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Nonlocal symmetries and negative hierarchies related to
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In this paper, nonlocal symmetries defined by bilinear Bäcklund transformation for bilinear potential KdV (pKdV)
equation are obtained. By introducing an auxiliary variable which just satisfies the Schwartzian form of KdV (SKdV)
equation, the nonlocal symmetry is localized and the Levi transformation is presented. Besides, based on three different
types of nonlocal symmetries for potential KdV equation, three sets of negative pKdV hierarchies along with their bilinear
forms are constructed. An impressive result is that the coefficients of the third type of (bilinear) negative pKdV hierarchy
(N > 0) are variable, which are obtained via introducing an arbitrary parameter by considering the translation invariance of
the pKdV equation.
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1. Introduction
Lie group theory[1,2] is one of the most effective methods

for seeking exact and analytic solutions of nonlinear partial
differential equations (PDEs). Starting from Lie point sym-
metries, one can compute corresponding finite transformations
and similar reductions to obtain explicit solutions directly.
With the development of integrable systems and soliton theory,
a variety of nonlocal symmetries have been intensely investi-
gated in the literature. For example, a type of nonlocal sym-
metries which are related to Lax pair of integrable equations,
that is so-called eigenfunction symmetries,[3–8] have played an
important role in the topics of symmetry constraints, soliton
equations with sources, positive and negative hierarchies, etc.

However, one usually cannot apply nonlocal symmetries
directly to get explicit solutions via the classical Lie group
method. One feasible way is to localize nonlocal symme-
tries by introducing another auxiliary variables into an ex-
tended system. In fact, this generalization of the concept of
nonlocal symmetries by including pseudo-potentials was de-
vised by Edelen,[9] Krasil’shchik and Vinogradov[10,11] in the
1980s by using their theory of coverings of differential equa-
tions. Galas[12] rederived one-soliton solutions for the KdV
equation, Dym equation and AKNS system equations based
on nonlocal symmetries of this sort. As an application of
nonlocal symmetries for the bilinear KP equation and bilin-
ear BKP equation, Hu et al.[13] derived two types of bilin-
ear negative KP and bilinear negative BKP hierarchies, re-
spectively. Recently the nonlocal symmetries are receiving
great interest and much progress has been made on this topic.

In our early two papers,[14,15] a class of nonlocal symme-
tries of the (potential) KdV equation in elegant and compact
form are derived from Bäcklund transformation and Darboux
transformation. Then we use these nonlocal symmetries to
get abundant explicit solutions, especially the new interac-
tion excitations between solitary waves and cnoidal waves,
and to construct some integral models both in finite and in-
finite dimensions. One can also obtain the binary Darboux
transformation starting from the nonlocal symmetries, by solv-
ing an initial value problem via introducing a suitable pro-
longed system.[16] In latter studies, based on this nonlocal
symmetries approach, kinds of novel exact interaction solu-
tions among solitons and other complicated waves have also
been found for mKdV equation,[17] AKNS system,[18] KP
equation,[19] the Hirota–Satsuma coupled Korteweg-de Vries
system,[20] the (2+1) dimensional modified generalized long
dispersive wave equation[21] and the nonlinear Schrödinger
(NLS) equation.[22] In Ref. [23], Bluman and Yang introduced
a new and complementary method for constructing nonlocally
related PDE systems, which was on the basis of each point
symmetry.

In this paper, our aim is to investigate nonlocal symme-
tries defined by bilinear Bäcklund transformation and their
corresponding applications for bilinear potential KdV (pKdV)
equation. In Section 2, the nonlocal symmetry is localized and
the corresponding prolonged system for bilinear KdV equation
is found. An impressive observation is that the process of lo-
calization also leads to the Schwartzian form of KdV equation,
where the Schwartzian variable is realized by two solutions of

∗Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ13A010014), the National Natural Science Foundation of China
(Grant Nos. 11326164, 11401528, and 11275072), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120076110024).

†Corresponding author. E-mail: baqi2002@163.com
© 2015 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

030201-1

http://dx.doi.org/10.1088/1674-1056/24/3/030201
mailto:baqi2002@163.com
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 24, No. 3 (2015) 030201

the bilinear pKdV equation. Then via Lie’s first theorem, the
Levi transformation (the second Bäcklund transformation) is
presented to give transformed solutions from trivial ones. In
Section 3, combining different types of nonlocal symmetries
with the bilinear Bäcklund transformation of pKdV equation,
three sets of negative pKdV hierarchies along with their bilin-
ear forms are constructed. Section 4 is a short summary and
discussion.

2. Nonlocal symmetries related to bilinear
Bäcklund transformation for bilinear KdV
equation
It is known that for KdV equation

ωt +ωxxx−6ωωx = 0, (1)

we have the potential KdV equation given by

ut +uxxx−3u2
x = 0, (2)

with ω = ux.
Furthermore, for Eq. (2), there is the following Bäcklund

transformation:[25]

ux +u1,x =−2λ +
(u−u1)

2

2
, (3)

ut +u1,t = 2u2
x +2u2

1,x +2uxu1,x− (u−u1)(uxx−u1,xx), (4)

with λ being an arbitrary parameter. The compatible condi-
tion u1,xt = u1,tx of Eqs. (3) and (4) is just pKdV equation (2).
Under the transformations u = −2(ln f )x and u1 = −2(lng)x,
the pKdV equation and its Bäcklund transformation can be ex-
pressed as bilinear forms, saying

(D4
x +DxDt) f f = 0, (5)

(D2
x−λ ) f g = 0, (6)

(Dt +D3
x +3λDx) f g = 0. (7)

The well-known Hirota’s bilinear operator Dm
x Dn

t is defined by

Dm
x Dn

t ab =

(
∂

∂x
− ∂

∂x′

)m

×
(

∂

∂ t
− ∂

∂ t ′

)n

a(x, t)b(x′, t ′)
∣∣∣∣
x′=x,t ′=t

.

In our early paper,[14] we obtained a nonlocal symmetry
of u for pKdV equation given by

σu = e
∫

u−u1 dx. (8)

Here, the nonlocal symmetry of f for bilinear KdV equation
can be derived from Eq. (8), i.e.,

σ f = f
∫ g2

f 2 dx, (9)

where f and g satisfy bilinear Bäcklund transformation (6) and
(7).

Clearly, the symmetry equation (9) for f is nonlocal. To
localize Eq. (9), we introduce g1 ≡ g1(x, t) by{

f 2g1x−g2 = 0,

f 3g1t −4 fxxg2 +8g fxgx−4 f g2
x +8λ f g2 = 0,

(10)

which leads nonlocal symmetry equation (9) to

σ f = f g1. (11)

Then, by solving symmetry equations (6), (7), and (10) given
by {

(D2
x−λ )( f σg +σ f g) = 0,

(Dt +D3
x +3λDx)( f σg +σ f g) = 0,

(12)

and 

f 2
σg1,x +2 f g1xσ f −2gσg = 0,

f 3
σg1,t +8( fxg− f gx)σg,x

+8( fxgx− fxxg+2λ f g)σg

+(3 f 2g1t −4g2
x +8λg2)σ f −4g2

σ f ,xx

+8ggxσ f ,x = 0,

(13)

we obtain the corresponding symmetries σg and σg1 of g and
g1 respectively, saying

σg = ag, σg1 =−g2
1 +2ag1, (14)

with a being an arbitrary constant.
From Eqs. (11) and (14), one can see that the prolonga-

tion of nonlocal symmetry equation (9) is closed after covering
three dependent variables f , g, and g1. Hence, the final pro-
longed system containing Eqs. (5), (6), (7), and (10) is found,
which has the following Lie point symmetry

V = f g1
∂

∂ f
+ag

∂

∂g
+(−g2

1 +2ag1)
∂

∂g1
. (15)

Due to Eq. (15) and Lie’s first theorem, solving the fol-
lowing initial value problem:

dx̄
dε

= 0,
dt̄
dε

= 0,
d f̄
dε

= f̄ ḡ1,

dḡ
dε

= aḡ,
dḡ1

dε
=−ḡ2

1 +2aḡ1,

x̄|ε=0 = x, t̄|ε=0 = t, f̄ |ε=0 = f ,

ḡ|ε=0 = g, ḡ1|ε=0 = ḡ1,

(16)

yields the finite symmetry transformations

x̄ = x, t̄ = t, f̄ = f
(

1+
exp(2aε)−1

2a
g1

)
,

ḡ = exp(aε)g, ḡ1 =
2aexp(2aε)g1

2a+(exp(2aε)−1)g1
.

(17)
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Remark 1 The bilinear Bäcklund transformation (6) and
(7) in itself suggests a finite transformation from a solution f
to another one g while the obtained finite transformation (17)
arrives at a third solution f̄ . Actually, the transformation (17)
is just the so-called Levi transformation or the second type of
Bäcklund transformation.[24] This result shows the fact that
two kinds of Bäcklund transformation possess the same in-
finitesimal form (9).

Remark 2 The form of σg1 in Eq. (14) embodies the
Möbious (conformal) invariance property

g1 −→
a+bg1

c+dg1
, (ad 6= cb).

Actually, one can check that the introduced invariant g1 is
nothing but just satisfy the Schwartzian form of KdV equation
(SKdV equation)

g1,t +{g1;x}g1,x +6λg1,x = 0, (18)

where {g1;x} = (g1,xxx/g1,x) − 3(g1,xx/g1,x)
2/2 is the

Schwartzian derivative. Here, the Schwartzian variable g1

shown in Eq. (10) is determined by the solutions { f ,g} of the
biliear Bäcklund transformation.

Now by force of the finite symmetry transformation equa-
tion (17), one can get new solutions from any initial solu-
tions. For example, we take the trivial solution f = f0. From
Eqs. (6), (7), and (10) with λ = λ 2

0 , we obtain the following
special solutions:

g = sinh(−λ0x+4λ
3
0 t + x0),

g1 =
1

4λ0 f 2
0
[sinh(2λ0x−8λ

3
0 t−2x0)−2λ0x+24λ

3
0 t], (19)

where λ0, x0, and f0 are three constants. Substituting Eq. (19)
into Eq. (17) leads to the transformed solution of Eq. (5)

f̄ = f0 +
exp(2aε)−1

8aλ0 f0

× [sinh(2λ0x−8λ
3
0 t−2x0)−2λ0x+24λ

3
0 t], (20)

then to the solution of KdV equation (1), saying

ω = 2(ln f̄ )xx = 16λ
2
0 (exp(2aε)−1)

(exp(2aε)−1)(cosh(Y )−1)−λ0[(exp(2aε)−1)(12λ 2
0 t− x)+4a f 2

0 ]sinh(Y )
[(exp(2aε)−1)(sinh(Y )+2λ0x−24λ 3

0 t)−8aλ0 f 2
0 ]

2
, (21)

with Y =−2λ0x+8λ 3
0 t +2x0.

Next, according to the classical Lie group method, the
complete Lie point symmetries of the whole system (5)–(7),
and (10) can be obtained. Then, abundant group invariant
solutions related to the nonlocal symmetry of the KdV equa-
tion, which are expressed in terms of rational function, Bessel
functions, period functions and their combinations, can be ob-
tained by following the same procedure in Refs. [14] and [15].
What is different from four variables in the prolonged system
of Refs. [14] and [15] is here three dependent variables are
enough to ensure the localization of the nonlocal symmetry.

3. Three sets of negative pKdV hierarchies

The existence of infinitely many symmetries leads to the
existence of integrable hierarchies and with the help of in-
finitely many nonlocal symmetries, one can extend the orig-
inal system to its negative hierarchies.[13,26] In the following,
starting from the nonlocal symmetry (8) related to Bäcklund
transformation of Eq. (2), three sets of negative pKdV hierar-
chies are constructed and their corresponding bilinear forms
are also presented.

3.1. The first type of negative pKdV hierarchy

Based on the nonlocal symmetry (8), a set of negative
pKdV hierarchy is obtained, reading


ut−N =−

N

∑
i=1

e
∫

u−ui dx,

ux +ui,x =−2λi +
(u−ui)

2

2
, i = 1,2, . . . ,N,

(22)

where λi is an arbitrary constant. In particular, when N = 1,
one has the first equation of negative pKdV hierarchy, namely

2uxxtut −4uxu2
t −u2

xt −4λ1u2
t = 0. (23)

Here, we have instead t−1 with t for simplicity. It is
well known that the first negative flow in the KdV hierar-
chy is linked to Camassa–Holm equation via a hodograph
transformation[27] or can be reduced to sinh-Gordon/sine-
Gordon/Liouville equations.[28] Here, we can transform
Eq. (23) into sine-Gordon and Liouville equations. In fact,
by setting β ≡ β (x, t) = −ut , we can rewrite Eq. (18) in the
form

βx =

(
− βxx

2β
+

β 2
x

4β 2

)
t
, (24)

which can be integrated once with respect to x to give

β (lnβ )xt +β
2 = β0(t), (25)

where β0(t) is an arbitrary function of t.
Then, for non-zero β0(t), one can rescale β to

√
β0(t)β ,

redefine t as t/
√

β0(t) and set β = exp(iη) to give the sine-
Gordon equation

ηxt = sinη , (26)
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while for β0(t) = 0, by setting β =−expη , equation (25) be-
comes the Liouville equation

ηxt = eη . (27)

Furthermore, by virtue of the dependent variable transfor-
mation

u =−2
ψx

ψ
, ui =−2

ψi,x

ψi
, (i = 1,2, . . . ,N),

the negative pKdV hierarchy (22) is directly transformed into
bilinear formDxDt−N ψ ·ψ =

N

∑
i=1

ψ
2
i ,

(D2
x−λi)ψ ·ψi = 0, i = 1,2, . . . ,N.

(28)

3.2. The second type of negative pKdV hierarchy

For the nonlocal symmetry (8) being dependent with ar-
bitrary parameter λ , we may derive a type of negative pKdV
hierarchy by expanding the dependent variable in power series
of λ . In this case, we have

ut−N =− 1
N!

(
∂ N e

∫
u−u1 dx

∂λ N

)∣∣∣∣∣
λ=0

,

ux +u1,x =−2λ +
(u−u1)

2

2
.

(29)

Under transformations u =−2ψx/ψ and u1 =−2ψ1x/ψ1, the
negative pKdV hierarchy (29) becomes DxDt−N ψ ·ψ =

1
N!

(
∂ Nψ2

1
∂λ N

)∣∣∣∣
λ=0

,

(D2
x−λ )ψ ·ψ1 = 0.

(30)

Let ψ1 = ψ1(λ ) has a formal series form

ψ1 =
∞

∑
i=0

ψ̄iλ
i, (31)

where ψ̄i is λ independent. Then, equation (30) can be rewrit-
ten as DxDt−N ψ ·ψ =

N

∑
k=0

ψ̄kψ̄N−k,

D2
xψ · ψ̄k = ψψ̄k−1, k = 0,1, . . . ,N,

(32)

with ψ̄−1 = 0.
The negative KdV hierarchy in bilinear form (32) is just

the special situation of the bilinear negative KP hierarchy for
y = 0 in Ref. [13].

3.3. The third type of negative pKdV hierarchy

By considering the translation invariance of pKdV equa-
tion (2) under the transformation u→ u+c, another parameter

µ can be introduced in the Bäcklund transformation (3) and
(4) with u1→ u1 +µ , saying

{ux +u1,x =−2λ +
(u−u1)

2

2
+µ(u1−u)+

1
2

µ
2,

ut +u1,t = 2u2
x +2u2

1,x +2uxu1,x

− (u−u1−µ)(uxx−u1,xx),

(33)

and the corresponding symmetry of u becomes σ ′ =

e
∫

u−u1−µ dx. In this case, we make λ = 0 and construct an-
other negative pKdV hierarchy with the help of parameter µ .
A novel set of negative pKdV hierarchy may be written down
as follows:

ut−N =− 1
N!

(
∂ N e

∫
u−u1−µ dx

∂ µN

)∣∣∣∣∣
µ=0

,

ux +u1,x =
(u−u1)

2

2
+µ(u1−u)+

1
2

µ
2.

(34)

Due to the same transformation u = −2ψx/ψ and u1 =

−2ψ1,x/ψ1, we have
DxDt−N ψ ·ψ =

1
N!

(
∂ N e−µxψ2

1
∂ µN

)∣∣∣∣
µ=0

,(
D2

x +µDx +
1
4

µ
2
)

ψ ·ψ1 = 0.

(35)

Let ψ1 = ψ1(µ) has a formal series form

ψ1 =
∞

∑
i=0

φ̄iµ
i, (36)

where φ̄i is µ independent, and it leads Eq. (35) to
DxDt−N ψ ·ψ =

N

∑
k=0

(−1)N−k 1
(N− k)!

xN−k
k

∑
i=0

φ̄iφ̄k−i,

D2
xψ · φ̄k +Dxψ · φ̄k−1 +

1
4

ψ · φ̄k−2 = 0, k = 0,1, . . . ,N,

(37)

with φ̄−2 = φ̄−1 = 0. For example, when N = 0, there is{
DxDt0ψ ·ψ = φ̄

2
0 ,

D2
xψ · φ̄0 = 0.

(38)

When N = 1, we have
DxDt−1ψ ·ψ =−xφ̄

2
0 +2φ̄0φ̄1,

D2
xψ · φ̄1 +Dxψ · φ̄0 = 0,

D2
xψ · φ̄0 = 0.

(39)

When N = 2, we obtain
DxDt−2ψ ·ψ =

x2

2
φ̄

2
0 −2xφ̄0φ̄1 +(2φ̄0φ̄2 + φ̄

2
1 ),

D2
xψ · φ̄1 +Dxψ · φ̄0 = 0,

D2
xψ · φ̄0 = 0.

(40)

Remark 3 One can see that the coefficients of the third
negative pKdV hierarchy (37) (N ≥ 1) are variable, which are
exactly different from the other two cases.
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4. Summary and discussion

In this paper, the nonlocal symmetry depending on bi-
linear Bäcklund transformation for bilinear pKdV equation is
localized by covering three dependent variables, which differs
from that in Ref. [14]. Via Lie’s first theorem, we obtain a
Levi transformation which possesses the same infinitesimal
form (9) with the original bilinear Bäcklund transformation.
Furthermore, on the basis of the nonlocal symmetry (8) of
pKdV equation, three different types of nonlocal symmetries
are built and then applied to construct three sets of negative
pKdV hierarchies. In the third case, by considering translation
invariance of the pKdV equation, another arbitrary parameter
is introduced to get new nonlocal symmetries, which are then
expanded in power series to derive negative hierarchy. It is re-
marked that the third type of (bilinear) pKdV negative hierar-
chy with variable coefficients is fresh and worthy of our further
investigation. To search for nonlocal symmetries of integrable
systems and then to apply them to obtain new results are both
of considerable interest. We know that it is convenient to con-
struct N-soltions from the bilinear forms of integrable eqau-
tions. Combining bilinear equations or their bilinear Bäcklund
transformation with nonlocal symmetries may provide a direct
way for seeking exact interaction solutions among solitons and
other background waves, the rogue waves solutions, the new
integrable models in bilinear forms, the nonlocal or local con-
servation laws, etc. We believe that this approach would also
play an important role in supersymmetry systems and discrete
equations.
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