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Abstract: We construct the Lax pair and Darboux transfor-
mation for the three-component coupled Hirota equations
including higher-order effects such as third-order disper-
sion, self-steepening, and stimulated Raman scattering. A
special vector solution of the Lax pair with 4 x 4 matrices for
the three-component Hirota system is elaborately gener-
ated, based on this vector solution, various types of mixed
higher-order localised waves are derived through the gen-
eralised Darboux transformation. Instead of considering
various arrangements of the three potential functions g,
q, and g, here, the same combination is considered as
the same type solution. The first- and second-order local-
ised waves are mainly discussed in six mixed types: (1) the
hybrid solutions degenerate to the rational ones and three
components are all rogue waves; (2) two components are
hybrid solutions between rogue wave (RW) and breather
(RW + breather), and one component is interactional solu-
tion between RW and dark soliton (RW +dark soliton);
(3) two components are RW +dark soliton, and one com-
ponent is RW +bright soliton; (4) two components are
RW +breather, and one component is RW + bright soliton;
(5) two components are RW +dark soliton, and one com-
ponent is RW + bright soliton; (6) three components are all
RW + breather. Moreover, these nonlinear localised waves
merge with each other by increasing the absolute values
of two free parameters «, 8. These results further uncover
some striking dynamic structures in the multicomponent
coupled system.
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1 Introduction

In recent years, the semirational localised waves, which
include bright or dark solitons, breathers, and rogue
waves, have been one of the fascinating topics that have
some potential applications in Bose—Einstein conden-
states in atomic physics, optical fibers in nonlinear optics,
and other fields. Rogue waves [1-4], (also called freak
waves, monster waves, killer waves, or rabid-dog waves)
have peak amplitude usually more than twice the signifi-
cant wave height, and also appear from nowhere and dis-
appear without a trace. Breathers propagate steadily and
localise in either time or space, in particular, Akhmediev
breather (AB) [5, 6] and Kuznetsov—-Ma breather (KM) [7].
Akhmediev breathers are periodic in space and localise
in time, whereas Kuznetsov—Ma breathers are periodic
in time and localise in space. Interestingly, by taking the
breathing period of the above two kinds of breathers to
infinity, rogue waves localised in both time and space may
be obtained. In 1983, Peregrine [8] first found a simple
rational solution — the Peregrine soliton — which was the
limiting case of the Kuznetsov—Ma breather and was espe-
cially considered as the rogue wave prototype [9].

There have been many articles on rogue waves and
semirational localised waves of single-component systems,
such as the nonlinear Schrédinger (NLS) equation [10-15],
the derivative NLS equation [16-19], the Davey-Stewartson
equation [20], the Hirota equation [21], the Kundu-Eckhaus
equation [22], the complex short pulse equation [23], the
Sasa—Satsuma equation [24], and so on. However, a variety
of complex system, such as Bose—Einstein condensates
and nonlinear optical fibers, usually involve more than one
component [25-28]. Therefore, the discussion of localised
waves in multicomponent coupled systems is greatly mean-
ingful and necessary. Some different solutions of the mixed
coupled NLS equation were classfied by Ling et al. [29]. The
Maxwell-Bloch equtions [30] in two-level optical medium
were solved to obtain breather, dark breather, rogue wave,
and dark rogue waves. Meanwhile, performing the gener-
alised Darboux transformation (DT) to the Maxwell-Bloch
system, higher-order rogue waves, and W-shaped solitons
were constructed by Wang and Liu [31].

Recently, the generalised DT was utilised to investi-
gate higher-order rogue wave (RW) solutions of the NLS
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equation [11] and other nonlinear integrable systems [16,
22, 32, 33]. Baronio et al. [34] obtained first-order inter-
actional solutions including the first-order RW, a dark or
a bright soliton interacting with a first-order RW and a
breather interacting with a first-order RW in the coupled
NLS; however, the higher-order interactional solutions
were not constructed. Besides, there have recently been
various kinds of interactional solutions on different non-
linear models [35-37]. Bindu et al. [38], using the Painlevé
analysis, dark soliton solutions were constructed in the
two-component coupled Hirota equations, and multicom-
ponent coupled Hirota system and its Lax pair were also
constructed. In this article, enlightened by Baronio et al.
[34] and Guo et al. [11], we investigate some novel higher-
order localised wave solutions of the following three-com-
ponent coupled Hirota equations from Bindu et al. [38]
and Zhang and Yuan [39]
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interacting with two dark or bright solitons, the second-
order rogue waves interacting with two paralleled breath-
ers were generated in the coupled NLS equation [46],
which generalised Baronio et al.’s work [34] into the
higher-order case. Analogously, some novel higher-order
localised wave solutions were constructed in the two-
component coupled Hirota equations [46, 47] and the
three-component coupled NLS equations [48]. Through
considering both the two-component (even) [46] and the
three-component (odd) coupled Hirota equations, the
localised waves of the multicomponent coupled Hirota
system may be well understood. Compared with the two-
component Hirota equations, more free parameters exist
in the expressions of localised wave solutions in the three-
component Hirota system. Additionally, some abundant
and interesting mixed interactional solutions will be con-
structed in the three-component Hirota system (1). Based

Fa,, +34,(q,9,, +4,4,,)1=0,
|Z

)q,, +34,(q,9, +q,9,)1=0,

|2

)d,, +34,(4,9,, +4,4,)]=0. W

where q,(x, t), g,(x, t), and g,(x, t) are the complex envel-
ops of three fields, each non-numeric subscripted variable
stands for partial differentiation. Besides, g, (i=1, 2, 3)
denotes the complex conjugation of g. ¢ stands for the
integrable perturbation of the coupled NLS equation
[40], which is a small dimensionless real parameter. In
the regime of ultra-short pulses, where the pulse lengths
become comparable with the wavelength [23, 41], the NLS
equation becomes less accurate. To meet this require-
ment, one of the approaches is to add some higher-order
dispersive terms [42] in the standard NLS equation. In
this way, Tasgal and Potasek [43] presented the two-com-
ponent coupled Hirota equations, including third-order
dispersion, self-steepening, and stimulated Raman scat-
tering. The coupled system (1) is an obvious three-com-
ponent generalisation of the two-component coupled
Hirota equations from Tasgal and Potasek [43] and Wang
et al. [44], and it governs the simultaneous propagation
of three fields in the normal dispersion regime of optical
fibers. Through the binary DT, multidark solitons were
constructed for the one-component and multicomponent
Hirota systems in Zhang and Yuan [45] and Zhang and
Yuan [39], respectively.

Using the generalised DT method, the higher-order
localised waves including the second-order rogue waves

on the above facts, it is very necessary to investigate the
higher-order localised waves of the system (1).

Here, starting from the appropriate periodic seed solu-
tions, a special vector solution of the Lax pair of the system
(1) is elaborately constructed. Based on this kind of the
special vector solution and the generalised DT, some abun-
dant higher-order localised waves of the three-component
Hirota equations are demonstrated. Among these higher-
order localised waves, the first- and second-order ones are
mainly classified in six mixed types: (1) the hybrid solutions
degenerate to the rational ones and three components are
all rogue waves; (2) two components are hybrid solutions
between rogue wave (RW) and breather (RW +breather),
and one component is interactional solution between RW
and dark soliton (RW +dark soliton); (3) two components
are RW+dark soliton, and one component is RW + bright
soliton; (4) two components are RW +breather, and one
component is RW+bright soliton; (5) two components
are RW +dark soliton, and one component is RW + bright
soliton; (6) three components are all RW + breather. Choos-
ing the appropriate values of some free parameters in these
semirational solutions, several interesting dynamics of the
interactional solutions are exhibited. Besides, these above
mixed interactional solutions can only be generated in the
coupled systems, which are larger than two components.

Brought to you by | University of Gothenburg
Authenticated
Download Date | 10/8/17 7:16 AM



DE GRUYTER

The article is organised as follows. In Section 2, the
generalised DT of the three-component coupled Hirota
system is constructed. In Section 3, the first- and second-
order localised waves are obtained, respectively, and
some interesting and appealing figures are also given. The
last section contains several conclusions and discussions.

2 Generalised DT

Inthis section, we construct the Lax pair with 4 x 4 matrixes
and the generalised DT [11, 49] of the three-component
coupled Hirota equations [38, 39] by making use of the
Ablowitz—Kaup—Newell-Segur (AKNS) technique [50].
The Lax pair of the coupled system (1) can be constructed
as follows:

O =UD=(AU,+U)®, )
—_ _ 3 2
O =VO=(LV,+ A"V, +AV,+V,)D, (3)
where
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Here, the column vector ®=(¢, ¢, x, ¥)" is the
eigenfunction of the Lax pair (2-3). Actually, the three-
component coupled Hirota system (1) can be straightfor-
wardly derived by the following compatibility condition
U~V +[U, V]=o0.

The Lax pair of (1) is the standard AKNS spectral
problem, based on the DT of AKNS [49, 51] hierarchy,
the generalised DT of (1) could be directly constructed.
However, U and V are all 4 x4 matrices in the Lax pair
(2-3), it is more complicated than 2x2 and 3x3 matrix
spectral problems to construct the specific vector solution
of the corresponding Lax pair.

Let @, =(¢,, ¢, x,» ¥,)" be a special solution of Lax pair
(2-3) at g,=q,[0], ¢,=¢,[0], g,=q,[0] and A=A,. Then, we
can get the following classic DT of the three-component
coupled Hirota equations (1)

o =T[1]D,
@ [0]® [o]

TT1}=A1-HIOJA,HIO=(A=2)1+ (4, ~A) gt g Top

(4)
q,[11=¢,[0]+i(4,-4))

¢,[0lp,[OF -
4¢(|p,[01F + [0 +| 1, [01F + |3, [0])"

q,[1]=¢,[0]+i(4,-4))
4¢(| ¢, [01F +| ¢, [0F +|x,[0]F +|,[0])’

q,[1]=g,[0]+i(4,-4))

¢,[01y,[0] @
4¢(|p,[01F +,[O1F +| ,[01] + |3, [0])°

where (¢,[0], ¢,[0], x,[0], ¥,[0D"=(9,, ¢, x,» ¥,)", T denotes
transposed and conjugate operation of a vector and I
admits the 4 x 4 identity matrix,

¢,[01 oI yOI 0
diol| P10 #0700
xl0] 0 0 ylor
pl0] 0 —¢[0] —yl0r
4,0 0 0
A0 %00
““lo o & 0 ®
00 0 A

According to the above classic DT (4-7), the generalised
DT can be constructed in the following content. Setting
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D=, ¢, xp ¥)' =P, +0) as a special solution of
the Lax pair (2-3) with g,=¢,[0], ¢,=¢,[0], g,=¢,[0] and
A=A +9, then the eigenfunction @, can be expanded as
the Taylor series at d=0

O =P + Do+ PPe -+ DNV 4. )

where
q)[ll] =(¢[11], (p[ll]’ X[ll]’ 1/)[11])T’
1
Pl _109, |
1 l| aal 0=0

(1=0,1, 2, 3--).

It can be easily found out that ®,[0]=®' is a particu-
lar solution of the Lax pair (2-3) with g,=¢,[0], g,=q,[0],
q,=q,[0], and A=A. From the above process, we can
directly give the first-step generalised DT.

2.1 The First-Step Generalised DT

@, =T[1]®, T[1]=iI-H[O]A H[O]", (10)
q,1]1=¢,[0]+i(4,-4))
#,[0]p, [O] 1)
4e(| 9, [01F +| p,[01 +|x, [0 +|y,[011)’
q,[11=g,[0]+i(4, - 4))
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q,[1]=g,[0]+i(4, - 4,)
¢,[0ly [0 (13)
4¢(| ¢, [01F +| 0, [01 +| x, [0 +|,[0]F)
where @ [0]=®" =(g,[0], ¢,[0], x,[0], ,[0])". Mean-

while, the explicit expressions of H[0] and A, are given
in (8).

2.2 The Second-Step Generalised DT

Choosing the seed solution of the three-component
coupled Hirota equations (1) as g, =q,[1], ¢,=q,[1l, g,=q,[1]
atA=A4,+9, then T[1]®, is the solution of the Lax pair (2-3).
We take into account the following limit:

i |/1:/11+b (I)l lim (0+ Tl[l])d)l

lim =li
-0 0 6-0 I}

— p [ —
=0 +T[1]o = [1].
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The second-step generalised DT can be expressed as
follows:

@, =T[2T[1®, T[2]=AI-H[]A H[I, (14)
q,[21=q,1]+i(4,-4))
¢, [lp 11 , (15)
4e(| @, [P +] o, [P + |, [P + [, [11F)
q,[21=q,1]+i(4, - 1)
@[y [11 , (16)
4e(| o, [P +] [P+, [P + |, [11F)
q,[21=q,[1]+i(4, - 1))
¢, [y [1] , )
4e(| @, [P +] [P +| o, [P+, [11 )
where @ [1]=(@[1], ¢[l, z[1], 1D A=A and

T,[1]=A,I- HIOJA HIO]",

o1 ol wlI o0
H[1]= o1l -1 0O 0 |
xl o 0oyl

plil 0 =gl —xlr

2.3 The Third-Step Generalised DT

In a similar way, the following limit will be constructed:

. (T[2IT(1]) |/1:A +0 (I)l . (O+T[2DO0+T 1)
lim 1 =lim 1 1 1
0—0 62 6—0 62

=0+ (T [1+ T RDY + TRIT 1] = @, [2],

the eigenfunction ®[2] is the specific solution of the Lax
pair (2-3) at q,=q,[2], q,=q,[2], q,[2], and A=4,. Addition-
ally, the following two identities

T =0, T[2)(@+T1]0!) =0,

have been utilised in the above process.
The third-step generalised DT can be generated as

©, =TBITRIT[®, TB3l=i-H2AHRI,  (8)
o 9,22

3l=qg.|2 A=A ; : ’

B A o P + 1 21F +1, 2 + 1,200

(19)
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q,81=q,[2]+i(2, - 1)
@[22I

, (20)
4el@, 217 +1p,[21F +1 2, [21F +] 9, [211)
q,31=q,[2]+i(4, - 1))
o 2y 21 o
4e(|@, 1217 +1,[21F +1 x, 211 +]9,[211)
where @ [2]=(p,[2], ¢[2], x[2], ¥,[2D", A,=A, and
T,[21=A1-H[1]AH[1]7,
21 o2 w2 0
Hp| 2 e 0o
w2l 0 0 w2
2l 0o —¢l2l —yxl2I

2.4 The N-Step Generalised DT

Iterating the above procedures, the N-step generalised DT
of the three-component coupled Hirota equations (1) can
be derived as follows:

®[N]=T[NIT[N -1]---T[1]®,
T[N]=AI-H[N-1]A H[N -1]", (22)
O [N-1]=d"+ ETI[I]@[I” + NiiTl[l]Tl[k]cblfl +oe
+T1[N—1iT1[N—2] o @)
T[N, (24)

¢,[N]=¢q,[N-1]

i(4, = 4)¢y [N -1lp, [N-1]
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(25)

q,IN1=gq,[N-1]
1A, =A4)¢, [N -1l [N-1]
46(I¢N[N 1P +]p [N =11} +] x,, [N =1]F +[ 9, [N-1]])’
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where
pl1-1 1= -1 0
Hil-1]- o [1-1] —¢ [1-1] 0 0 .
-1 o 0 W [1-1]
y,[1-1] 0 =@, [1-1] —y [1-1T
A, 0 0 0
L A0 0 (1<1<N)
1o o A o T 7
000 A

(DI[N_1]=(¢1[N_1]5 ‘Pl[N—l]’ Xl[N_l]’
T=21-HI-1AH[I-1]".

¥, [N-1])" (N 21),

Furthermore, the Nth-order localised waves in the
three-component coupled Hirota equations (1) can be
generated through the formulae (22-27). To avoid calcu-
lating the determinant of higher order matrix in a cumber-
some way, here, the iterative algorithm is chosen instead
of Crum theorem [49]. Additionally, the calculations and
expressions of the higher-order interactional solutions
of the three-component coupled Hirota equations (1) are
very complicated and tedious, so the first- and second-
order localised wave solutions are discussed in detail.

3 Localised Nonlinear Wave
Solutions

In this section, some novel mixed interactional solutions
of the three-component coupled Hirota equations (1) are
constructed through the above generalised DT. Here, the
first- and second-order localised waves are discussed in
detail and some figures of these kinds of localised wave
solutions are also exhibited. Besides, some dynamic struc-
tures of these nonlinear waves are demonstrated.

3.1 The First-Order Localised Nonlinear
Waves

We begin with the plane wave seed solutions of the
coupled system (1) [44, 46, 48]

q0l=de”, gq[0l=de”, g,[0]= (28)
where 0=(d; +d; +d)t, d, d,, d, are three arbitrary
real constants, which delegate the amplitudes of
the three continuous-wave backgrounds. Here, the

expression d;+d;+d; refers to frequencies of the
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three continuous-wave backgrounds. Conveniently,
the above seed solutions are chosen periodically in
time variable t without depending on space varia-
ble x. Then, a special vector solution of the Lax pair
(2-3) can be constructed with g, =¢,[0], g¢,=q,[0], and
q,=q,[0] as follows:

i6

M M, -M. 5
+ Z—Cze 1 z)eZ

(ce™

i6
M +M M, -M. \ M.
p,(ce™ ™ —ce™ e 2 —(ad,+fd,)e™

P = P . (29
pz(czel‘/’“'M2 —cleMl’Mz Je 2 +adleM3
o
p(c,e™™ —ce™™)e 2 + Bd e™
where
1
(1-7 veuc (@ v+ )|
C =
b Rresd+di )
1
(12 +6te (4 i+ )|
C.=
T Rreud(d &+ )
P, = 4 p,= %
b rded’ Rt d v
d iA
=3 =————[16ex+ A(A+2)t],
P Ji+dvd a4 0T
iA
M. = 166x + A(A+2)t],
’ 19262[ e+ A(4+2)]
= 12;62 \//12 +646*(d} +d; +d7) {16ex+ AMA+2)t

N
-32(d’ +d: +d32)+25kf2"}.

k=1

where s, =m, +in, (1<k<N), m, n,, @, and 3 are real free
parameters and fis a small parameter. During the process
of calculation of the special vector solution (29), the vari-
able coefficient differential equations in the Lax pair (2-3)
need to be converted into constant coefficient ones by a
gauge transformation. Here, the transformed Lax pair
can be written as ¢ _=RU¢, ¢,=RV¢ and the characteristic
equation of RU is a quartic equation. To construct some
new patterns of interactional solutions of the coupled
system (1), we consider that the characteristic equation
of RU possesses two groups of double roots. Besides,
the full solutions in the fundamental solution matrix
of U are all included in (29), such as these expressions

DE GRUYTER

~(ad,+Bd,)e"™, ade™ and Pde"™. When construct-
ing the higher-order rogue wave solutions of the coupled
system (1), the above expressions —(ad, + ﬁd3)eM3, adleM3,
and ﬁdleM3 are not needed. However, these expressions
are greatly necessary to generate the interactional solu-
tions of the three-component coupled Hirota system (1),
especially the free parameters d. (i=1, 2, 3), @, § play a
critical role in constructing different mixed hybrid solu-
tions in the three potential functions g,, q,, and g,. Setting
v=d;+d.+d; and choosing the spectral parameter

/'L:Si\/;e(l+ f?), we can get the Taylor expansion of the
vector function @, at f=0

q>1(f)=<I>[1°]+q>[11]f2+q>[12]f4+¢[13]f6+-~-, (30)
[k] [k] [k] , [K] [kINT aqu)
where @' =(¢,", 0., x, > ¥, ) = akal |M(1SkSN),

$9 = (D27 (x— 6rlet) +2int +1) o
INEZ

= (i-1d, [2Vr(x- 6;[61’) +2irt—1]
INEZ

2= (i-1)d, [2\/; (x- 63ret) +2itt — 1]
4\@1Z

)L [2rx—6ret)+aint—1] b,

3
4\/21“

e —(ad,+pd,)e"

e +ade”,

1-i
13

9672

3 5 5 7
[-1672ex’ + 28872’ Xt + 487 2ext? —172872€ xt?

[ _
¢1 -

9 7
43456726 t? —288726°t — 40erx® + 5766 T xt —2016€°T°t2
3
+567%€t? —20\/rex + 55226 - 3\Tm, +6¢ + (17287
3 5
+ 5767’ Xt +16T°t® — 487 ex’t —96T2ext + 672726t
—76Tet — Bﬁnl)]eg' ,

3 dQ
(p[lﬂ = _g(lzrzet —2irt— \ﬁx)(ad2 + ﬁdB)eEB F—1 _e%,
96¢

Nl
Blw

T

, 5 dQ
A= Sod (20t ~2int et - e,
9662-[«4

, s dQ
_ 3 Bd, (1272t - 2irt —Jrx)e - e,

33
96e2T*
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with
\fx+r( 1—76\/7) §,= \fx r( 1+§erjt
=2 ox—of 2i-B e,
5 3 [3 3 j
3 5 5 7
Q=(i-1)| —1672ex> + 28872’ x’t + 487 2ext? —172872>xt?
9 7
+345672¢"t? — 2887267t + 8erx” + 87%ct? — 28861t
3
—tJrex+36072¢t - 3JTm, — 6ei(—17281453t3

5
5760 Xt +167°ct’ — 48T ex’t — hlkTet + 96672 — Bﬁnl)}.

It can be straightforward to calculate that the
vector function @' is a solution of the Lax pair (2-3)
at A=14, =8i\re and q,=q,[0], q,=4,[0], and g,=q,[0].
Through the formulae (11-13), the first-order localised
wave solutions can be expressed as

L .
qgll=de” + Z[dlr“ ﬁFlelG —2te(ad, + Bd,)Fe" ]
FLaC |

1 ) (31)
e (4reGem +G,)
1
" it n,)
qz[l]:dzei"+2(dzf \@Fle +2adreFe , (32)
e (t[zeG e +6)
1
4 i0 171)
q3[1]:d3ei"+2(d3r JeFe" +2pdreFe ’ (3

rie (4zeGe” +6,)
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where

F =—47x* + 487°ext — 47° —1447°€’* + 4itt +1,

3
E=(-1+ i)(lZ‘rzet —2irt—2Jrx— 1),
G =d’d} +ad’d +2apd,d, + p*d; + p*d;,
G, =41X* —480%ext + 144T° + 47°t* +1.

The correctness of (31-33) have been directly verified
by putting them back into (1). At this point, we obtain the
first-order localised nonlinear waves of (1) with five free
parameters d,, d,, d,, @, and 3. Besides, the parameters d,,
d,, and d, determine the background in which the differ-
ent localised waves emerge, and «, § play an important
role in controlling the dynamics of these nonlinear waves.
These first-order nonlinear localised wave solutions are
discussed in the following six different mixed interac-
tional cases:

(i) When a==0, q,, q,, and g, are all proportional to
each other, the first-order interactional localised
waves degenerate to the first-order rogue waves.
Besides, these three components have similar struc-
tures, and the first-order rogue wave is the same as the
standard NLS equation [10, 11] (see Fig. 1).

(ii) When one of the two parameters , f3 is zero and d,#0
(i=1, 2, 3), without loss of generality, we choose a =0,
B #0. It demonstrates that g, and g, components are
all the interactional solutions between a first-order
RW and a breather, and the g, component is the inter-
actional solution between a first-order RW and a dark
soliton in Figure 2. By increasing the absolute value of
S, the phenomenon that the nonlinear waves merge
with each other distinctly.

Figure 1: Evolution plot ofthe first-order RW of the three-component coupled Hirota equations with the parameters chosen by

d,=1,d,=-1,d,=-0.5, e—l— @ g, (B g, () g,
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[0,

10 3T,

Figure 2: Evolution plot of the interactional solution between the first-order RW and one-dark soliton or one-breather in the three-compo-

1 1
nent coupled Hirota equations with the parameters chosen by d,=1,d,=-1,d,=-0.5, c=——, =0, f=————: (a) a first-order RW and

100 72000

a breather separate in g, component; (b) a first-order RW and a dark soliton separate in g, component; (c) a first-order RW and a breather

separate in g, component.

|q1| qul

5 0 -5 -10
X

Figure 3: Evolution plot of the interactional solution between the first-order RW and one-dark soliton or one-bright soliton in the three-

1
component coupled Hirota equations with the parameters chosen by d, =1, d,=-1, d, =0, 6=m, a=0,p=

1 .
500" (@) a first-order RW and

a dark soliton separate in g, component; (b) a first-order RW and a dark soliton separate in g, component; (c) a first-order RW and a bright

soliton separate in g, component.

(iii) When ¢ =0, =0 and one of the three parameters
d (i=1, 2, 3) is zero, without loss of generality, we
choose d,#0, d,#0, d,=0. It shows that g, and g,
components are all the hybrid solutions between a
first-order RW and a dark soliton, and g, is the hybrid
solution between a first-order RW and a bright soliton
in Figure 3. We can find that the rogue wave cannot be
easily identified in Figure 3c. At this time, the ampli-
tude of the plane wave background in g, component is
zero and the amplitude of the rogue wave is depend-
ent on this background, so the rogue wave cannot
be easily observed. In the same way, these nonlinear

waves merge with each other by increasing the abso-
lute value of 3 (see Fig. 4). Besides, the first-order RW
in the interactional solutions of g, component can
be easily found in Figure 4c by increasing the abso-
lute value of § because the amplitude of the part of
the plane wave background where the first-order RW
emerges is not zero.

(iv) When ¢ #0, §#0, and one of the three parameters

d (i=1, 2, 3) is zero, without loss of generality, we
set d #0, d,#0, and d,=0. Here, g, and g, compo-
nents are all the interactional solutions between a
first-order RW and a breather, and the g, component
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Figure 4: Evolution plot of the interactional solution between the first-order RW and one-dark soliton or one-bright soliton in the three-

component coupled Hirota equations with the parameters chosen by d, =1, d,=-1, d, =0, ¢=

%, a=0,=-5: (a) afirst-order RW merges

with a dark soliton in g, component; (b) a first-order RW merges with a dark soliton in g, component; (c) a first-order RW merges with a bright
soliton in g, component.
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Figure 5: Evolution plot of the interactional solution between the first-order RW and one-breather or one-bright soliton in the three-

1

1 1
component coupled Hirota equations with the parameters chosen by d, =1, d,=-1,d, =0, e=—— azﬁ, ﬂ:—ﬁ: () afirst-order RW and

100’

a breather separate in g, component; (b) a first-order RW and a breather separate in g, component; (c) a first-order RW and a bright soliton
separate in g, component.

W)

is the interactional solution between a first-order
RW and a bright soliton (see Fig. 5). Although con-
sidering the zero-amplitude background crest, the
first-order RW of g, component in the Figure 5c is
difficult to observe owing to its small amplitude.
Analogously, different nonlinear waves can merge
with each other by increasing the absolute values of
a and f.

When a#0, f#0, and two of the three parameters
d (i=1, 2, 3) are zero, without loss of generality, we
setd #0, d,=d,=0. From Figure 6, we can find that a
first-order RW merges with a bright soliton in g, and
g, components, and a first-order RW merges with a
dark soliton in g, component. Figure 7 describes the
explicit collision processes between a dark soliton and

a first-order RW in g, component, a bright soliton and
a first-order RW in g, and g, components, respectively.
A dark soliton in g, component and a bright soliton
in g, and g, components propagate along the posi-
tive direction of x-axis, when t=0, the first-order RW
suddenly appears and these nonlinear waves interact
with each other. At the next moment, the first-order
RW disappears without a trace and the solitons con-
tinue to propagate without changing their velocities
and amplitudes. The interactional process is elastic
collision.

(vi) When a#0, $#0, and d, (i=1, 2, 3) are all not zero,

the three components g, q,, and g, are all the inter-
actional solutions between a first-order RW and a
breather in Figure 8. In the same way, increasing the

Brought to you by | University of Gothenburg
Authenticated
Download Date | 10/8/17 7:16 AM



10 —— T.XuandY. Chen: Localised Nonlinear Waves in the Three-Component Coupled Hirota Equations DE GRUYTER

a b c
16 1.2 1.2
1.2 E 1
1.0 0.8 0.8+
[q,l 0.8 g, 0.6 0 0.6
0.6 0.4+ 0.4+
0.4 1 0_2:
-10 -10
-5 -5

t o
5
10

420_2_4_6—8—10 5 6420_2_4_6—8—10 6420_2—4—6—8—10

8 6
X X X

Figure 6: Evolution plot of the interactional solution between the first-order RW and one-dark soliton or one-bright soliton in the three-

component coupled Hirota equations with the parameters chosen by d, =1, d, =d, =0, €=%’ a=5, f=-5: (a) afirst-order RW merges

with a dark soliton in g, component; (b) a first-order RW merges with a bright soliton in g, component; (c) a first-order RW merges with a
bright soliton in g, component g..
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Figure 7: Plane evolution plot of the interactional process between the first-order RW and the right-going one-dark soliton or one-bright
soliton in three different moments t=-20, t=0, =20 in Figure 6: (a) g,, (b) g,, and (c) g,.

a b c 12

2 :

15 :
lal la,| lo:l 0.6

05 :

-10 -10

-5

to

10 -10 -15 10 -10 -15 _10 -15

T _X5 10 AR _f 10 10T ;5 10

Figure 8: Evolution plot of the interactional solution between the first-order RW and one-breather in the the three-component coupled
1 1

==

= : afirst-order RW and a breather
10,000 10,000

Hirota equations with the parameters chosen by d, =1, d,=-1, d, =0.5, e:%, a

all separate in the three components (a) g,, (b) g,, and (c) g..
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Table 1: Classification of the first-order localised wave solution generated by the first-step generalised DT.

d, q, q, q,

d,#0, d,=d,=0 RW and one-dark soliton 0 RW and one-bright soliton
d,=0,d,#0,d,=0 0 RW 0

d,=0,d,=0,d,#0 RW and one-bright soliton 0 RW and one-dark soliton
d,#0,d,=0,d,#0 RW and one-breather 0 RW and one-breather

d,#0,d,#20,d,=0
d,=0,d,#0,d,#0
d,#0,d,#0,d,#0

RW and one-dark soliton
RW and one-bright soliton
RW and one-breather

RW and one-dark soliton
RW and one-dark soliton
RW and one-dark soliton

RW and one-bright soliton
RW and one-dark soliton
RW and one-breather

Table 2: Classification of the first-order localised wave solutions generated by the first-step generalised DT.

d; g, g, g

d,#0,d,=d,=0 RW and one-dark soliton RW and one-bright soliton RW and one-bright soliton
d,=0,d,#0,d,=0 RW and one-bright soliton RW and one-dark soliton 0

d,=0,d,=0,d,#0 RW and one-bright soliton 0 RW and one-dark soliton

RW and one-breather
RW and one-breather
RW and one-bright soliton
RW and one-breather

d,#0,d,=0,d,#0
d,#0,d,#20,d,=0
d,=0,d,#0,d,#0
d,#0,d,#0,d,#0

RW and one-breather

RW and one-bright soliton
RW and one-dark soliton
RW and one-breather

RW and one-bright soliton
RW and one-breather

RW and one-dark soliton
RW and one-breather

Table 3: Six types of the mixed first-order localised nonlinear waves.

Types q,(i=1,2,3)

Type 1 Three potential functions are all first-order RW

Type 2 There are two potential functions are RW and one-breather, and another one is RW and one-dark
soliton

Type 3 The two potential functions are RW and one-dark soliton, and another one is RW and one-bright
soliton

Type 4 The two potential functions are RW and one-breather, and another one is RW and one-bright soliton

Type 5 The two potential functions are RW and one-bright soliton, and another one is RW and one-dark
soliton

Type 6 Three potential functions are all RW and one-breather

absolute values of « and 3, the first-order RW merges
with a breather distinctively.

According to different values of these five free para-
meters «, 8, and d, (i=1, 2, 3), a simple classification
corresponding to different mixed types of the first-order
nonlinear wave solutions in the coupled system (1) can
be given.

Case 1: When o= =0, these solutions g, (i=1, 2, 3) are all
first-order rogue waves.

Case 2: One of the two parameters « and j is zero, without
loss of generality, we choose a=0, #0. This classifica-
tion is shown in Table 1.

Case 3: When a#0, #0, the classification is shown in
Table 2.

Instead of considering various arrangements of the
three potential functions g,, q,, and q, we define the same
combination as the same type of solution. For example,
Case 1is that g, and g, are all the interactional solutions
between RW and one-dark soliton, g, is the interactional
solution between RW and one-bright soliton; and Case 2 is
that g, is the interactional solution between RW and one-
bright soliton, g, and g, are all the interactional solutions
between RW and one-dark soliton, according to our defi-
nition, these two cases are the same type of solution. Six
types of the mixed first-order interactional solutions can
be obtained using our method in this article and these dif-
ferent classifications are shown in Table 3.
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3.2 The Second-Order Localised Nonlinear
Waves

In this section, we consider the following limit:

llm T[1]|/1:8i\/;<(1+f2) q)1 — m(SI\/;efz +Tl[l])q)
f—0 2 - f—0 fz
—8iredI+T[1B" = [1],  (34)
g . @ [0l [o]
T[1]=AI-H[OJA H[O]'=(A, = A)I—-(A, —A)) 21—
1]=4, [0]A H[O]" = (A4, - A)I-(4, 1)<I>1[0]*<I>1[O]
(I)[O](I)Oh
_(/1 —4 )I (;t —4 )q)[olfq)[o]’
DOl
=16i/7e| I e( q)wq)m], (35)
0 2
where <I>[1°]:a q)1| , w_ 9P, | . We can arrive at
afo f=0 1 afz f=0

a specific vector solution of Lax pair (2-3) at g,=g,[1],
4,=9,011, g,=q,1], and A=4 81[ te. Through (15-29),
the concrete expressions of the second-order localised
nonlinear waves can be derived. However, this explicit
expressions of g,[2], g,[2], and g,[2] are very tedious and
complicated, their expressions of the simplest case
a=£=0 are only given in the following content. Here, the
expressions for other cases are omitted. Besides, some
dynamic properties of these solutions are discussed in
detail. The validity of the expressions of g, (i=1, 2, 3) can
be directly verified by placing them in (1) through Maple
software. It is similar to the first-order case that we discuss
the dynamic properties of these nonlinear waves in six
types.
(i) a=p=0 and d=0 (i=1, 2, 3).
d=1,d=-2,d-=2, 6=$,

Choosing

the concrete expres-

sions of the second-order localised waves can be given.
In this case, the three components g,, q,, and q, are all
proportionable to each other, and they are the second-
order RW. When m =n,=0, they are the fundamental
second-order RW, whereas m,#0, n,#0, they are the
second-order RW of triangular pattern (see Fig. 9).

15000it — 69687t +8100xt —7500x> + 625

h

q,12]=3e™"

ip,t+p,
’
nh

_ ze9it (36)

DE GRUYTER

15000it —69687t* + 8100xt — 7500x° + 625

q2 [2] — _6e9it
I
I, +D
+4e” L2,
h €%)
7.2 = 6¢°" 15000it —69687t* +8100xt —7500x” + 625
3 g

L 1ip +
et PPy o8

"

where

r= 209061¢* —24300tx +22500x° + 625,

r, =1015258328477109t° — 354022663940100t°x
+368948239537500t“x> —77797057500000£° x>
+39707718750000¢°x* — 4100625000000¢x°
+1265625000000x° +105468750000x"
+75937500000x°t — 6002859375000t
—1851022125000xt> +79615779001875t*
—2636718750000m,x’ +(4271484375000m,
—23730468750000n, )x’t +(25628906250000n,
+68884804687500m, )xt* +(64271601562500n,
—38028171093750m,)t’ + 26367187500
— 53789062500t + 909699609375t +219726562500m, x
+(1977539062500n, —435058593750m, )t
+1373291015625m; +1373291015625n; + 244140625,

p, =—31862039754609000000¢°x +33205341558375000000¢°x°
—7001735175000000000¢x” +3573694687500000000¢°x*
—369056250000000000¢°x° +113906250000000000¢x®
+91373249562939810000t" —9492187500000000x"t
+6834375000000000x°t* —165323531250000000x°t’
—190506836250000000xt" +245741455378125000t°
+(118652343750000000m, +64072265625000000n,)x’t
—(192216796875000000m, + 585834082031250000n, )tx*
+(595333863281250000n, +3307410351562500000m, )xt’
—(1748634644531250000m, — 3846298727285156250n, )t*
—791015625000000tx” — 284765625000000xt*
+12659730468750000¢° —1647949218750000n,x*
+(1779785156250000n, + 9887695312500000m, ) xt
+(44014086914062500n, —12458496093750000m, )t*
+(30899047851562500m;t + 30899047851562500m; )t
—21972656250000¢ — 22888183593750n,,
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Figure 9: Evolution plot of the second-order RW of triangular pattern in the the three-component coupled Hirota equations with the

parameters chosen by d, =1, d,=-2, d, =2, €=ﬁ’ m,=n =50: (a) q,, (b) g,, and (c) g,.

(i) =0, #0 and d,#0 (i=1, 2, 3). Here, g, and g, com-

P, =—28476562500000000x° +123018750000000000x "t
—1257661687500000000x°t* +3572612122500000000x°t?
—33195282797421000000¢° x> +18493139276437500000¢x“
—108578751030428670000x°t° +98683109527974994800xt’
—212250921409752884649t° + 3164062500000000x°
—17085937500000000¢x +459440859375000000¢°x *
—829515431250000000x°t> +4407181779093750000x°t"
—2656332241017750000xt° +2548145144013862500t°
+59326171875000000x °m, +(533935546875000000n,
-160180664062500000m, )tx* —(894875976562500000m,
+1153300781250000000n, )t°x” +(1636533808593750000m,
+4137786914062500000n, )t*x* —(15325210710351562500m,
+3796204851562500000n, )t x +(7950207477030468750m,
—13436685294257812500n, )t° +395507812500000x
—1233984375000000x°t +8016152343750000x°t>
—18078630468750000xt> +121360886107031250¢"
+3295898437500000m, x” +(1779785156250000m,
—29663085937500000n, )tx’ +(84183837890625000m,
+32036132812500000n, )xt* —(17575022460937500m,
—97639013671875000n, )’ —(30899047851562500m’
+30899047851562500n° +21972656250000)
+(33370971679687500m; —71191406250000
+33370971679687500n’ )xt —(287101593017578125m’
+287101593017578125n; —1032196289062500)t*
+411987304687500m, x —(420227050781250m,
—2059936523437500n, )t +858306884765625m;
+858306884765625n; —152587890625.

ponents are all the hybrid solutions between a sec-
ond-order RW and two paralleled breathers, and g, is
the hybrid solution between a second-order RW and
two dark solitons (see Fig. 10). When s, =0, a funda-
mental second-order RW and two parallel breathers
separate in g, and g, components, and a fundamen-
tal second-order RW and two dark solitons separate
in the g, component. Increasing the absolute value of
f, a fundamental second-order RW merges with two
breathers or two dark solitons distinctively. Although
s,#0, we can see that the fundamental second-order
RW splits into three first-order RWs and these three
humps form a triangle in Figure 10.

(iii) =0, f#0 and d,#0, d,#0, d,=0. Here, g, and q,

components are all the hybrid solutions between a
fundamental second-order RW and two dark solitons,
and g, is the hybrid solution between a fundamental
second-order RW and two bright solitons (see Fig. 11).
The fundamental second-order RW in Figure 1ic are
also unobservable for the same reason as the first-
order case. By increasing the absolute value of 3, a
fundamental second-order RW merges with two dark
or bright solitons. Choosing s,#0, the fundamental
second-order RW in Figure 11 splits into three first-
order RWs in Figure 12.

(iv) a#0,8#0and d,#0,d,#0, d,=0. Here, g, and g, com-

ponents are all the hybrid solutions between a sec-
ond-order RW of triangular pattern and two breathers,
and g, component is the hybrid solution between a
second-order RW of triangular pattern and two bright
solitons (see Fig. 13). Here, the second-order RW in g,
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Figure 10: Evolution plot of the interactional solution between the second-order RW of triangular pattern and two-breather or two-dark soliton
1 1
in the three-component coupled Hirota equations with the parameters chosenby d =1, d, =1, d, =-1, e=——, =~ ,m,
100 100,000
(a) a second-order RW of triangular pattern and two paralleled breathers separate in g, component; (b) a second-order RW of triangular
pattern and two dark solitons separate in g, component; (c) a second-order RW of triangular pattern and two paralleled breathers separate in

g, component.

=n, =50:

Figure 11: Evolution plot of the interactional solution between the fundamental second-order RW and two-dark or two-bright solitons in the

three-component coupled Hirota equations with the parameters chosen by d =1, d =-1, d, =0, e=i, p=- ! ,
! ? 3 100 100,000

fundamental second-order RW and two dark solitons separate in g, component; (b) a fundamental second-order RW and two dark solitons
separate in g, component; (c) a fundamental second-order RW and two bright solitons separate in g, component.

m =n=0: (a)a

component is not discovered for the same reason as  (vi) @#0, $#0, and d,#0 (i=1, 2, 3). These three com-
the first-order case. ponents q,, q,, and g, are all the hybrid solutions
(v) a#0, f#0, and d #0, d,=d,=0. Here, we obtain between a second-order RW of triangular pattern and

the hybrid solution between two dark solitons and
a fundamental second-order RW in g, component,
and the hybrid solutions between two bright soli-

two breathers (see Fig. 16). In the same way, increas-
ing the absolute values of « and 3, we can find that
the second-order RW merges with the two-breather

tons and a fundamental second-order RW in g, and distinctively.

q, components (see Fig. 14). In Figure 15, it is shown

that the interactional process in Figure 14 is also In the first-order localised waves, we get the concrete
elastic, the amplitudes and velocities of these two expressions of these interactional solutions and give the
dark and bright solitons remain unchanged after classifications in six different cases. Instead of considering

collision. various arrangements of the three potential functions g,
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Figure 12: Evolution plot of the interactional solution between the second-order RW of triangular pattern and two-dark or two-bright solitons

in the three-component coupled Hirota equations with the parameters chosen by d, =1, d,=-1, d, =0, €=ﬁ’ p=—

————,m,=n=50:
100,000

(a) a second-order RW of triangular pattern and two dark solitons separate in g, component; (b) a second-order RW of triangular pattern
and two dark solitons separate in g, component; (c) a second-order RW of triangular pattern and two bright solitons separate in g,

component.
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Figure 13: Evolution plot of the interactional solution between the second-order RW of triangular pattern and two-breather or two-bright

1 1 1

solitons in the three-component coupled Hirota equations with the parameters chosenby d, =1, d,=-1, d, =0, e= — p= s

y A= ’
100 100,000 100,000

m,=n,=50: (a) a second-order RW of triangular pattern and two paralleled breathers separated in the g, component; (b) a second-order RW of triangu-
lar pattern and two paralleled breathers separate in g, component; (c) a second-order RW of triangular pattern and two bright solitons separate in g,

component.

d, and g, the six mixed types first-order localised waves
are obtained using our method in this article. However,
the expressions of the second-order localised waves are
greatly tedious and complicated, we cannot give these
expressions in the general form. The classifications as the
first-order ones are also not presented, and we can only
give the six mixed types of interactional solutions, which
are similar with the first-order case after fixing all the cor-
responding free parameters. Whether the second-order
localised waves own more types or not, we cannot draw a
firm conclusion now.

4 Conclusions

In summary, some interesting and appealing localised
nonlinear waves in the three-component coupled Hirota
equations were generated by the generalised DT. By choos-
ing a periodic seed solution of (1), a peculiar vector solu-
tion of the Lax pair (2-3) is elaborately constructed. With
a fixed spectral parameter and this special vector solution,
we implement the Taylor series expansion of (29) at f=0,
then construct the generalised DT of this three-component
coupled Hirota equations (1). Combining the generalised
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Figure 14: Evolution plot of the interactional solution between the fundamental second-order RW and two-dark solitons or two-bright soli-

tons in the three-component coupled Hirota equations with the parameters chosen by d, =2, d,=d, =0, ¢= 1;0, a=1,f=-1,m =n=0:

(a) a fundamental second-order RW and two dark solitons merge in g, component; (b) a fundamental second-order RW and two bright soli-
tons merge in g, component; (c) a fundamental second-order RW and two bright solitons merge in g, component.
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Figure 15: Plane evolution plot of the interactional process between the fundamental second-order RW and the right-going two-dark
solitons or two-bright solitons at three different moments t=-80, t=0, t=80 in Figure 14: (a) g,, (b) g,, (c) g,.

Figure 16: Evolution plot of the interactional solution between a second-order RW of triangular pattern and two-breathers in the three-

1 1
component coupled Hirota equations with the parameters chosen by d, =1, d,=1, d, =-1, ¢= p= ,m =n=50:
100 100 000’ 100,000

the three components are all that a second-order RW of triangular pattern separates with two parallel breathers (a) q,, (b) g,, and (c) g,.
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DT and the special vector solution of the Lax pair (2-3),
the multiparametric and semirational solutions are con-
structed. The free parameter plays an important role in con-
trolling the dynamic properties of these localised nonlinear
waves, such as @, 8, d, (i=1, 2, 3), and ; (=1,2,...,N). The
parameters a and  affect the position at which each non-
linear wave locates in the hybrid solution, e.g. separation
and integration. Besides, the amplitudes d, (i=1, 2, 3) of the
plane wave backgrounds determine different combinations
of the interactional solutions in these three components g,
q,» and q,. The parameter 5, controls the structures of high-
order rogue waves in the hybrid solutions.

Here, the dynamics of these interactional solutions
are mainly discussed in six mixed types: (i) the hybrid
solutions degenerate to the rational ones and the three
components are all rogue waves; (ii) two components are
hybrid solutions between rogue wave (RW) and breather
(RW +breather), and one component is an interactional
solution between RW and dark soliton (RW + dark soliton);
(iii) two components are RW + dark soliton, and one com-
ponent is RW +bright soliton; (iv) two components are
RW + breather, and one component is RW + bright soliton;
(v) two components are RW +dark soliton, and one com-
ponent is RW +bright soliton; (vi) three components are
all RW +breather.

In this article, we generalise Baronio et al.’s [31]
results with other multicomponent coupled system, and
thus reach the higher-order localised waves of the three-
component coupled system by the generalised DT. Using
the DT method, the rogue wave and dark-breather-rogue
wave in the two-component coupled Hirota equations
were generated by Wang and Chen [52]. Besides, in [44],
Wang et al. constructed some higher-order localised
waves of the two-component coupled Hirota system. Here,
we extend the two-component system in [44] to three-
component one [24, 39], then construct the correspond-
ing Lax pair with 4 x4 matrices. Some new combinations
of these interactional solutions in the coupled system (1)
are given, such as Types 2, 3, 4, and 5 in Table 3 in the
first-order localised waves and the corresponding cases in
the second-order localised waves cannot be constructed
in the two-component coupled Hirota equations [44, 52].
Through considering both two-component (even) and
three-component (odd) coupled Hirota equations, we may
well understand the localised waves of the multicompo-
nent coupled Hirota equations [24, 39]. Furthermore, we
expect that these localised waves in this article will be
verified in physical experiments in the future.
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