|

|

|

|

2

+
𝑁𝑔
∑

|

|

|

|

𝜕𝑓
𝜕𝑡

(

𝐱𝑖𝑔 , 𝑡
𝑖
𝑔 ; �̂�(𝐱𝑖𝑔 , 𝑡

𝑖
𝑔), �̂�𝑡(𝐱𝑖𝑔 , 𝑡

𝑖
𝑔)
)

|

|

|

|

2⎞
⎟

⎟

. (18)
4

𝑖=1
⎠

Based on MSE criteria, the parameters of gPINNs are optimized and we
finally obtain the data-driven variable coefficients 𝜦(𝐱, 𝑡).

The weights in Eqs. (15) and (17) can be determined by some
techniques, such as adaptive weight approach. In this study, we choose
the weights 𝑤𝑢 = 𝑤𝑓 = 𝑤𝑢𝑖𝑛 = 𝑤𝜦 = 𝑤𝑔 = 1 in order to facilitate the
analysis of the effect of algorithm and simultaneously study the role of
transfer learning. Adaptive weighting can indeed play a crucial role in
optimizing the model’s performance and convergence, and the research
on this aspect can be conducted in the subsequent work.

To better understand our new angle of view for gPINNs, we take
the inverse problem of identifying the time-varying variable coefficient
𝛬(𝑡) as an example to illustrate the effect of gradient information on
the optimization of loss (PDE residual) and inference of time-varying
variable coefficient. The corresponding sketch map is displayed in
Fig. 1. Wherein, the value of the predicted variable coefficient will close
to that of the exact one at the selected point if the term of PDE residual
MSE𝑓 is considered solely. The derivative 𝜕�̂�(𝑡)

𝜕𝑡 of the predicted variable
coefficient �̂�(𝑡) is constrained to approximate 𝜕𝛬(𝑡)

𝜕𝑡 at the given point
due to the incorporation of the gradient term MSE𝑔 , which reflects the
equation information satisfied by the derivative of variable coefficient.
Then the combined effect is remarkable and it enables the predicted
�̂�(𝑡) to tend to the exact 𝛬(𝑡).

Our method uses a two-step optimization strategy and gradually
increases the difficulty, resulting in better results than the direct one-
step optimization, i.e., the original gPINN method. The process draft of
the TL-gPINN method is sketched and shown in Fig. 2.

Partial derivatives of higher orders, of course, can be considered by
adding the loss of 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
, 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑡

and so on into the term MSE𝑔 . However,
excessive constraints may lead to high training costs and low efficiency,
which is the reason why the transfer learning technique is introduced
here.

The difficulty of the inverse problem lies in that the information
about variable coefficients is insufficient and meanwhile, the properties
or physical laws (if any) of variable coefficients remain to be discov-
ered, which can be used to achieve higher accuracy. Therefore, we
should make full use of existing conditions and the gradient-enhanced
PINN can be served as an effective tool to infer variable coefficients
by fully utilizing the information of equations satisfied by the deriva-
tives of variable coefficients ( 𝜕𝜦𝜕𝑡 ,

𝜕𝜦
𝜕𝑥1

, 𝜕𝜦
𝜕𝑥2

,…). Further, TL-gPINNs can
improve the accuracy and training efficiency of the original gPINNs.

All the codes in this article are based on Python 3.7 and Tensorflow
1.15, and the presented numerical experiments are run on a DELL
Precision 7920 Tower computer with 2.10 GHz 8-core Xeon Silver 4110
processor, 64 GB memory and 11 GB NVIDIA GeForce GTX 1080 Ti
video card.
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Fig. 2. Schematic diagram of the TL-gPINN algorithm.
3. Applications in the variable coefficient nonlinear Schrödinger
equation

The nonlinear Schrödinger (NLS) equation, one of the most classical
equations in integrable systems, is commonly used in the field of optical
fiber communication to describe the propagation of optical solitons [52,
53]. When it comes to inhomogeneous optical fibers, it is believed
that the variable coefficient Schrödinger equation is more accurate and
realistic than the standard one since variable coefficients can reflect
the inhomogeneities of media and nonuniformities of boundaries [54].
The research on variable coefficient NLS-type models has achieved
very fruitful results [55–59], like the groundbreaking work of Serkin
et al. [60]. Meanwhile, solutions of the variable coefficient NLS-type
equations are also obtained by using powerful means, such as the
Hirota bilinear method [61,62], the Darboux transformation [63], the
Riemann–Hilbert approach [64] and so on.

In this part, we discuss the mathematical model which can be used
to describe the optical fiber system or the Rossby waves [9], i.e., the
variable coefficient nonlinear Schrödinger (vcNLS) equation

i𝐴𝑡 + 𝛼(𝑡)𝐴𝑥𝑥 + 𝛽(𝑡)𝐴 + 𝛾(𝑡)|𝐴|2𝐴 = 0, (19)

where the variable coefficient 𝛼(𝑡) denotes the dispersion effect and 𝛾(𝑡)
denotes the Kerr nonlinearity. When considering the inhomogeneities,
the varying dispersion and Kerr nonlinearity are of practical importance
in the optical-fiber transmission system.

Under the assumption that the amplitude 𝐴(𝑥, 𝑡) has the transforma-
tion

𝐴(𝑥, 𝑡) = ei ∫ 𝛽(𝑡)𝑑𝑡 ℎ(𝑥, 𝑡) , (20)
5

𝑔(𝑥, 𝑡)
the one-soliton solution can be derived by the Hirota method [62]

𝐴(𝑥, 𝑡) = ei ∫ 𝛽(𝑡)𝑑𝑡 e𝜃

1 + 𝛾(𝑡)
2𝛼(𝑡)(𝑘+𝑘∗)2 e

𝜃+𝜃∗
, (21)

where

𝜙(𝑡) = i∫ 𝛼(𝑡)𝑘2𝑑𝑡, (22)

𝜃 = 𝑘𝑥 + 𝜙(𝑡) + 𝜂, (23)

𝜃∗ = 𝑘∗𝑥 + 𝜙(𝑡) + 𝜂. (24)

Here, 𝑘 is a complex constant and 𝜂 is a real constant.
The PINN, gPINN and TL-gPINN methods are applied to infer the

unknown time-varying variable coefficients of the vcNLS equation. To
avoid repetition, hyper-parameters of neural networks used for each
case are listed in Table 1 and other parameters are selected as 𝑘 =
1 + i, 𝜂 = 0.

3.1. Data-driven discovery of single variable coefficient

The general aim is to utilize TL-gPINNs to solve the inverse problem
for the discovery of function coefficient 𝛾(𝑡), and systematically com-
pare the performance of three methods (PINNs, gPINNs and TL-gPINNs)
under the circumstances that the other two variable coefficients 𝛼(𝑡) and
𝛽(𝑡) are already known.

Several types of time-varying variable coefficients 𝛾(𝑡) in common
use are provided, such as linear, quadratic, sine, hyperbolic tangent and
fractional functions: 𝛾(𝑡) = 𝑡, 𝑡2, sin(𝑡), tanh(𝑡), 1 separately.
1+𝑡2
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Table 1
Hyper-parameters used for each case.

Section Variable coefficients Trunk network Branch network

Fixed Inferred Depth Width Depth Width

3.1.1 𝛼(𝑡) = 𝑡
2
, 𝛽(𝑡) = 𝑡

5
𝛾(𝑡) = 𝑡 8 40 4 30

3.1.2(1) 𝛼(𝑡) = 𝑡2

2
, 𝛽(𝑡) = 𝑡

5
𝛾(𝑡) = 𝑡2 8 40 4 30

3.1.2(2) 𝛼(𝑡) = sin(𝑡), 𝛽(𝑡) = 𝑡
5

𝛾(𝑡) = sin(𝑡) 8 40 4 30
3.1.2(3) 𝛼(𝑡) = tanh(𝑡), 𝛽(𝑡) = 𝑡

5
𝛾(𝑡) = tanh(𝑡) 8 40 4 30

3.1.2(4) 𝛼(𝑡) = 1
2(1+𝑡2 )

, 𝛽(𝑡) = 𝑡
5

𝛾(𝑡) = 1
1+𝑡2

8 40 4 30
3.2.1 𝛼(𝑡) = sin(𝑡) 𝛽(𝑡) = 𝑡

5
, 𝛾(𝑡) = sin(𝑡) 8 40 4 30

3.2.2(1) – 𝛼(𝑡) = 𝑡
2
, 𝛽(𝑡) = 𝑡

5
, 𝛾(𝑡) = 𝑡 8 40 2 10

3.2.2(2) – 𝛼(𝑡) = 1
2(1+𝑡2 )

, 𝛽(𝑡) = 𝑡
5
, 𝛾(𝑡) = 1

1+𝑡2
8 40 4 10
F
e
i
t

b
m
c

t
n
n
t
o
l
o
h
n
t
X
t
o

3.1.1. Data-driven discovery of linear variable coefficient 𝛾(𝑡)
In this part, we take 𝛼(𝑡) = 𝑡

2 , 𝛽(𝑡) = 𝑡
5 and choose [𝑥0, 𝑥1] =

−4, 4], [𝑡0, 𝑡1] = [−4, 4] as the training region.
In consideration of the complexity of the structure of complex-

alued solution 𝐴(𝑥, 𝑡), we decompose it into real part 𝑢(𝑥, 𝑡) and
maginary part 𝑣(𝑥, 𝑡), i.e., 𝐴(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + i𝑣(𝑥, 𝑡). After substituting
t into the governing equation

∶= i𝐴𝑡 + 𝛼(𝑡)𝐴𝑥𝑥 + 𝛽(𝑡)𝐴 + 𝛾(𝑡)|𝐴|2𝐴 = 0, (25)

we have

𝑓𝑢 ∶= −𝑣𝑡 + 𝛼(𝑡)𝑢𝑥𝑥 + 𝛽(𝑡)𝑢 + 𝛾(𝑡)(𝑢2 + 𝑣2)𝑢, (26)

𝑓𝑣 ∶= 𝑢𝑡 + 𝛼(𝑡)𝑣𝑥𝑥 + 𝛽(𝑡)𝑣 + 𝛾(𝑡)(𝑢2 + 𝑣2)𝑣. (27)

Define the loss function of PINNs for the inverse problem as follows:

MSE𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = MSE𝐴 +MSE𝑓 +MSE𝐴𝑖𝑛
+MSE𝛾 , (28)

where

MSE𝐴 = MSE𝑢 +MSE𝑣, MSE𝑓 = MSE𝑓𝑢 +MSE𝑓𝑣 ,

MSE𝐴𝑖𝑛
= MSE𝑢𝑖𝑛 +MSE𝑣𝑖𝑛 , (29)

MSE𝑢 =
1
𝑁𝐴

𝑁𝐴
∑

𝑖=1

|

|

�̂�(𝑥𝑖𝐴, 𝑡
𝑖
𝐴) − 𝑢𝑖|

|

2 , MSE𝑣 =
1
𝑁𝐴

𝑁𝐴
∑

𝑖=1

|

|

𝑣(𝑥𝑖𝐴, 𝑡
𝑖
𝐴) − 𝑣𝑖|

|

2 ,

SE𝑓𝑢 =
1
𝑁𝑓

𝑁𝑓
∑

𝑖=1

|

|

|

|

𝑓𝑢
(

𝑥𝑖𝑓 , 𝑡
𝑖
𝑓 ; �̂�(𝑡

𝑖
𝑓 )
)

|

|

|

|

2
, MSE𝑓𝑣 = 1

𝑁𝑓

𝑁𝑓
∑

𝑖=1

|

|

|

|

𝑓𝑣
(

𝑥𝑖𝑓 , 𝑡
𝑖
𝑓 ; �̂�(𝑡

𝑖
𝑓 )
)

|

|

|

|

2
,

MSE𝑢𝑖𝑛 =
1

𝑁𝐴𝑖𝑛

𝑁𝐴𝑖𝑛
∑

𝑖=1

|

|

�̂�(𝑥𝑖𝑖𝑛, 𝑡
𝑖
𝑖𝑛) − 𝑢𝑖𝑖𝑛||

2 , MSE𝑣𝑖𝑛 =
1

𝑁𝐴𝑖𝑛

𝑁𝐴𝑖𝑛
∑

𝑖=1

|

|

𝑣(𝑥𝑖𝑖𝑛, 𝑡
𝑖
𝑖𝑛) − 𝑣𝑖𝑖𝑛||

2 ,

MSE𝛾 =
1
𝑁𝛾

𝑁𝛾
∑

𝑖=1

|

|

|

�̂�(𝑡𝑖𝛾 ) − 𝛾 𝑖||
|

2
= |

|

|

�̂�(𝑡0) − 𝛾0||
|

2
.

(30)

Here, {𝑥𝑖𝐴, 𝑡
𝑖
𝐴, 𝑢

𝑖, 𝑣𝑖}𝑁𝐴
𝑖=1 and {𝑥𝑖𝑖𝑛, 𝑡

𝑖
𝑖𝑛, 𝑢

𝑖, 𝑣𝑖}
𝑁𝐴𝑖𝑛
𝑖=1 denote the training dataset

consisting of initial–boundary points and internal points separately.
Correspondingly, {�̂�(𝑥𝑖𝐴, 𝑡

𝑖
𝐴), 𝑣(𝑥

𝑖
𝐴, 𝑡

𝑖
𝐴)}

𝑁𝐴
𝑖=1 and {�̂�(𝑥𝑖𝑖𝑛, 𝑡

𝑖
𝑖𝑛), 𝑣(𝑥

𝑖
𝑖𝑛, 𝑡

𝑖
𝑖𝑛)}

𝑁𝐴𝑖𝑛
𝑖=1

are the predicted values. In order to calculate {𝑓𝑢(𝑥𝑖𝑓 , 𝑡
𝑖
𝑓 ), 𝑓𝑣(𝑥

𝑖
𝑓 , 𝑡

𝑖
𝑓 )}

𝑁𝑓
𝑖=1,

the derivatives of the networks 𝑢 and 𝑣 with respect to time 𝑡 and space
𝑥 are derived by automatic differentiation [65]. Considering that the
unknown time-varying variable coefficient 𝛾(𝑡) is independent of space
𝑥 and the objective 𝛾(𝑡) takes the form of linear function, we take 𝑁𝛾 = 1
and choose {𝑡0, 𝛾0} as the training data.

Similarly, after additionally embedding the term of gradient-enhan-
ced information into the loss function of PINNs, the mean squared error
function of gPINNs is given by

MSE𝑔
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = MSE𝐴 +MSE𝑓 +MSE𝐴𝑖𝑛

+MSE𝛾 +MSE𝑔 , (31)

where
6

MSE𝑔 = MSE𝑔𝑢 +MSE𝑔𝑣 , (32) g
MSE𝑔𝑢 =
1
𝑁𝑔

𝑁𝑔
∑

𝑖=1

|

|

|

|

𝜕𝑓𝑢
𝜕𝑡

(

𝑥𝑖𝑔 , 𝑡
𝑖
𝑔 ; �̂�(𝑡

𝑖
𝑔), �̂�𝑡(𝑡

𝑖
𝑔)
)

|

|

|

|

2
, (33)

MSE𝑔𝑣 = 1
𝑁𝑔

𝑁𝑔
∑

𝑖=1

|

|

|

|

𝜕𝑓𝑣
𝜕𝑡

(

𝑥𝑖𝑔 , 𝑡
𝑖
𝑔 ; �̂�(𝑡

𝑖
𝑔), �̂�𝑡(𝑡

𝑖
𝑔)
)

|

|

|

|

2
, (34)

𝜕𝑓𝑢
𝜕𝑡

= −𝑣𝑡𝑡 + 𝛼(𝑡)𝑡𝑢𝑥𝑥 + 𝛼(𝑡)𝑢𝑥𝑥𝑡 + 𝛽(𝑡)𝑡𝑢

+ 𝛽(𝑡)𝑢𝑡 + 𝛾(𝑡)𝑡(𝑢2 + 𝑣2)𝑢 + 𝛾(𝑡)(2𝑢𝑢𝑡 + 2𝑣𝑣𝑡)𝑢 + 𝛾(𝑡)(𝑢2 + 𝑣2)𝑢𝑡, (35)

𝜕𝑓𝑣
𝜕𝑡

= 𝑢𝑡𝑡 + 𝛼(𝑡)𝑡𝑣𝑥𝑥 + 𝛼(𝑡)𝑣𝑥𝑥𝑡 + 𝛽(𝑡)𝑡𝑣

+ 𝛽(𝑡)𝑣𝑡 + 𝛾(𝑡)𝑡(𝑢2 + 𝑣2)𝑣 + 𝛾(𝑡)(2𝑢𝑢𝑡 + 2𝑣𝑣𝑡)𝑣 + 𝛾(𝑡)(𝑢2 + 𝑣2)𝑣𝑡.
(36)

or the time-varying variable coefficient 𝛾(𝑡), the gradient-enhanced
ffect of 𝑡 is solely considered here by adding mean squared errors
nvolving the partial derivatives of the governing functions with respect
o time ( 𝜕𝑓𝑢𝜕𝑡 and 𝜕𝑓𝑣

𝜕𝑡 ). Besides, the functions 𝑓𝑢 and 𝑓𝑣 only reflect the
value of variable coefficient itself while 𝜕𝑓𝑢

𝜕𝑡 and 𝜕𝑓𝑣
𝜕𝑡 embody the extra

derivative information of 𝛾(𝑡), i.e., the information of equations satisfied
by 𝛾𝑡.

With the aid of the MATLAB software, the spatial region [−4, 4] and
the temporal region [−4, 4] are divided into 𝑁𝑥 = 513 and 𝑁𝑡 = 201 dis-
crete equidistance points, respectively. Thus, the reference one-soliton
solution

𝐴(𝑥, 𝑡) = e
i
10 𝑡

2
e(1+i)𝑥−

𝑡2
2

1 + e−𝑡2+2𝑥
4

, (37)

is discretized into 513 × 201 data points in the given spatiotemporal
domain. Then 𝑁𝐴 = 200 points are randomly selected from the initial–
oundary dataset and 𝑁𝐴𝑖𝑛

= 2000 points from interior point set. By
eans of the Latin hypercube sampling method [66], 𝑁𝑓 = 𝑁𝑔 = 40000

ollocation points are also sampled.
The neural network of the complex valued solution 𝐴(𝑥, 𝑡) (called as

he trunk network) consists of one input layer, 7 hidden layers with 40
eurons per hidden layer and one output layer. The output layer has 2
eurons to learn the real part 𝑢(𝑥, 𝑡) and imaginary part 𝑣(𝑥, 𝑡). Given
hat the function expression of variable coefficient is simpler than that
f the solution, we construct the branch network consisting of one input
ayer, 3 hidden layers as well as one output layer with one neuron to
btain the data-driven variable coefficient 𝛾(𝑡) and each hidden layer
as 30 neurons. The linear activation function is used in the branch
etwork while 𝑡𝑎𝑛ℎ function is selected as the activation function in
he trunk network. Weights of the neural networks are initialized with
avier initialization [67]. In addition, we apply L-BFGS algorithm [68]

o minimize the value of the loss function by optimizing the parameters
f the neural networks.

To evaluate the performance of three methods (PINNs, gPINNs, TL-

PINNs), we calculate the absolute error and relative error of 𝛾(𝑡): the
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Fig. 3. Date-driven one-soliton solution 𝐴(𝑥, 𝑡) of the vcNLS equation with linear variable coefficient 𝛾(𝑡) by TL-gPINNs: The density diagrams and comparison between the predicted
and exact solutions at the three temporal snapshots of |𝐴(𝑥, 𝑡)|.
Fig. 4. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) The error curve and comparison between the predicted and exact variable coefficient 𝛾(𝑡); (b) The
three-dimensional plot of the data-driven one-soliton solution |𝐴(𝑥, 𝑡)|.
mean absolute error (𝑀𝐴𝐸) and relative L2 error (𝑅𝐸) of the variable
coefficient 𝛾(𝑡)

𝑀𝐴𝐸𝛾 = 1
𝑁 ′

𝑡

𝑁 ′
𝑡−1
∑

𝑘=0

|

|

|

|

|

�̂�(𝑡0 + 𝑘
𝑡1 − 𝑡0
𝑁 ′

𝑡 − 1
) − 𝛾𝑘

|

|

|

|

|

, (38)

𝑅𝐸𝛾 =

√

∑𝑁 ′
𝑡−1

𝑘=0
|

|

|

|

�̂�(𝑡0 + 𝑘 𝑡1−𝑡0
𝑁 ′

𝑡−1
) − 𝛾𝑘

|

|

|

|

2

√

∑𝑁 ′
𝑡−1

𝑘=0
|

|

𝛾𝑘|
|

2

, (39)

after choosing the corresponding parameter as 𝑁 ′
𝑡 = 500.

Firstly, the original PINNs is applied. Then, we save the weight
matrixes and bias vectors of PINNs at the end of the iteration process
to initialize corresponding parameters of gPINNs. After 1862.3727 s,
the relative L2 errors of the real part 𝑢, the imaginary part 𝑣 and
the modulus |𝐴| are 1.331004e−03, 1.407320e−03 and 9.441619e−04
separately. Besides, the mean absolute error and relative L2 error of
the variable coefficient 𝛾(𝑡) are: 1.915842e−05 and 9.511436e−06.
Obviously, the training by gPINNs is based on training results of PINNs
instead of training from scratch, which helps to accelerate convergence
to the approximate optimal solution and variable coefficient.

Ultimately, the unknown variable coefficient 𝛾(𝑡) is learned simul-
taneously with the one-soliton solution 𝐴(𝑥, 𝑡) by TL-gPINNs. Density
diagrams of the data-driven one-soliton solution, comparison between
the predicted solution and exact solution as well as the evolution plots
7

are shown in Fig. 3. It implies there is little difference between the
exact solution and the predicted one. Fig. 4(a) is a double coordinate
plot, where the solid blue line and the dashed red line corresponding
to the left coordinate axis represent the exact and predicted variable
coefficient 𝛾(𝑡) respectively while the error curve is drawn with black
dotted line corresponding to the right one. Obviously, the error curve
of 𝛾(𝑡) exhibits a characteristic of linear variation, and the error is close
to 0 at the initial moment since the data of 𝛾(𝑡) at 𝑡0 = −4 is provided
and the linear activation function is selected in the branch network.
The predicted 3D plot of the soliton solution with a parabolic shape
for the vcNLS equation are shown in Fig. 4(b). From the above figures,
it can be clearly seen that the experimental results of 𝛾(𝑡) and soliton
solution are in good agreement with the theoretical ones.

For intuitive comparison of the prediction accuracy of different
methods, the error reduction rate (𝐸𝑅𝑅) can be directly calculated
according to the mean absolute error and relative L2 error achieved
by PINNs and gPINNs (TL-gPINNs)

𝐸𝑅𝑅1 =
𝑀𝐴𝐸𝑃𝐼𝑁𝑁𝑠

𝛾 −𝑀𝐴𝐸𝑛𝑒𝑤
𝛾

𝑀𝐴𝐸𝑃𝐼𝑁𝑁𝑠
𝛾

, (40)

𝐸𝑅𝑅2 =
𝑅𝐸𝑃𝐼𝑁𝑁𝑠

𝛾 − 𝑅𝐸𝑛𝑒𝑤
𝛾

𝑅𝐸𝑃𝐼𝑁𝑁𝑠
𝛾

, (41)

where ‘new’ can be replaced by ‘gPINNs’ and ‘TL-gPINNs’.
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Fig. 5. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) The error curve and comparison between the predicted and exact variable coefficient 𝛾(𝑡); (b) The
density diagrams and comparison between the predicted and exact solutions at the three temporal snapshots of |𝐴(𝑥, 𝑡)|.
3

Table 2
Performance comparison of three methods: the elapsed time, mean absolute errors
and relative L2 errors of the linear variable coefficient 𝛾(𝑡) as well as error
reduction rates.

Results
Method PINNs gPINNs TL-gPINNs

Elapsed time (s) 302.1032 2579.5674 1862.3727
𝑀𝐴𝐸𝛾 3.438509e−05 2.405417e−05 1.915842e−05
𝑅𝐸𝛾 1.732523e−05 1.199509e−05 9.511436e−06
𝐸𝑅𝑅1 – 30.04% 44.28%
𝐸𝑅𝑅2 – 30.77% 45.10%

Finally, the contrast in respect of efficiency and accuracy is pre-
sented in Table 2, including the elapsed time, mean absolute error,
relative L2 error and error reduction rates.

3.1.2. Data-driven discovery of nonlinear variable coefficient 𝛾(𝑡)
Here, the TL-gPINN algorithm is applied to infer nonlinear variable

coefficients including the polynomial, trigonometric function, hyper-
bolic function and fractional polynomial, which are more common in
practical scenarios.

• Quadratic variable coefficient: We fix 𝛼(𝑡) = 𝑡2

2 , 𝛽(𝑡) = 𝑡
5

and the objective function is 𝛾(𝑡) = 𝑡2 based on the dataset
of the corresponding solution 𝐴(𝑥, 𝑡) for the variable coefficient
nonlinear Schrödinger equation:

𝐴(𝑥, 𝑡) = e
i
10 𝑡

2
e(1+i)𝑥−

𝑡3
3

1 + e2𝑥−
2𝑡3
3

4

. (42)

Since the functional form of the target variable coefficient 𝛾(𝑡)
is quadratic and no longer linear as in Section 3.1.1, we add
sampling data of it and change the term measuring the difference
between the predicted values and the true values of 𝛾(𝑡) into

MSE𝛾 = 1
2

(

|

|

|

�̂�(𝑡0) − 𝛾0||
|

2
+ |

|

|

�̂�(𝑡1) − 𝛾1||
|

2
)

. (43)

But apart from that, the loss functions of PINNs and gPINNs
(TL-gPINNs) are consistent with the previous subsection.
Obviously, 𝑁𝛾 = 2 here and then the training region is selected
as [𝑥0, 𝑥1] × [𝑡0, 𝑡1] = [−4, 4] × [−2, 2]. After exploiting the same
data discretization method, we divide the spatial region [𝑥0, 𝑥1] =
[−4, 4] into 𝑁𝑥 = 513 discrete equidistance points and the time
region [𝑡0, 𝑡1] = [−2, 2] into 𝑁𝑡 = 201 discrete equidistance
points. The initial–boundary dataset (𝑁𝐴 = 200) and the internal
point set (𝑁𝐴𝑖𝑛

= 2000) are sampled randomly from 513 × 201
data points of the solution 𝐴(𝑥, 𝑡), and we also extract 𝑁 =
8

𝑓

Table 3
Performance comparison of three methods: the elapsed time, mean absolute errors
and relative L2 errors of the quadratic variable coefficient 𝛾(𝑡) as well as error
reduction rates.

Results
Method PINNs gPINNs TL-gPINNs

Elapsed time (s) 789.8311 3133.7038 2293.3249
𝑀𝐴𝐸𝛾 4.211790e−03 1.072530e−02 3.100830e−03
𝑅𝐸𝛾 3.003559e−03 7.299052e−03 2.163681e−03
𝐸𝑅𝑅1 – −154.65% 26.38%
𝐸𝑅𝑅2 – −143.01% 27.96%

𝑁𝑔 = 40000 collocation points via the Latin hypercube sampling
method. We firstly initialize weights of PINNs with Xavier ini-
tialization. A 7-hidden-layer feedforward neural network with 40
neurons per hidden layer and a 3-hidden-layer feedforward neural
network with 30 neurons per hidden layer are constructed to
learn the one soliton solution and the variable coefficient 𝛾(𝑡) of
the vcNLS equation, respectively. We use the hyperbolic tangent
(tanh) activation function to add nonlinear factors into neural
networks. At the end of the iteration process, the parameter data
of PINNs is stored and then we use the saved data to fine-tune
gPINNs with the same structure by changing the loss function into
(31).
In about 2293.3249 s, the data-driven solution of the vcNLS
equation is obtained by gPINNs based on transfer learning (TL-
gPINNs) and the relative L2 errors of the real part 𝑢, the imaginary
part 𝑣 and the modulus |𝐴| are 1.336860e−03, 1.452912e−03
and 8.587186e−04. Simultaneously, the variable coefficient 𝛾(𝑡) is
successfully inferred with the mean absolute error of 3.100830e−0
and relative L2 error of 2.163681e−03. Fig. 5 displays the curve
plots of the predicted and the exact variable coefficient 𝛾(𝑡), the
learned and absolute error density diagrams as well as evolu-
tion plots of one-soliton solution at different time points 𝑡 =
−1.5, 0, 1.5. As can be seen from these diagrams and performance
comparison of three methods shown in Table 3, TL-gPINN is capa-
ble of correctly identifying the unknown variable coefficient 𝛾(𝑡)
and learning the cubic soliton solution with very high accuracy
while gPINN does not work as expected.

• Sine variable coefficient: After fixing 𝛼(𝑡) = sin(𝑡), 𝛽(𝑡) = 𝑡
5 , we

aim to infer the unknown 𝛾(𝑡) in the variable coefficient nonlinear
Schrödinger equation based on the solution data:

𝐴(𝑥, 𝑡) = e
i
10 𝑡

2
e(1+i)𝑥+2 cos(𝑡)

1 + e2𝑥+4 cos(𝑡)
8

. (44)
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Fig. 6. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) The error curve and comparison between the predicted and exact variable coefficient 𝛾(𝑡); (b) The
density diagrams and comparison between the predicted and exact solutions at the three temporal snapshots of |𝐴(𝑥, 𝑡)|.
Table 4
Performance comparison of three methods: the elapsed time, mean absolute errors
and relative L2 errors of the sine variable coefficient 𝛾(𝑡) as well as error reduction
rates.

Results
Method PINNs gPINNs TL-gPINNs

Elapsed time (s) 729.1269 5283.3492 4272.9441
𝑀𝐴𝐸𝛾 1.463990e−03 7.123562e−04 4.664226e−04
𝑅𝐸𝛾 2.703498e−03 1.363048e−03 7.559607e−04
𝐸𝑅𝑅1 – 51.34% 68.14%
𝐸𝑅𝑅2 – 49.58% 72.04%

For simplicity, we confine our sampling and training in a rect-
angular region (𝑥, 𝑡) ∈ [−4, 4] × [−5, 5]. To generate a dataset
for this example, we choose 𝑁𝐴 = 200 points from the initial–
boundary dataset and 𝑁𝐴𝑖𝑛

= 2000 points from interior point set
at random after equidistant discretization. In addition, we employ
the Latin hypercube sampling method to select 𝑁𝑓 = 𝑁𝑔 = 40000
collocation points. Similarly, we also establish the fully-connected
PINNs with Xavier initialization at first and proceed by adopting
gPINNs with the advantage of transfer learning. The structure
of networks, including the width and depth, activation function,
definition of loss functions as well as the optimization algorithm,
is the same as the previous case.
Dynamic behaviors of the soliton solution 𝐴(𝑥, 𝑡) and variable
coefficient 𝛾(𝑡) inferred by TL-gPINNs are shown in Fig. 6, which
contain the curve graph of the variable coefficient 𝛾(𝑡) and com-
parison between the predicted solutions and exact ones. The error
curve of 𝛾(𝑡) is drawn with black dotted line corresponding to the
right coordinate axis in Fig. 6(a). An empirical inference is given
that the high-frequency oscillation of the error is caused by the
periodic oscillation and the change in concavity and convexity
of the variable coefficient. It can be observed that we obtain a
periodical soliton solution like sine or cosine function and the
predicted variable coefficient is well fitted with the exact one with
absolute error less than 2×10−3. In addition, based on the results
in Table 4, it illustrates that both the mean absolute error and
relative L2 error of the variable coefficient 𝛾(𝑡) achieved by TL-
gPINNs reach the level of 10−4, about one order of magnitude
lower than those by PINNs.

• Hyperbolic tangent variable coefficient: Given 𝛼(𝑡) = tanh(𝑡),
𝛽(𝑡) = 𝑡

5 , the goal is to identify the unknown variable parameter
𝛾(𝑡) from the vcNLS equation with remarkable accuracy. After
utilizing the same generation and sampling method of training
data as above, we acquire the training set consists of 𝑁 = 200
9

𝐴

initial–boundary points, 𝑁𝐴𝑖𝑛
= 2000 internal points and a random

selection of 𝑁𝑓 = 𝑁𝑔 = 40000 collocation points in the given
spatiotemporal domain [𝑥0, 𝑥1] × [𝑡0, 𝑡1] = [−2, 4] × [−5, 5] where
the corresponding soliton solution is

𝐴(𝑥, 𝑡) = e
i
10 𝑡

2
e(1+i)𝑥−2 ln(cosh(𝑡))

1 + e2𝑥−4 ln(cosh(𝑡))
8

. (45)

The first step is to construct the conventional PINNs. The ar-
chitecture of multi-out neural networks consists of one input
layer, 7 hidden layers with 40 neurons per hidden layer and one
output layer with 2 neurons to learn the real part 𝑢(𝑥, 𝑡) and
imaginary part 𝑣(𝑥, 𝑡) of the soliton solution. A 3-hidden-layer
feedforward neural network with 30 neurons per hidden layer is
employed to infer the variable parameter 𝛾(𝑡). This process can be
regarded as the pre-training of the gPINNs, which helps accelerate
the convergence of training. Next, we initialize gPINNs with the
saved weights of PINNs. The activation function and optimization
algorithm used here are the 𝑡𝑎𝑛ℎ function and L-BFGS optimizer
respectively.
By leveraging TL-gPINNs, the data-driven soliton solution 𝐴(𝑥, 𝑡)
and variable coefficient 𝛾(𝑡) are plotted in Fig. 7. For the double
coordinate plot in Fig. 7(a), the black dotted line corresponding
to the right coordinate axis represents the error curve, which ex-
hibits a certain degree of symmetry since the variable coefficient
itself is centrosymmetric. Empirically speaking, the error will
increase accordingly when the value of the function to be learned
is large or changes greatly. However, the error is relatively small
during the period with high slopes, i.e. 𝑡 ∈ [−2, 2]. Presumably it
is because the introduction of gradient information into the loss
function is conducive to learn the features of variable coefficient
where the slope is relatively large. We observe that this V-shaped
soliton and the variable coefficient with the function type of
hyperbolic tangent are both accurately inferred. Furthermore,
Table 5 gives a brief overview of accuracy and efficiency of three
methods.

• Fractional variable coefficient: When 𝛼(𝑡), 𝛽(𝑡) are respectively
fixed as 1

2(1+𝑡2) ,
𝑡
5 and the training of this case is confined in a

rectangular region (𝑥, 𝑡) ∈ [−4, 5]×[−5, 5], the target here is to infer
the unknown variable coefficient 𝛾(𝑡) on the basis of the dataset
of the corresponding solution

𝐴(𝑥, 𝑡) = e
i
10 𝑡

2
e(1+i)𝑥−arctan(𝑡)

1 + (2𝑡2+2)e2𝑥−2 arctan(𝑡)
8(𝑡2+1)

. (46)

Since there are large amounts of descriptions of the sampling
method and network structure above, we will not reiterate them
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Fig. 7. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) The error curve and comparison between the predicted and exact variable coefficient 𝛾(𝑡); (b) The
density diagrams and comparison between the predicted and exact solutions at the three temporal snapshots of |𝐴(𝑥, 𝑡)|.
Fig. 8. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) The error curve and comparison between the predicted and exact variable coefficient 𝛾(𝑡); (b) The
density diagrams and comparison between the predicted and exact solutions at the three temporal snapshots of |𝐴(𝑥, 𝑡)|.
Table 5
Performance comparison of three methods: the elapsed time, mean absolute errors
and relative L2 errors of the hyperbolic tangent variable coefficient 𝛾(𝑡) as well
as error reduction rates.

Results
Method PINNs gPINNs TL-gPINNs

Elapsed time (s) 223.075 1621.832 1014.9962
𝑀𝐴𝐸𝛾 6.833609e−03 2.909324e−03 2.209660e−03
𝑅𝐸𝛾 9.421331e−03 3.897784e−03 3.178629e−03
𝐸𝑅𝑅1 – 57.43% 67.66%
𝐸𝑅𝑅2 – 58.63% 66.26%

here to avoid repetition. All details are the same as the prior
example.
Table 6 summarizes the results of our experiment and compares
the performance of PINNs, TL-gPINNs and gPINNs. A more de-
tailed assessment of the predicted soliton solution 𝐴(𝑥, 𝑡) and
variable coefficient 𝛾(𝑡) by leveraging TL-gPINNs is presented in
Fig. 8. Specifically, the comparison between the exact and the
predicted solutions at different time points 𝑡 = −3.75, 0, 3.75 as
well as that between the predicted and exact variable coefficient
𝛾(𝑡) is also displayed. A rule of thumb is that the error is large
when the value of variable coefficient 𝛾(𝑡) is large or 𝛾(𝑡) changes
sharply. The change of the error curve plotted with black dashed
line shown in Fig. 8(a) is in good agreement with this experiential
conclusion to a certain extent.

In addition to the parabolic soliton shown in Fig. 4(b), Fig. 9
displays abundant data-driven soliton solutions that can be obtained
simultaneously in the inverse problem of inferring nonlinear variable
coefficients mentioned above, including the cubic soliton, periodical
soliton, V-shaped soliton and so on. It illustrates that TL-gPINN is
capable of accurately capturing the intricate nonlinear behaviors of the
10
Table 6
Performance comparison of three methods: the elapsed time, mean absolute errors
and relative L2 errors of the fractional variable coefficient 𝛾(𝑡) as well as error
reduction rates.

Results
Method PINNs gPINNs TL-gPINNs

Elapsed time (s) 155.3069 612.4961 327.6574
𝑀𝐴𝐸𝛾 1.504344e−03 1.662907e−03 8.788681e−04
𝑅𝐸𝛾 5.177898e−03 5.403644e−03 2.536767e−03
𝐸𝑅𝑅1 – −10.54% 41.58%
𝐸𝑅𝑅2 – −4.36% 51.01%

vcNLS equation, including the dynamic behaviors of the solution and
the Kerr nonlinearity 𝛾(𝑡).

3.2. Data-driven discovery of multiple variable coefficients

We extend the research of data-driven discovery for single variable
coefficient to that of multiple ones, and the hyper-parameters of which
are given in outline in Table 1. For each case discussed here, the L-BFGS
algorithm is utilized to optimize loss functions.

3.2.1. Data-driven discovery of two variable coefficients: linear 𝛽(𝑡) and
sine 𝛾(𝑡)

In this part, we use the TL-gPINNs to identify two unknown variable
coefficients: linear 𝛽(𝑡) and sine 𝛾(𝑡) when the other variable coef-
ficient (𝛼(𝑡) = sin(𝑡)) is fixed and the training dataset consisting of
initial–boundary data {𝑥𝑖𝐴, 𝑡

𝑖
𝐴, 𝑢

𝑖, 𝑣𝑖}𝑁𝐴
𝑖=1 (𝑁𝐴 = 200) and internal data

{𝑥𝑖𝑖𝑛, 𝑡
𝑖
𝑖𝑛, 𝑢

𝑖, 𝑣𝑖}
𝑁𝐴𝑖𝑛
𝑖=1 (𝑁𝐴𝑖𝑛

= 2000) is randomly selected. Then the loss
functions of PINNs and gPINNs are redefined

MSE = MSE +MSE +MSE +MSE , (47)
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝐴 𝑓 𝐴𝑖𝑛 𝜦
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Fig. 9. The three-dimensional plots of data-driven one-soliton solution 𝐴(𝑥, 𝑡) of the vcNLS equation with different nonlinear variable coefficient 𝛾(𝑡) by TL-gPINNs: (a) Polynomial
function; (b) Trigonometric function; (c) Hyperbolic function; (d) Fractional polynomial function.
Table 7
Performance comparison of three methods: mean absolute errors and relative L2 errors of the variable coefficients 𝛽(𝑡) and 𝛾(𝑡) as well as error
reduction rates.

Results Method

PINNs gPINNs TL-gPINNs

𝛽(𝑡)
𝑀𝐴𝐸𝛽 (𝐸𝑅𝑅1) 1.246162e−05 1.861258e−05 (−49.36%) 8.680616e−06 (30.34%)
𝑅𝐸𝛽 (𝐸𝑅𝑅2) 2.323916e−05 3.888068e−05 (−67.31%) 1.517259e−05 (30.34%)

𝛾(𝑡)
𝑀𝐴𝐸𝛾 (𝐸𝑅𝑅1) 1.412442e−03 1.128851e−03 (−67.31%) 7.726441e−04 (34.71%)
𝑅𝐸𝛾 (𝐸𝑅𝑅2) 2.712897e−03 2.220811e−03 (18.14%) 1.309694e−03 (51.72%)
MSE𝑔
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = MSE𝐴 +MSE𝑓 +MSE𝐴𝑖𝑛

+MSE𝜦 +MSE𝑔 , (48)

where

MSE𝜦 = MSE𝛽 +MSE𝛾 , (49)

MSE𝛽 = |

|

|

𝛽(𝑡0) − 𝛽0||
|

2
, (50)

MSE𝛾 = 1
2

(

|

|

|

�̂�(𝑡0) − 𝛾0||
|

2
+ |

|

|

�̂�(𝑡1) − 𝛾1||
|

2
)

. (51)

By employing the TL-gPINN method, the data-driven soliton solu-
tion and variable coefficients for the vcNLS equation are successfully
simulated. Comparison between the predicted and exact variable coef-
ficients 𝛽(𝑡) and 𝛾(𝑡) as well as the corresponding errors is displayed in
Fig. 10. It can be seen that the error of linear 𝛽(𝑡) is negligible compared
with that of nonlinear 𝛾(𝑡), which exhibits the feature of high-frequency
oscillation due to the periodic oscillation and the change in concavity
and convexity of the variable coefficient. Table 7 gives a brief overview
of the method performance.

3.2.2. Data-driven discovery of three variable coefficients
Note that all variable coefficients of the vcNLS equation are un-

known and need to be inferred here.
11
• Linear 𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡): For the identification of three linear
variable coefficients, the term embodying the training data in the
loss functions in Eqs. (47) and (48) need to be modified

MSE𝜦 = MSE𝛼 +MSE𝛽 +MSE𝛾 , (52)

where

MSE𝛼 = |

|

|

𝛼(𝑡0) − 𝛼0||
|

2
, (53)

MSE𝛽 = |

|

|

𝛽(𝑡0) − 𝛽0||
|

2
, (54)

MSE𝛾 = |

|

|

�̂�(𝑡0) − 𝛾0||
|

2
. (55)

With the aid of the same generation and sampling method above,
we obtain the training data (size: 𝑁𝐴 = 200, 𝑁𝐴𝑖𝑛

= 2000)
in the given spatiotemporal region [−4, 4] × [−4, 4], where the
corresponding soliton solution is

𝐴(𝑥, 𝑡) = e
i
10 𝑡

2
e(1+i)𝑥−2 ln(cosh(𝑡))

1 + e2𝑥−4 ln(cosh(𝑡))
8

. (56)

The linear and tanh activation functions are adopted to infer the
variable coefficients and soliton solution separately.
Finally, Fig. 11 shows the curve plots of the predicted and the
exact variable coefficients as well as errors obtained by TL-gPINN,
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Fig. 10. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) Comparison between the predicted and exact variable coefficients 𝛽(𝑡) and 𝛾(𝑡); (b) Error curves
or two coefficients.
Fig. 11. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) Comparison between the predicted and exact variable coefficients 𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡); (b) Error
urves for three coefficients.
Table 8
Performance comparison of three methods: mean absolute errors and relative L2 errors of three linear variable coefficients as well as error
reduction rates.

Results Method

PINNs gPINNs TL-gPINNs

𝛼(𝑡)
𝑀𝐴𝐸𝛼 (𝐸𝑅𝑅1) 7.617165e−05 1.224185e−04 (−60.71%) 6.102315e−05 (19.89%)
𝑅𝐸𝛼 (𝐸𝑅𝑅2) 7.604356e−05 1.225268e−04 (−61.13%) 6.186360e−05 (18.65%)

𝛽(𝑡)
𝑀𝐴𝐸𝛽 (𝐸𝑅𝑅1) 2.193591e−04 5.647830e−04 (−157.47%) 8.066458e−05 (63.23%)
𝑅𝐸𝛽 (𝐸𝑅𝑅2) 5.484737e−04 1.412454e−03 (−157.52%) 2.025123e−04 (63.08%)

𝛾(𝑡)
𝑀𝐴𝐸𝛾 (𝐸𝑅𝑅1) 1.086061e−04 4.343718e−04 (−299.95%) 3.701118e−05 (65.92%)
𝑅𝐸𝛾 (𝐸𝑅𝑅2) 5.447867e−05 2.165039e−04 (−297.41%) 1.842847e−05 (66.17%)
and Table 8 summarizes the detailed results of three methods
in the term of prediction accuracy. The change of absolute error
curves here is similar to that in Section 3.1.1.

• Linear 𝛽(𝑡), fractional 𝛼(𝑡) and 𝛾(𝑡): Based on the initial–boundary
data of the soliton solution

𝐴(𝑥, 𝑡) = e
i
10 𝑡

2
e(1+i)𝑥−arctan(𝑡)

1 + (2𝑡2+2)e2𝑥−2 arctan(𝑡)
8(𝑡2+1)

, (57)

corresponding to 𝛼(𝑡) = 1
2(1+𝑡2) , 𝛽(𝑡) = 𝑡

5 , 𝛾(𝑡) = 1
1+𝑡2 , we utilize

the TL-gPINNs to infer these three unknown variable coefficients.
Here, the loss term of nonlinear variable coefficients should be
changed into

MSE𝑣𝑐 = MSE𝛼 +MSE𝛽 +MSE𝛾 , (58)

where
|̂ 0|2
12

MSE𝛽 = |

|

𝛽(𝑡0) − 𝛽 |

|

, (59)
MSE𝛼 = 1
2

(

|

|

|

𝛼(𝑡0) − 𝛼0||
|

2
+ |

|

|

𝛼(𝑡1) − 𝛼1||
|

2
)

, (60)

MSE𝛾 = 1
2

(

|

|

|

�̂�(𝑡0) − 𝛾0||
|

2
+ |

|

|

�̂�(𝑡1) − 𝛾1||
|

2
)

. (61)

Results of function discovery for the vcNLS equation, i.e. com-
parisons between the predicted and exact variable coefficients
𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡) as well as their respective errors are presented
in Fig. 12. Similarly, the absolute error of linear variable coef-
ficient 𝛽(𝑡) is negligible compared with those of nonlinear ones.
The variable coefficients 𝛼(𝑡) and 𝛾(𝑡) in the form of fractional
polynomials also basically meets the rule of thumb mentioned in
Section 3.1.2. However, the phenomenon of multiple intersections
between error curves and more specific feature analysis remain to
be further explored in future work. The performance comparison

of these three methods is shown in Table 9.
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c

Fig. 12. Results of function discovery for the vcNLS equation by TL-gPINNs: (a) Comparison between the predicted and exact variable coefficients 𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡); (b) Error
urves for three coefficients.
Fig. 13. Evolution of the loss functions in inferring linear variable coefficient 𝛾(𝑡) for the vcNLS equation by two methods: (a) PINN; (b) TL-gPINN.
Table 9
Performance comparison of three methods: mean absolute errors and relative L2 errors of three variable coefficients as well as error reduction
rates.

Results Method

PINNs gPINNs TL-gPINNs

𝛼(𝑡)
𝑀𝐴𝐸𝛼(𝐸𝑅𝑅1) 2.536442e−03 2.372040e−03 (6.48%) 2.069355e−03 (18.42%)
𝑅𝐸𝛼(𝐸𝑅𝑅2) 1.855795e−02 1.840729e−02 (0.81%) 1.616184e−02 (12.91%)

𝛽(𝑡)
𝑀𝐴𝐸𝛽 (𝐸𝑅𝑅1) 3.263991e−05 2.116216e−05 (35.16%) 9.873565e−06 (69.75%)
𝑅𝐸𝛽 (𝐸𝑅𝑅2) 5.729922e−05 3.738890e−05 (34.75%) 1.751263e−05 (69.44%)

𝛾(𝑡)
𝑀𝐴𝐸𝛾 (𝐸𝑅𝑅1) 5.610852e−03 5.163366e−03 (7.98%) 4.453668e−03 (20.62%)
𝑅𝐸𝛾 (𝐸𝑅𝑅2) 2.201791e−02 2.034598e−02 (7.59%) 1.753237e−02 (20.37%)
3.3. Result analysis

According to the performance comparison of three methods (PINNs,
TL-gPINNs and gPINNs) presented in Table 2–Table 9, TL-gPINNs pos-
sess the notable performance of high accuracy whether in identifying
single variable coefficient or in inferring multiple ones compared with
the other two methods. Meanwhile, TL-gPINNs can accelerate conver-
gence of iteration and reduce calculation time compared with gPINNs
since the technique of transfer learning helps to mitigate the problem
of inefficiency caused by extra loss terms of the gradient.

The reason why gPINN does not perform up to expectations here
may be that the solution 𝐴(𝑥, 𝑡) for the variable coefficient nonlinear
Schrödinger equation is complex-valued and each constraint function
in neural networks should be decomposed into two parts: the real
and imaginary parts. Thus, the loss function itself consists of many
constraint terms even without regard to the gradient restriction. When
solving the multi-objective optimization problems, the local optimum
13
that it ultimately converges to is obtained based on the competitive
relationship between various objectives. Therefore, the result may not
necessarily be better even if more constraints are imposed. Evidently,
the experiments show that gPINN has lower prediction accuracy than
PINN even at the cost of sacrificing efficiency especially in Case 3.1.2
(shown in Tables 3 and 6) and Case 3.2.2 (Table 8). The advantage
of the TL-gPINN method lies in that gPINN inherits the saved weight
matrixes and bias vectors of PINN at the end of the iteration process as
the initialization parameters, and thus the subsequent training of gPINN
is based on that of PINN by leveraging the transfer learning technique
instead of training from scratch. Consequently, TL-gPINN is steadier
on precision promotion compared to gPINN, a method which has been
proved to be efficient in improving the accuracy of PINN [33].

What is more, the loss curve figures of inferring linear variable
coefficient 𝛾(𝑡) in Section 3.1.1 are plotted in Fig. 13 for the sake of
more intuitive analysis. Here, only loss functions corresponding to the
real part, i.e. MSE ,MSE and MSE , are considered and counterparts
𝑢 𝑓𝑢 𝑔𝑢
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Table 10
Results of losses at the beginning and end of iteration in inferring linear variable coefficient 𝛾(𝑡) for the vcNLS equation by three
methods.

Results
Method PINNs gPINNs TL-gPINNs

The zeroth
iteration

The last
iteration

The zeroth
iteration

The last
iteration

The zeroth
iteration

The last
iteration

MSE𝑢 6.672856e−02 4.078804e−07 6.672856e−02 1.650002e−07 4.078804e−07 1.530691e−07
MSE𝑣 8.681140e−02 4.347213e−07 8.681140e−02 2.090931e−07 4.347213e−07 2.113367e−07
MSE𝑓𝑢 2.073652e−04 9.956128e−07 2.073652e−04 1.071937e−07 9.956128e−07 8.313516e−08
MSE𝑓𝑣 4.143952e−04 1.020429e−06 4.143952e−04 1.637525e−07 1.020429e−06 1.001443e−07
MSE𝑔𝑢 5.406206e−05 2.326252e−05 5.406206e−05 6.869229e−07 2.326252e−05 5.017756e−07
MSE𝑔𝑣 8.511276e−05 3.057861e−05 8.511276e−05 7.017902e−07 3.057861e−05 4.487380e−07
MSE𝛾 16.521566 3.637979e−12 16.521566 2.273737e−13 3.637979e−12 2.273737e−13
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of the imaginary part (MSE𝑣,MSE𝑓𝑣 and MSE𝑔𝑣 ) change approximately
n the same way. The values of each loss term at the beginning and end
f iterations are listed in Table 10.

As we can see from Fig. 13(a), MSE𝑔𝑢 fluctuated at a relatively
igh level and the value of the last iteration is almost the same as
hat at the beginning of the iteration while MSE𝑢 and MSE𝑓𝑢 decreased
o 4.078804e−07 and 9.956128e−07 respectively during the training
rocess of PINNs, where the loss of gradient MSE𝑔𝑢 has no contribution
o optimization. In Fig. 13(b) and Table 10, it is obvious to note that
he values of loss terms of the gradients (i.e., MSE𝑔𝑢 and MSE𝑔𝑣 ) are
arger by several orders of magnitude than those of other loss terms
n the zeroth iteration when the weight transfer is just completed.
pecifically, the values of MSE𝑢,MSE𝑣,MSE𝑓𝑢 ,MSE𝑓𝑣 ,MSE𝑢𝑖𝑛 ,MSE𝑣𝑖𝑛
re approximately remain between 10e−07 and 10e−06, and that of
SE𝛾 maintains at 10e−11 to 10e−10 while the values of MSE𝑔𝑢 and
SE𝑔𝑣 are at a high level of 10e−5 to 10e−4. It reveals that there is still

ome deviation between the variable coefficients themselves and the
nes learned by the PINN method from the perspective of gradients. In
ther words, the PINN method lacks sufficient attention to gradients
nd leads to inadequate optimization, which may be an underlying
ause why the training of gPINNs can go on effectively after finishing
he weight transfer. Then the values of MSE𝑔𝑢 dropped pretty steadily
hile MSE𝑢 and MSE𝑓𝑢 showed a downward trend after an initial
scent. Meanwhile, the process of their ascent happens to be that of
he fastest descent of MSE𝑔𝑢 , and we deduced that it may be a process
f escaping from the local optimal point obtained by PINN, where the
alues of gradient loss are large although those of other loss terms are
t a fairly low level.

With regard to efficiency, gPINNs significantly increase the time
ost of training due to the introduction of additional gradient con-
traints while TL-gPINNs shorten the training time in contrast to the
riginal gPINNs by taking full advantage of transfer learning.

In short, the TL-gPINN method achieves the highest prediction ac-
uracy among the three methods whether in inferring unknown single
ariable coefficient or in identifying multiple ones. However, gPINN
hows an unstable performance here and even performs no better than
INN in accuracy in some cases. For TL-gPINNs, the application of
ransfer learning technique can contribute to both higher efficiency and
reater reliability than the original PINN. It outperforms the PINNs in
ccuracy and gPINNs in both accuracy and efficiency. Thereupon the
L-gPINN method is more superior compared with the PINN and gPINN
ere.

. Analysis and discussion

.1. Robustness analysis

Numerical results presented in Section 3.1 are based on noise-free
raining data, and here we carry out experiments when the training
ata was corrupted with noise to test the robustness of the TL-gPINNs.
14

t

Specifically, the training data, including the initial–boundary data
𝑥𝑖𝐴, 𝑡

𝑖
𝐴, 𝑢

𝑖, 𝑣𝑖}𝑁𝐴
𝑖=1 , internal data {𝑥𝑖𝑖𝑛, 𝑡

𝑖
𝑖𝑛, 𝑢

𝑖, 𝑣𝑖}
𝑁𝐴𝑖𝑛
𝑖=1 and the data {𝑡𝑖𝛾 , 𝛾

𝑖}
𝑁𝛾
𝑖=1

f the variable coefficient 𝛾(𝑡), is corrupted by four different noise
evels: 0.5%, 1%, 3% and 5%.

Table 11 summarizes the results of the numerical experiments in
he conditions of different noise levels and the indexes 𝑀𝐴𝐸𝛾 and 𝑅𝐸𝛾
isted here are achieved by TL-gPINNs. The detailed results of PINNs
nd gPINNs are not provided here but shown in Table 13 in Appendix
ue to length limitations. Here, the reason why 0.00% appears is that
L-gPINNs converge rapidly after merely a few iterations, which means
he local optimum obtained by PINNs also belongs to TL-gPINNs and
hen the training will not continue after initialization with saved weight
ata of PINNs.

According to the mean absolute error (𝑀𝐴𝐸𝛾 ) and relative L2
rror (𝑅𝐸𝛾 ) achieved by TL-gPINNs, different types of the variable
oefficients 𝛾(𝑡) can be identified accurately via this method. Evidently,
he predictions of the unknown variable coefficient retain good robust-
ess even when the training data was corrupted with different levels
f noise. It also turns out that the accuracy of TL-gPINNs does not
ecessarily become worse with the increase of noise intensity, but may
lso increase in some cases.

Since the values of 𝐸𝑅𝑅1 and 𝐸𝑅𝑅2 indicate the degree of predic-
ion accuracy improvement in the sense of the mean absolute error
𝑀𝐴𝐸𝛾 ) and relative L2 error (𝑅𝐸𝛾 ) respectively, the results demon-
trated that the ability of TL-gPINNs in precision promotion also re-
ains robust to noise. We observe that the vast majority of experiments

y TL-gPINNs have better performance than that of gPINNs in en-
ancing the accuracy of inferring the unknown variable coefficient
fter assessing and comparing 𝐸𝑅𝑅1 and 𝐸𝑅𝑅2 of these two methods.
eanwhile, the higher efficiency of TL-gPINNs compared with the

riginal gPINNs is a distinct advantage as well.
Based on the performance in Sections 3.1 and 4.1, regardless of

hether the training data is corrupted with noise or not, TL-gPINNs
ossess the ability to successfully infer the unknown variable coefficient
(𝑡) with satisfactory accuracy. Taken overall, the TL-gPINNs meet the
obustness and computational accuracy standards required in practice.

.2. Parametric sensitivity analysis

The training results of neural networks are influenced by many
actors, such as the architecture of neural networks and the size of
raining dataset. Thus, the parametric sensitivity analysis is conducted
ere to disclose the effect of these hyper-parameters on predictions of
he single nonlinear variable coefficient 𝛾(𝑡).

∙ The architecture of neural networks
With regard to the structure of fully-connected neural networks

FNN), the emphasis is put on the number of weighted layers (depth)
nd the number of neurons per hidden layer (width). Then we explore
ow the change of width and depth of the branch network for inferring

he variable coefficient will affect the experimental results.
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Table 11
Performance comparison of three methods in identifying variable coefficient 𝛾(𝑡) for the vcNLS equation under different noise conditions.

Results Correct 𝛾(𝑡)

𝑡 𝑡2 sin(𝑡) tanh(𝑡) 1
1+𝑡2

0.5% noise

𝑀𝐴𝐸𝛾 1.322670e−04 9.615011e−03 1.097929e−03 3.973503e−03 1.009619e−03
𝑅𝐸𝛾 6.551441e−05 7.959068e−03 2.579889e−03 5.486678e−03 2.968212e−03

𝐸𝑅𝑅1
TL-gPINNs 0.00% 3.16% 49.86% 51.81% 5.06%
gPINNs −73.90% −90.00% −26.63% 39.10% −10.64%

𝐸𝑅𝑅2
TL-gPINNs 0.00% 1.55% 39.72% 50.65% 10.76%
gPINNs −75.55% −61.89% −35.03% 39.97% −16.03%

1% noise

𝑀𝐴𝐸𝛾 3.393921e−04 1.990454e−02 2.040646e−03 5.745897e−03 1.529080e−03
𝑅𝐸𝛾 1.693800e−04 2.038240e−02 6.616817e−03 7.922166e−03 4.553724e−03

𝐸𝑅𝑅1
TL-gPINNs 26.92% 3.80% 28.23% 9.67% 39.17%
gPINNs 47.24% 18.84% −66.55% 4.16% 29.09%

𝐸𝑅𝑅2
TL-gPINNs 26.93% −1.78% 10.75% 10.54% 42.98%
gPINNs 47.31% 8.33% −37.25% 2.59% 36.48%

3% noise

𝑀𝐴𝐸𝛾 3.642581e−04 1.241316e−02 3.276918e−03 1.005220e−02 2.160257e−03
𝑅𝐸𝛾 1.825354e−04 1.403889e−02 8.239684e−03 1.449078e−02 6.147466e−03

𝐸𝑅𝑅1
TL-gPINNs 48.18% 14.93% 9.34% 9.38% 13.12%
gPINNs 27.43% −0.74% −12.80% 11.36% 7.65%

𝐸𝑅𝑅2
TL-gPINNs 48.11% 0.09% −2.99% 8.76% 33.17%
gPINNs 27.17% −2.20% −5.96% 10.90% 1.89%

5% noise

𝑀𝐴𝐸𝛾 3.007159e−04 3.890978e−02 5.462772e−03 8.254448e−03 2.393983e−03
𝑅𝐸𝛾 1.475556e−04 3.750857e−02 1.526540e−02 1.280577e−02 7.430092e−03

𝐸𝑅𝑅1
TL-gPINNs 32.08% 5.61% 25.55% 11.41% 26.18%
gPINNs 23.02% 6.66% 20.13% −24.42% −27.61%

𝐸𝑅𝑅2
TL-gPINNs 32.65% 0.68% 9.56% 9.59% 37.61%
gPINNs 23.34% −1.64% 7.05% −23.97% −7.41%
Meanwhile, we mainly investigate nonlinear variable coefficient
(𝑡) mentioned in Section 3.1.2, which is more common in practice.
or each form of the unknown nonlinear variable coefficient 𝛾(𝑡), two
yper-parameters are changed: depth from 4 to 5 and width from 10
o 50 with step size 10.

Finally, heat maps of relative L2 errors are shown in Fig. 14 in order
o display the experimental results more intuitively, and the detailed
esults are given in Table 14 in Appendix.

The figures in the first, second and third columns are the visual-
zation of relative L2 errors given by PINNs, TL-gPINNs and gPINNs
espectively. The darker the color, the greater the error. For each group
f experiments, we will compare the performance of the three methods
nd use the red dotted line to frame the one with the smallest error
n the heat maps. Evidently, the color of heat maps in the second
olumn is the lightest on the whole. Also, the proportion of numerical
xperiments with the smallest error is the largest. Since the weights
nd biases as the initialization parameters of TL-gPINN are inherited
rom PINN, the color depth that reflects the value of relative L2 errors
f PINN and TL-gPINN is highly correlated according to heat maps in
ig. 14. It may contribute to the stability of TL-gPINN in significant
ccuracy enhancement.

Numerically, the average (10 runs) relative L2 errors of nonlinear
ariable coefficient 𝛾(𝑡) as well as the error reduction rates of TL-
PINNs and gPINNs are listed in Table 12. Undoubtedly, it illustrates
hat our proposed method (TL-gPINN) outperforms the other two (PINN
nd gPINN) thoroughly.

For numerous cases above, TL-gPINN always performs well and has
table improvement of accuracy under different width and depth of the
ranch network for the identification of nonlinear variable coefficients.
∙ The size of training dataset
The difference between the inverse problem and the forward one

ies in the incorporation of some extra measurements {𝑥𝑖 , 𝑡𝑖 , 𝑢𝑖, 𝑣𝑖}
𝑁𝐴𝑖𝑛
15

𝑖𝑛 𝑖𝑛 𝑖=1
of the internal region. Hence, the major consideration is the size of
internal data, i.e. the value of 𝑁𝐴𝑖𝑛

.
Considering the randomness involved in sampling and initialization,

the setting of the parameter 𝑠𝑒𝑒𝑑 in the codes will affect the numerical
results. We perform six groups of numerical experiments for each
nonlinear variable coefficient 𝛾(𝑡) and the value of 𝑁𝐴𝑖𝑛

changes from
500 to 3000 with step size 500. Meanwhile, each group contains five
experiments under the condition of different initial seeds to explore the
impact of randomness on the results.

Here, we are chiefly concerned with the accuracy of the nonlinear
𝛾(𝑡) obtained by TL-gPINNs as well as the error reduction rates of
TL-gPINNs and gPINNs compared with PINNs, which are shown in
Fig. 15 and Table 15 in Appendix. In Fig. 15, the orange and blue
lines correspond to the mean error reduction rates (𝐸𝑅𝑅2) of five
numerical experiments by using TL-gPINNs and gPINNs respectively,
and the shade regions depict the max–min ones. It can be concluded
from figures above that TL-gPINN has higher error reduction rates for
each case whether in average, maximum, or minimum sense. However,
𝐸𝑅𝑅2 of gPINNs is even less than 0% in many examples, which means
the accuracy of gPINN is reduced rather than improved compared to
the traditional PINN method. Furthermore, the size of the shaded area
to some extent reflects the stability of the method. Thus, TL-gPINN
apparently is more stable and accurate than gPINN based on error
reduction rates of relative L2 error (𝐸𝑅𝑅2) under different size of
training dataset.

5. Conclusion

Traditional numerical methods have many limitations in solving in-
verse problems, especially in dealing with noisy data, complex regions,
and high-dimensional problems. Moreover, the inverse problem of the
function discovery is a relatively under explored field. In this paper,
for the sake of overcoming deficiency of the discrete characterization
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Fig. 14. Relative L2 errors of nonlinear variable coefficients 𝛾(𝑡) via three methods under different depth and width: (a) quadratic 𝛾(𝑡); (b) sine 𝛾(𝑡); (c) hyperbolic tangent 𝛾(𝑡);
(d) fractional 𝛾(𝑡).
Table 12
Average performance comparison of three methods in identifying nonlinear variable coefficient 𝛾(𝑡) for the vcNLS equation under different width
and depth.

Correct nonlinear 𝛾(𝑡) Relative L2 errors(𝐸𝑅𝑅2)

PINNs gPINNs TL-gPINNs

𝑡2 5.375348e−03 6.562848e−03 (−22.09%) 4.711041e−03 (12.36%)
sin(𝑡) 2.603825e−03 2.651862e−03 (−1.84%) 1.184149e−03 (54.52%)
tanh(𝑡) 7.727333e−03 5.430929e−03 (29.72%) 3.814903e−03 (50.63%)

1
1+𝑡2

8.590022e−03 7.668054e−03 (10.73%) 4.530164e−03 (47.26%)
of the PDE loss in neural networks and improving accuracy of func-
tion feature description, we propose gradient-enhanced PINNs based
on transfer learning (TL-gPINNs) for inverse problems of inferring
unknown variable coefficients and give a new viewpoint on gPINNs.

The TL-gPINN method uses a two-step optimization strategy and
gradually increases the difficulty. Firstly, the original PINN is applied
in the inverse problem of the variable coefficient equations. Then for
16
further optimization, gPINN inherits the saved weight matrixes and bias
vectors of PINN at the end of the iteration process as the initialization
parameters. The introduction of the gradient term contributes to the
accuracy enhancement of variable coefficients. Moreover, the trunk
and branch networks are established to infer the solution and variable
coefficients separately in order to eliminate mutual influence.
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Fig. 15. Error reduction rates of relative L2 error (𝐸𝑅𝑅2) in identifying nonlinear variable coefficient 𝛾(𝑡) for the vcNLS equation achieved by TL-gPINNs and gPINNs compared
with PINNs under different number of 𝑁𝐴𝑖𝑛

: (a) quadratic 𝛾(𝑡); (b) sine 𝛾(𝑡); (c) hyperbolic tangent 𝛾(𝑡); (d) fractional 𝛾(𝑡).
The effectiveness of TL-gPINNs is demonstrated in identifying sev-
eral types of single variable coefficients, including linear, quadratic,
sine, hyperbolic tangent and fractional functions as well as multiple
ones for the well-known variable coefficient nonlinear Schrödinger
(vcNLS) equation in the field of integrable systems. Meanwhile, abun-
dant dynamic behaviors of the corresponding soliton solution can be
well reproduced. Plenty of numerical experiments are carried out to
compare the performance of PINNs, TL-gPINNs and gPINNs. It has been
proved that gPINN learned the unknown parameters more accurately
than PINN for the inverse problems in many examples, such as Poisson
equation, diffusion-reaction equation, Brinkman–Forchheimer model
and so on by Yu et al. However, the accuracy of gPINN is reduced rather
than improved compared with the standard PINN method in inverse
PDE problems of the vcNLS equation. Presumably it is because the loss
function itself consists of many constraint terms even without regard to
the gradient restriction. Thus the result may not necessarily be better
even if more constraints are imposed when solving the multi-objective
optimization problems. What is worse, the computational cost of gPINN
is higher than PINN unavoidably since the introduction of additional
constraints on gradients gives rise to low efficiency. Consequently, one
viable path towards accelerating the convergence of training could
come by adopting the technique of transfer learning and thus the TL-
gPINN method is put forward here. Through the comparison among the
three methods, TL-gPINN attains the highest precision in prediction and
can improve efficiency compared to gPINN. In other words, TL-gPINNs
can successfully infer the unknown variable coefficients with satisfac-
tory accuracy and outperform the PINNs in accuracy, and gPINNs in
both accuracy and efficiency. Besides, we ulteriorly conduct robustness
analysis and parametric sensitivity analysis. Numerical results also
illustrate that the ability of TL-gPINNs to improve accuracy remains
robust to noise and other hyper-parameters, including width and depth
of the branch network and the size of training dataset.

The TL-gPINN method presented in this paper is universal and
can be adapted to the inverse problems of inferring unknown high-
dimensional variable coefficients. In future work, we will strive to
17
propose more targeted improvements that enhance accuracy without
sacrificing efficiency on this subject.
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Table 13
Performance comparison of three methods in identifying variable coefficient 𝛾(𝑡) for the vcNLS equation under different noise conditions.

Results
Solution types Correct 𝛾(𝑡)

𝑡 𝑡2 sin(𝑡) tanh(𝑡) 1
1+𝑡2

0.5% noise

PINNs 𝑀𝐴𝐸𝛾 1.322670e−04 9.929034e−03 2.189932e−03 8.245944e−03 1.063432e−03
𝑅𝐸𝛾 6.551441e−05 8.084222e−03 4.279738e−03 1.111883e−02 3.326201e−03

TL-gPINNs

𝑀𝐴𝐸𝛾 1.322670e−04 9.615011e−03 1.097929e−03 3.973503e−03 1.009619e−03
𝑅𝐸𝛾 6.551441e−05 7.959068e−03 2.579889e−03 5.486678e−03 2.968212e−03
𝐸𝑅𝑅1 0.00% 3.16% 49.86% 51.81% 5.06%
𝐸𝑅𝑅2 0.00% 1.55% 39.72% 50.65% 10.76%

gPINNs

𝑀𝐴𝐸𝛾 2.300093e−04 1.886554e−02 2.773028e−03 5.021791e−03 1.176551e−03
𝑅𝐸𝛾 1.150104e−04 1.308772e−02 5.779078e−03 6.675003e−03 3.859277e−03
𝐸𝑅𝑅1 −73.90% −90.00% −26.63% 39.10% −10.64%
𝐸𝑅𝑅2 −75.55% −61.89% −35.03% 39.97% −16.03%

1% noise

PINNs 𝑀𝐴𝐸𝛾 4.643823e−04 2.069045e−02 2.843303e−03 6.361015e−03 2.513644e−03
𝑅𝐸𝛾 2.317933e−04 2.002579e−02 7.413523e−03 8.855182e−03 7.986546e−03

TL-gPINNs

𝑀𝐴𝐸𝛾 3.393921e−04 1.990454e−02 2.040646e−03 5.745897e−03 1.529080e−03
𝑅𝐸𝛾 1.693800e−04 2.038240e−02 6.616817e−03 7.922166e−03 4.553724e−03
𝐸𝑅𝑅1 26.92% 3.80% 28.23% 9.67% 39.17%
𝐸𝑅𝑅2 26.93% −1.78% 10.75% 10.54% 42.98%

gPINNs

𝑀𝐴𝐸𝛾 2.450279e−04 1.679156e−02 4.735398e−03 6.096149e−03 1.782366e−03
𝑅𝐸𝛾 1.221250e−04 1.835826e−02 1.017474e−02 8.625601e−03 5.073325e−03
𝐸𝑅𝑅1 47.24% 18.84% −66.55% 4.16% 29.09%
𝐸𝑅𝑅2 47.31% 8.33% −37.25% 2.59% 36.48%

3% noise

PINNs 𝑀𝐴𝐸𝛾 7.029357e−04 1.459252e−02 3.614353e−03 1.109293e−02 2.486608e−03
𝑅𝐸𝛾 3.517501e−04 1.405216e−02 8.000196e−03 1.588254e−02 9.198019e−03

TL-gPINNs

𝑀𝐴𝐸𝛾 3.642581e−04 1.241316e−02 3.276918e−03 1.005220e−02 2.160257e−03
𝑅𝐸𝛾 1.825354e−04 1.403889e−02 8.239684e−03 1.449078e−02 6.147466e−03
𝐸𝑅𝑅1 48.18% 14.93% 9.34% 9.38% 13.12%
𝐸𝑅𝑅2 48.11% 0.09% −2.99% 8.76% 33.17%

gPINNs

𝑀𝐴𝐸𝛾 5.101351e−04 1.470036e−02 4.077128e−03 9.832798e−03 2.296355e−03
𝑅𝐸𝛾 2.561838e−04 1.436189e−02 8.476734e−03 1.415209e−02 9.024564e−03
𝐸𝑅𝑅1 27.43% −0.74% −12.80% 11.36% 7.65%
𝐸𝑅𝑅2 27.17% −2.20% −5.96% 10.90% 1.89%

5% noise

PINNs 𝑀𝐴𝐸𝛾 4.427668e−04 4.122176e−02 7.337520e−03 9.317941e−03 3.243209e−03
𝑅𝐸𝛾 2.190762e−04 3.776385e−02 1.687885e−02 1.416438e−02 1.190859e−02

TL-gPINNs

𝑀𝐴𝐸𝛾 3.007159e−04 3.890978e−02 5.462772e−03 8.254448e−03 2.393983e−03
𝑅𝐸𝛾 1.475556e−04 3.750857e−02 1.526540e−02 1.280577e−02 7.430092e−03
𝐸𝑅𝑅1 32.08% 5.61% 25.55% 11.41% 26.18%
𝐸𝑅𝑅2 32.65% 0.68% 9.56% 9.59% 37.61%

gPINNs

𝑀𝐴𝐸𝛾 3.408351e−04 3.847756e−02 5.860518e−03 1.159346e−02 4.138773e−03
𝑅𝐸𝛾 1.679388e−04 3.838483e−02 1.568930e−02 1.755944e−02 1.279140e−02
𝐸𝑅𝑅1 23.02% 6.66% 20.13% −24.42% −27.61%
𝐸𝑅𝑅2 23.34% −1.64% 7.05% −23.97% −7.41%
18
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Table 14
Relative L2 errors of three methods in identifying nonlinear variable coefficient 𝛾(𝑡) for the vcNLS equation
under different depth and width.

Depth-Width
Solution types Correct nonlinear 𝛾(𝑡)

𝑡2 sin(𝑡) tanh(𝑡) 1
1+𝑡2

4-10
PINNs 5.548427e−03 4.313755e−03 5.736964e−03 1.094201e−02

TL-gPINNs 5.009717e−03 1.879644e−03 3.354807e−03 3.421307e−03
gPINNs 9.929734e−03 9.520874e−04 5.707187e−03 9.942505e−03

4-20
PINNs 6.289173e−03 2.827434e−03 7.257074e−03 1.397660e−02

TL-gPINNs 5.602426e−03 9.669967e−04 3.819827e−03 8.108070e−03
gPINNs 6.289173e−03 2.301905e−03 5.461584e−03 7.388081e−03

4-30
PINNs 6.993137e−03 2.703498e−03 9.421331e−03 5.177898e−03

TL-gPINNs 5.906274e−03 7.559607e−04 3.178629e−03 2.536767e−03
gPINNs 7.971344e−03 1.363048e−03 3.897784e−03 5.403644e−03

4-40
PINNs 5.235672e−03 3.427815e−03 7.712084e−03 2.004701e−02

TL-gPINNs 4.238258e−03 8.965765e−04 3.491911e−03 1.139473e−02
gPINNs 5.675098e−03 4.312995e−03 3.935904e−03 1.795422e−02

4-50
PINNs 5.680928e−03 1.049763e−03 1.047242e−02 1.292315e−02

TL-gPINNs 4.968693e−03 9.878295e−04 5.333929e−03 4.860513e−03
gPINNs 3.899222e−03 3.260390e−03 6.635557e−03 1.025656e−02

5-10
PINNs 2.284578e−03 2.471582e−03 6.157078e−03 3.461629e−03

TL-gPINNs 3.116250e−03 1.052025e−03 5.378014e−03 2.140225e−03
gPINNs 3.098707e−03 2.417611e−03 7.805791e−03 3.361290e−03

5-20
PINNs 5.756127e−03 2.225477e−03 6.526232e−03 4.002114e−03

TL-gPINNs 4.563876e−03 1.198677e−03 5.002341e−03 2.209469e−03
gPINNs 8.777979e−03 1.554303e−03 7.391697e−03 7.201052e−03

5-30
PINNs 4.810807e−03 2.901531e−03 7.516973e−03 4.447760e−03

TL-gPINNs 4.322382e−03 1.523483e−03 1.312732e−03 2.936587e−03
gPINNs 6.851686e−03 1.264615e−03 2.413443e−03 4.567902e−03

5-40
PINNs 5.682128e−03 1.865532e−03 9.515989e−03 4.110138e−03

TL-gPINNs 4.427266e−03 1.121917e−03 5.257534e−03 4.786998e−03
gPINNs 6.765182e−03 4.029679e−03 7.059347e−03 6.303027e−03

5-50
PINNs 5.472502e−03 2.251865e−03 6.957182e−03 6.811910e−03

TL-gPINNs 4.955263e−03 1.458381e−03 2.019302e−03 2.906973e−03
gPINNs 6.370352e−03 5.061989e−03 4.000996e−03 4.302256e−03
Table 15
Error reduction rates of relative L2 error (𝐸𝑅𝑅2) in identifying nonlinear variable coefficient 𝛾(𝑡) for the vcNLS equation
achieved by TL-gPINNs and gPINNs compared with PINNs under different number of 𝑁𝐴𝑖𝑛

.

Results
Value of 𝑁𝐴𝑖𝑛 500 1000 1500 2000 2500 3000

𝑡2

TL-gPINNs
max 34.47% 25.59% 36.57% 28.42% 47.01% 52.87%
min 16.71% 15.16% 20.03% 13.99% 16.29% 17.79%

average 22.97% 18.89% 24.22% 21.69% 25.64% 26.42%

gPINNs
max −36.98% 8.64% −14.95% −11.62% −9.35% −26.32%
min −93.22% −213.93% −134.70% −143.01% −223.35% −116.03%

average −51.83% −54.32% −51.77% −36.28% −74.26% −56.37%

sin(𝑡)

TL-gPINNs
max 66.98% 50.02% 59.88% 72.04% 58.02% 57.77%
min 39.22% 17.20% 23.26% 13.39% 20.81% 21.79%

average 54.45% 37.96% 43.58% 39.93% 31.93% 43.59%

gPINNs
max 36.15% −8.73% 6.76% 49.58% −19.21% 3.96%
min −81.44% −165.79% −144.16% −100.08% −128.10% −131.65%

average −24.74% −90.53% −38.65% −23.23% −72.83% −41.60%

tanh(𝑡)

TL-gPINNs
max 73.85% 68.23% 79.10% 75.23% 64.39% 80.04%
min 38.30% 42.04% 45.63% 48.64% 43.74% 43.71%

average 54.73% 57.05% 70.28% 58.90% 54.44% 63.26%

gPINNs
max 59.33% 56.81% 56.50% 58.63% 55.75% 52.71%
min -39.43% 27.21% −46.44% 21.92% 18.13% 21.78%

average 18.78% 39.68% 29.92% 41.50% 42.50% 35.28%

1
1+𝑡2

TL-gPINNs
max 74.07% 58.00% 57.67% 60.42% 74.94% 73.77%
min 20.26% 33.87% 26.32% 51.01% 24.59% 44.46%

average 47.84% 48.16% 41.39% 55.96% 54.59% 59.05%

gPINNs
max 31.69% 37.35% 51.14% 42.45% 56.68% 45.66%
min −43.93% −62.20% −108.66% −4.36% −2.33% 11.89%

average 8.60% 7.97% 13.18% 23.81% 34.44% 31.54%
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