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Abstract: We construct the Lax pair and Darboux transfor-
mation for the three-component coupled Hirota equations 
including higher-order effects such as third-order disper-
sion, self-steepening, and stimulated Raman scattering. A 
special vector solution of the Lax pair with 4 × 4 matrices for 
the three-component Hirota system is elaborately gener-
ated, based on this vector solution, various types of mixed 
higher-order localised waves are derived through the gen-
eralised Darboux transformation. Instead of considering 
various arrangements of the three potential functions q1, 
q2, and q3, here, the same combination is considered as 
the same type solution. The first- and second-order local-
ised waves are mainly discussed in six mixed types: (1) the 
hybrid solutions degenerate to the rational ones and three 
components are all rogue waves; (2) two components are 
hybrid solutions between rogue wave (RW) and breather 
(RW + breather), and one component is interactional solu-
tion between RW and dark soliton (RW + dark soliton); 
(3) two components are RW + dark soliton, and one com-
ponent is RW + bright soliton; (4) two components are 
RW + breather, and one component is RW + bright soliton; 
(5) two components are RW + dark soliton, and one com-
ponent is RW + bright soliton; (6) three components are all 
RW + breather. Moreover, these nonlinear localised waves 
merge with each other by increasing the absolute values 
of two free parameters α, β. These results further uncover 
some striking dynamic structures in the multicomponent 
coupled system.

Keywords: Breather and Soliton; Generalised Darboux 
Transformation; Localised Nonlinear Waves; Rogue Wave; 
Three-Component Coupled Hirota Equations.

1  �Introduction

In recent years, the semirational localised waves, which 
include bright or dark solitons, breathers, and rogue 
waves, have been one of the fascinating topics that have 
some potential applications in Bose–Einstein conden-
states in atomic physics, optical fibers in nonlinear optics, 
and other fields. Rogue waves [1–4], (also called freak 
waves, monster waves, killer waves, or rabid-dog waves) 
have peak amplitude usually more than twice the signifi-
cant wave height, and also appear from nowhere and dis-
appear without a trace. Breathers propagate steadily and 
localise in either time or space, in particular, Akhmediev 
breather (AB) [5, 6] and Kuznetsov–Ma breather (KM) [7]. 
Akhmediev breathers are periodic in space and localise 
in time, whereas Kuznetsov–Ma breathers are periodic 
in time and localise in space. Interestingly, by taking the 
breathing period of the above two kinds of breathers to 
infinity, rogue waves localised in both time and space may 
be obtained. In 1983, Peregrine [8] first found a simple 
rational solution – the Peregrine soliton – which was the 
limiting case of the Kuznetsov–Ma breather and was espe-
cially considered as the rogue wave prototype [9].

There have been many articles on rogue waves and 
semirational localised waves of single-component systems, 
such as the nonlinear Schrödinger (NLS) equation [10–15], 
the derivative NLS equation [16–19], the Davey–Stewartson 
equation [20], the Hirota equation [21], the Kundu–Eckhaus 
equation [22], the complex short pulse equation [23], the 
Sasa–Satsuma equation [24], and so on. However, a variety 
of complex system, such as Bose–Einstein condensates 
and nonlinear optical fibers, usually involve more than one 
component [25–28]. Therefore, the discussion of localised 
waves in multicomponent coupled systems is greatly mean-
ingful and necessary. Some different solutions of the mixed 
coupled NLS equation were classfied by Ling et al. [29]. The 
Maxwell–Bloch equtions [30] in two-level optical medium 
were solved to obtain breather, dark breather, rogue wave, 
and dark rogue waves. Meanwhile, performing the gener-
alised Darboux transformation (DT) to the Maxwell–Bloch 
system, higher-order rogue waves, and W-shaped solitons 
were constructed by Wang and Liu [31].

Recently, the generalised DT was utilised to investi-
gate higher-order rogue wave (RW) solutions of the NLS 
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equation [11] and other nonlinear integrable systems [16, 
22, 32, 33]. Baronio et  al. [34] obtained first-order inter-
actional solutions including the first-order RW, a dark or 
a bright soliton interacting with a first-order RW and a 
breather interacting with a first-order RW in the coupled 
NLS; however, the higher-order interactional solutions 
were not constructed. Besides, there have recently been 
various kinds of interactional solutions on different non-
linear models [35–37]. Bindu et al. [38], using the Painlevé 
analysis, dark soliton solutions were constructed in the 
two-component coupled Hirota equations, and multicom-
ponent coupled Hirota system and its Lax pair were also 
constructed. In this article, enlightened by Baronio et al. 
[34] and Guo et al. [11], we investigate some novel higher-
order localised wave solutions of the following three-com-
ponent coupled Hirota equations from Bindu et  al. [38] 
and Zhang and Yuan [39]
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where q1(x, t), q2(x, t), and q3(x, t) are the complex envel-
ops of three fields, each non-numeric subscripted variable 
stands for partial differentiation. Besides, ( 1, 2, 3)iq i∗ =  
denotes the complex conjugation of qi. ε stands for the 
integrable perturbation of the coupled NLS equation 
[40], which is a small dimensionless real parameter. In 
the regime of ultra-short pulses, where the pulse lengths 
become comparable with the wavelength [23, 41], the NLS 
equation becomes less accurate. To meet this require-
ment, one of the approaches is to add some higher-order 
dispersive terms [42] in the standard NLS equation. In 
this way, Tasgal and Potasek [43] presented the two-com-
ponent coupled Hirota equations, including third-order 
dispersion, self-steepening, and stimulated Raman scat-
tering. The coupled system (1) is an obvious three-com-
ponent generalisation of the two-component coupled 
Hirota equations from Tasgal and Potasek [43] and Wang 
et  al. [44], and it governs the simultaneous propagation 
of three fields in the normal dispersion regime of optical 
fibers. Through the binary DT, multidark solitons were 
constructed for the one-component and multicomponent 
Hirota systems in Zhang and Yuan [45] and Zhang and 
Yuan [39], respectively.

Using the generalised DT method, the higher-order 
localised waves including the second-order rogue waves 

interacting with two dark or bright solitons, the second-
order rogue waves interacting with two paralleled breath-
ers were generated in the coupled NLS equation [46], 
which generalised Baronio et  al.’s work [34] into the 
higher-order case. Analogously, some novel higher-order 
localised wave solutions were constructed in the two-
component coupled Hirota equations [46, 47] and the 
three-component coupled NLS equations [48]. Through 
considering both the two-component (even) [46] and the 
three-component (odd) coupled Hirota equations, the 
localised waves of the multicomponent coupled Hirota 
system may be well understood. Compared with the two-
component Hirota equations, more free parameters exist 
in the expressions of localised wave solutions in the three-
component Hirota system. Additionally, some abundant 
and interesting mixed interactional solutions will be con-
structed in the three-component Hirota system (1). Based 

on the above facts, it is very necessary to investigate the 
higher-order localised waves of the system (1).

Here, starting from the appropriate periodic seed solu-
tions, a special vector solution of the Lax pair of the system 
(1) is elaborately constructed. Based on this kind of the 
special vector solution and the generalised DT, some abun-
dant higher-order localised waves of the three-component 
Hirota equations are demonstrated. Among these higher-
order localised waves, the first- and second-order ones are 
mainly classified in six mixed types: (1) the hybrid solutions 
degenerate to the rational ones and three components are 
all rogue waves; (2) two components are hybrid solutions 
between rogue wave (RW) and breather (RW + breather), 
and one component is interactional solution between RW 
and dark soliton (RW + dark soliton); (3) two components 
are RW + dark soliton, and one component is RW + bright 
soliton; (4) two components are RW + breather, and one 
component is RW + bright soliton; (5) two components 
are RW + dark soliton, and one component is RW + bright 
soliton; (6) three components are all RW + breather. Choos-
ing the appropriate values of some free parameters in these 
semirational solutions, several interesting dynamics of the 
interactional solutions are exhibited. Besides, these above 
mixed interactional solutions can only be generated in the 
coupled systems, which are larger than two components.
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The article is organised as follows. In Section 2, the 
generalised DT of the three-component coupled Hirota 
system is constructed. In Section 3, the first- and second-
order localised waves are obtained, respectively, and 
some interesting and appealing figures are also given. The 
last section contains several conclusions and discussions.

2  �Generalised DT
In this section, we construct the Lax pair with 4 × 4 matrixes 
and the generalised DT [11, 49] of the three-component 
coupled Hirota equations [38, 39] by making use of the 
Ablowitz–Kaup–Newell–Segur (AKNS) technique [50]. 
The Lax pair of the coupled system (1) can be constructed 
as follows:

	 0 1( ) ,x U U UΦ Φ λ Φ= = + � (2)

	 3 2
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Here, the column vector Φ = (φ, ϕ, χ, ψ)T is the 
eigenfunction of the Lax pair (2–3). Actually, the three-
component coupled Hirota system (1) can be straightfor-
wardly derived by the following compatibility condition 
Ut − Vx + [U, V] = 0.

The Lax pair of (1) is the standard AKNS spectral 
problem, based on the DT of AKNS [49, 51] hierarchy, 
the generalised DT of (1) could be directly constructed. 
However, U and V are all 4 × 4  matrices in the Lax pair 
(2–3), it is more complicated than 2 × 2 and 3 × 3  matrix 
spectral problems to construct the specific vector solution 
of the corresponding Lax pair.

Let Φ1 = (φ1, ϕ1, χ1, ψ1)T be a special solution of Lax pair 
(2–3) at q1 = q1[0], q2 = q2[0], q3 = q3[0] and λ = λ1. Then, we 
can get the following classic DT of the three-component 
coupled Hirota equations (1)
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where (φ1[0], ϕ1[0], χ1[0], ψ1[0])T = (φ1, ϕ1, χ1, ψ1)T, † denotes 
transposed and conjugate operation of a vector and I 
admits the 4 × 4 identity matrix,
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According to the above classic DT (4–7), the generalised 
DT can be constructed in the following content. Setting 
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Φ1 = (φ1, ϕ1, χ1, ψ1)T = Φ1(λ1 + δ) as a special solution of 
the Lax pair (2–3) with q1 = q1[0], q2 = q2[0], q3 = q3[0] and 
λ = λ1 + δ, then the eigenfunction Φ1 can be expanded as 
the Taylor series at δ = 0

	 [0] [1] [2] 2 [ ]
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It can be easily found out that [0]
1 1[0]Φ Φ=  is a particu-

lar solution of the Lax pair (2–3) with q1 = q1[0], q2 = q2[0], 
q3 = q3[0], and λ = λ1. From the above process, we can 
directly give the first-step generalised DT.

2.1  �The First-Step Generalised DT
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where [0]
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while, the explicit expressions of H[0] and Λ1 are given 
in (8).

2.2  �The Second-Step Generalised DT

Choosing the seed solution of the three-component 
coupled Hirota equations (1) as q1 = q1[1], q2 = q2[1], q3 = q3[1] 
at λ = λ1 + δ, then T[1]Φ1 is the solution of the Lax pair (2–3). 
We take into account the following limit:
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The second-step generalised DT can be expressed as 
follows:
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where Φ1[1] = (φ1[1], ϕ1[1], χ1[1], ψ1[1])T, Λ2 = Λ1 and 
T1[1] = λ1I − H[0]Λ1H[0]−1,
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2.3  �The Third-Step Generalised DT

In a similar way, the following limit will be constructed:
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the eigenfunction Φ1[2] is the specific solution of the Lax 
pair (2–3) at q1 = q1[2], q2 = q2[2], q3[2], and λ = λ1. Addition-
ally, the following two identities

[0] [0] [1]
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have been utilised in the above process.
The third-step generalised DT can be generated as
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[2] [2] [2] 0
[2] [2] 0 0

[2] .
[2] 0 0 [2]
[2] 0 [2] [2]

H

φ ϕ ψ

ϕ φ

χ ψ

ψ φ χ

∗ ∗

∗

∗

∗ ∗

 
 

− =  
 
 − − 

2.4  �The N-Step Generalised DT

Iterating the above procedures, the N-step generalised DT 
of the three-component coupled Hirota equations (1) can 
be derived as follows:

	 1

[ ] [ ] [ 1] [1] ,
[ ] [ 1] [ 1] ,N

N T N T N T
T N I H N H N
Φ Φ

λ Λ −

= −
= − − −

�
� (22)

	

1 1 1
[0] [1] [2]

1 1 1 1 1 1 1
1 1 1

1 1

[ 1] [ ] [ ] [ ]

[ 1] [ 2]

N N l

l l k
N T l T l T k

T N T N

Φ Φ Φ Φ
− − −

= = =

− = + + +

+ − −

∑ ∑∑
 

�

� (23)

	 [ 1]
1 1[1] ,NT Φ −� � (24)

	

1 1

1 1
2 2 2 2

[ ] [ 1]

( ) [ 1] [ 1]
,

4 (| [ 1]| | [ 1]| | [ 1]| | [ 1]| )
N N

N N N N

q N q N

i N N
N N N N

λ λ φ ϕ

φ ϕ χ ψ

∗ ∗

= −

− − −
+

− + − + − + −ε

� (25)

	

2 2

1 1
2 2 2 2

[ ] [ 1]
( ) [ 1] [ 1]

,
4 (| [ 1]| | [ 1]| | [ 1]| | [ 1]| )

N N

N N N N

q N q N
i N N

N N N N
λ λ φ χ

φ ϕ χ ψ

∗ ∗

= −
− − −

+
− + − + − + −ε

� (26)

	

3 3

1 1
2 2 2 2

[ ] [ 1]
( ) [ 1] [ 1]

,
4 (| [ 1]| | [ 1]| | [ 1]| | [ 1]| )

N N

N N N N

q N q N
i N N

N N N N
λ λ φ ψ

φ ϕ χ ψ

∗ ∗

= −
− − −

+
− + − + − + −ε

� (27)

where

1 1 1

1 1

1 1

1 1 1

1

1

1

1

1 1 1 1 1

[ 1] [ 1] [ 1] 0
[ 1] [ 1] 0 0

[ 1] ,
[ 1] 0 0 [ 1]
[ 1] 0 [ 1] [ 1]

0 0 0
0 0 0

(1 ),
0 0 0
0 0 0

[ 1] ( [ 1], [ 1], [ 1], [ 1])

l

T

l l l
l l

H l
l l
l l l

l N

N N N N N

φ ϕ ψ

ϕ φ

χ ψ

ψ φ χ

λ

λ
Λ

λ

λ

Φ φ ϕ χ ψ

∗ ∗

∗

∗

∗ ∗

∗

∗

∗

 − − −
 

− − − − =  − − 
 − − − − − 

 
 
 = ≤ ≤ 
 
  
− = − − − −

1
1 1

 ( 1),

[ ] [ 1] [ 1] .l

N

T l I H l H lλ Λ −

≥

= − − −

Furthermore, the Nth-order localised waves in the 
three-component coupled Hirota equations (1) can be 
generated through the formulae (22–27). To avoid calcu-
lating the determinant of higher order matrix in a cumber-
some way, here, the iterative algorithm is chosen instead 
of Crum theorem [49]. Additionally, the calculations and 
expressions of the higher-order interactional solutions 
of the three-component coupled Hirota equations (1) are 
very complicated and tedious, so the first- and second-
order localised wave solutions are discussed in detail.

3  �Localised Nonlinear Wave 
Solutions

In this section, some novel mixed interactional solutions 
of the three-component coupled Hirota equations (1) are 
constructed through the above generalised DT. Here, the 
first- and second-order localised waves are discussed in 
detail and some figures of these kinds of localised wave 
solutions are also exhibited. Besides, some dynamic struc-
tures of these nonlinear waves are demonstrated.

3.1  �The First-Order Localised Nonlinear 
Waves

We begin with the plane wave seed solutions of the 
coupled system (1) [44, 46, 48]

	 1 1 2 2 3 3[0] , [0] , [0] ,i i iq d e q d e q d eθ θ θ= = = � (28)

where 2 2 2
1 2 3( ) ,d d d tθ = + +  d1, d2, d3 are three arbitrary 

real constants, which delegate the amplitudes of 
the three continuous-wave backgrounds. Here, the 
expression 2 2 2

1 2 3d d d+ +  refers to frequencies of the 
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6      T. Xu and Y. Chen: Localised Nonlinear Waves in the Three-Component Coupled Hirota Equations

three continuous-wave backgrounds. Conveniently, 
the above seed solutions are chosen periodically in 
time variable t without depending on space varia-
ble x. Then, a special vector solution of the Lax pair 
(2–3) can be constructed with q1 = q1[0], q2 = q2[0], and 
q3 = q3[0] as follows:

	

1 2 1 2

31 2 1 2

31 2 1 2

31 2 1 2

2
1 2

2
1 2 1 2 3

1
2

2 2 1 1

2
3 2 1 1

( )

( ) ( )
,

( )

( )

i
M M M M

i
MM M M M

i
MM M M M

i
MM M M M

c e c e e

c e c e e d d e

c e c e e d e

c e c e e d e

θ

θ

θ

θ

ρ α β
Φ

ρ α

ρ β

+ −

−+ −

−+ −

−+ −

 
− 

 
 − − +

=  
 − + 
  − +  �

(29)

where

( )

( )

1
22 2 2 2 2

1 2 3

1 2 2 2 2 2
1 2 3

1
22 2 2 2 2

1 2 3

2 2 2 2 2 2
1 2 3

1 2
1 22 2 2 2 2 2

1 2 3 1 2 3

3
3 1 22 2 2

1 2 3

3 2

2

64 ( )
,

64 ( )

64 ( )
,

64 ( )

, ,

, [16 ( 2) ],
384

= [16 ( 2) ],
192

d d d
c

d d d

d d d
c

d d d

d d
d d d d d d

d iM x t
d d d

iM x t

M

λ λ

λ

λ λ

λ

ρ ρ

λ
ρ λ λ

λ
λ λ

− + + +
=

+ + +

+ + + +
=

+ + +

= =
+ + + +

= = − + +
+ +

+ +

ε

ε

ε

ε

ε
ε

ε
ε

2 2 2 2 2
1 2 32

2 2 2 2 2
1 2 3

1

64 ( ) 16 ( 2)
128

32 ( ) .
N

k
k

k

i d d d x t

d d d s f

λ λ λ

=


= + + + + +




− + + + 


∑

ε ε
ε

ε

where sk = mk + ink (1 ≤ k ≤ N), mk, nk, α, and β are real free 
parameters and f is a small parameter. During the process 
of calculation of the special vector solution (29), the vari-
able coefficient differential equations in the Lax pair (2–3) 
need to be converted into constant coefficient ones by a 
gauge transformation. Here, the transformed Lax pair 
can be written as φx = RUφ, φt = RVφ and the characteristic 
equation of RU is a quartic equation. To construct some 
new patterns of interactional solutions of the coupled 
system (1), we consider that the characteristic equation 
of RU possesses two groups of double roots. Besides, 
the full solutions in the fundamental solution matrix 
of U are all included in (29), such as these expressions 

3
2 3( ) ,Md d eα β− +  3

1
Md eα  and 3

1 .Md eβ  When construct-
ing the higher-order rogue wave solutions of the coupled 
system (1), the above expressions 3

2 3( ) ,Md d eα β− +  3
1 ,Md eα  

and 3
1

Md eβ  are not needed. However, these expressions 
are greatly necessary to generate the interactional solu-
tions of the three-component coupled Hirota system (1), 
especially the free parameters di  (i = 1, 2, 3), α, β play a 
critical role in constructing different mixed hybrid solu-
tions in the three potential functions q1, q2, and q3. Setting 

2 2 2
1 2 3d d dτ = + +  and choosing the spectral parameter 

28 (1 ),i fλ τ= +ε  we can get the Taylor expansion of the 
vector function Φ1 at f = 0

	 [0] [1] 2 [2] 4 [3] 6
1 1 1 1 1( ) ,f f f fΦ Φ Φ Φ Φ= + + + +� � (30)

2
[ ] [ ] [ ] [ ] [ ] 1
1 1 1 1 1 02where ( , ,  ,  ) |  (1 ),

k
k k k k k T

fk k N
f
Φ

Φ φ ϕ χ ψ =

∂
= = ≤ ≤

∂

1

32

32

32

[0]
1 1

4

[0] 1
1 2 33

4

[0] 2
1 13

4

[0] 3
1 13

4

( 1) 2 ( 6 ) 2 1 ,
4

( 1) 2 ( 6 ) 2 1
( ) ,

4

( 1) 2 ( 6 ) 2 1
,

4
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with

1 2

3

3 5 5 7
3 2 2 2 3 22 2 2 2

9 7
4 3 2 3 2 2 2 3 3 22 2

3
22

1

1 5 4 1 1 4, ,
3 6 3 3 6 3

2 2 8 ,
3 3 3
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3456 288 8 8 288
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x i t x i t
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i x x t xt xt
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τ τ τ

   
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t
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τ
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−


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ε
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It can be straightforward to calculate that the 
vector function [0]

1Φ  is a solution of the Lax pair (2–3) 
at 1 8iλ λ τ= = ε  and q1 = q1[0], q2 = q2[0], and q3 = q3[0]. 
Through the formulae (11–13), the first-order localised 
wave solutions can be expressed as

	
( )

1

2

1
4

1 1 2 3 2
1 1 1

4
1 2

2 2 ( )
[1] ,

4

i
i d F e d d F e

q d e
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θ
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 
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+
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ε ε
�

(31)
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1
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2 2 1

4
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i
i d F e d F e

q d e
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θ

η

τ α τ
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+
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+
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ε ε �
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1
4
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4
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4

i
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q d e
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+
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where

( )
2 2 2 2 3 2 2

1

3
2

2

2 2 2 2 2 2 2 2
1 1 2 2 3 1 3

2 2 3 2 2 2 2
2

4 48 4 144 4 1,

( 1 ) 12 2 2 1 ,

2 ,

4 48 144 4 1.

F x xt t t i t

F i t i t x

G d d d d d d

G x xt t t

τ τ τ τ τ

τ τ τ

α α αβ β β

τ τ τ τ

= − + − − + +

= − + − − −

= + + + +

= − + + +

ε ε

ε

ε ε

The correctness of (31–33) have been directly verified 
by putting them back into (1). At this point, we obtain the 
first-order localised nonlinear waves of (1) with five free 
parameters d1, d2, d3, α, and β. Besides, the parameters d1, 
d2, and d3 determine the background in which the differ-
ent localised waves emerge, and α, β play an important 
role in controlling the dynamics of these nonlinear waves. 
These first-order nonlinear localised wave solutions are 
discussed in the following six different mixed interac-
tional cases:
(i)	 When α = β = 0, q1, q2, and q3 are all proportional to 

each other, the first-order interactional localised 
waves degenerate to the first-order rogue waves. 
Besides, these three components have similar struc-
tures, and the first-order rogue wave is the same as the 
standard NLS equation [10, 11] (see Fig. 1).

(ii)	 When one of the two parameters α, β is zero and di ≠ 0 
(i = 1, 2, 3), without loss of generality, we choose α = 0, 
β ≠ 0. It demonstrates that q1 and q3 components are 
all the interactional solutions between a first-order 
RW and a breather, and the q2 component is the inter-
actional solution between a first-order RW and a dark 
soliton in Figure 2. By increasing the absolute value of 
β, the phenomenon that the nonlinear waves merge 
with each other distinctly.
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Figure 1: Evolution plot of the first-order RW of the three-component coupled Hirota equations with the parameters chosen by 

= = − = − ε1 2 3
11, 1, 0.5, = :

100
d d d  (a) q1, (b) q2, (c) q3.
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8      T. Xu and Y. Chen: Localised Nonlinear Waves in the Three-Component Coupled Hirota Equations

(iii)	When α = 0, β ≠ 0 and one of the three parameters 
di (i = 1, 2, 3) is zero, without loss of generality, we 
choose d1 ≠ 0, d2 ≠ 0, d3 = 0. It shows that q1 and q2 
components are all the hybrid solutions between a 
first-order RW and a dark soliton, and q3 is the hybrid 
solution between a first-order RW and a bright soliton 
in Figure 3. We can find that the rogue wave cannot be 
easily identified in Figure 3c. At this time, the ampli-
tude of the plane wave background in q3 component is 
zero and the amplitude of the rogue wave is depend-
ent on this background, so the rogue wave cannot 
be easily observed. In the same way, these nonlinear 

waves merge with each other by increasing the abso-
lute value of β (see Fig. 4). Besides, the first-order RW 
in the interactional solutions of q3 component can 
be easily found in Figure 4c by increasing the abso-
lute value of β because the amplitude of the part of 
the plane wave background where the first-order RW 
emerges is not zero.

(iv)	When α ≠ 0, β ≠ 0, and one of the three parameters 
di (i = 1, 2, 3) is zero, without loss of generality, we 
set d1 ≠ 0, d2 ≠ 0, and d3 = 0. Here, q1 and q2 compo-
nents are all the interactional solutions between a 
first-order RW and a breather, and the q3 component 
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Figure 2: Evolution plot of the interactional solution between the first-order RW and one-dark soliton or one-breather in the three-compo-

nent coupled Hirota equations with the parameters chosen by α β= = − = − = = = −ε1 2 3
1 11, 1, 0.5, , 0, :

100 2000
d d d  (a) a first-order RW and 

a breather separate in q1 component; (b) a first-order RW and a dark soliton separate in q2 component; (c) a first-order RW and a breather 
separate in q3 component.
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Figure 3: Evolution plot of the interactional solution between the first-order RW and one-dark soliton or one-bright soliton in the three-
component coupled Hirota equations with the parameters chosen by α β= = − = = = = −ε1 2 3
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a dark soliton separate in q1 component; (b) a first-order RW and a dark soliton separate in q2 component; (c) a first-order RW and a bright 
soliton separate in q3 component.
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is the interactional solution between a first-order 
RW and a bright soliton (see Fig. 5). Although con-
sidering the zero-amplitude background crest, the 
first-order RW of q3 component in the Figure  5c is 
difficult to observe owing to its small amplitude. 
Analogously, different nonlinear waves can merge 
with each other by increasing the absolute values of 
α and β.

(v)	 When α ≠ 0, β ≠ 0, and two of the three parameters 
di (i = 1, 2, 3) are zero, without loss of generality, we 
set d1 ≠ 0, d2 = d3 = 0. From Figure 6, we can find that a 
first-order RW merges with a bright soliton in q2 and 
q3 components, and a first-order RW merges with a 
dark soliton in q1 component. Figure 7 describes the 
explicit collision processes between a dark soliton and 

a first-order RW in q1 component, a bright soliton and 
a first-order RW in q2 and q3 components, respectively. 
A dark soliton in q1 component and a bright soliton 
in q2 and q3 components propagate along the posi-
tive direction of x-axis, when t = 0, the first-order RW 
suddenly appears and these nonlinear waves interact 
with each other. At the next moment, the first-order 
RW disappears without a trace and the solitons con-
tinue to propagate without changing their velocities 
and amplitudes. The interactional process is elastic 
collision.

(vi)	When α ≠ 0, β ≠ 0, and di (i = 1, 2, 3) are all not zero, 
the three components q1, q2, and q3 are all the inter-
actional solutions between a first-order RW and a 
breather in Figure 8. In the same way, increasing the 
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Figure 4: Evolution plot of the interactional solution between the first-order RW and one-dark soliton or one-bright soliton in the three-
component coupled Hirota equations with the parameters chosen by α β= = − = = = = −1 2 3
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with a dark soliton in q1 component; (b) a first-order RW merges with a dark soliton in q2 component; (c) a first-order RW merges with a bright 
soliton in q3 component.
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absolute values of α and β, the first-order RW merges 
with a breather distinctively.

According to different values of these five free para-
meters α, β, and di (i = 1, 2, 3), a simple classification 
corresponding to different mixed types of the first-order 
nonlinear wave solutions in the coupled system (1) can 
be given.

Case 1: When α = β = 0, these solutions qi (i = 1, 2, 3) are all 
first-order rogue waves.

Case 2: One of the two parameters α and β is zero, without 
loss of generality, we choose α = 0, β ≠ 0. This classifica-
tion is shown in Table 1.

Case 3: When α ≠ 0, β ≠ 0, the classification is shown in 
Table 2.

Instead of considering various arrangements of the 
three potential functions q1, q2, and q3, we define the same 
combination as the same type of solution. For example, 
Case 1 is that q1 and q2 are all the interactional solutions 
between RW and one-dark soliton, q3 is the interactional 
solution between RW and one-bright soliton; and Case 2 is 
that q1 is the interactional solution between RW and one-
bright soliton, q2 and q3 are all the interactional solutions 
between RW and one-dark soliton, according to our defi-
nition, these two cases are the same type of solution. Six 
types of the mixed first-order interactional solutions can 
be obtained using our method in this article and these dif-
ferent classifications are shown in Table 3.

Table 1: Classification of the first-order localised wave solution generated by the first-step generalised DT.

di q1 q2 q3

d1 ≠ 0, d2 = d3 = 0 RW and one-dark soliton 0 RW and one-bright soliton
d1 = 0, d2 ≠ 0, d3 = 0 0 RW 0
d1 = 0, d2 = 0, d3 ≠ 0 RW and one-bright soliton 0 RW and one-dark soliton
d1 ≠ 0, d2 = 0, d3 ≠ 0 RW and one-breather 0 RW and one-breather
d1 ≠ 0, d2 ≠ 0, d3 = 0 RW and one-dark soliton RW and one-dark soliton RW and one-bright soliton
d1 = 0, d2 ≠ 0, d3 ≠ 0 RW and one-bright soliton RW and one-dark soliton RW and one-dark soliton
d1 ≠ 0, d2 ≠ 0, d3 ≠ 0 RW and one-breather RW and one-dark soliton RW and one-breather

Table 2: Classification of the first-order localised wave solutions generated by the first-step generalised DT.

di q1 q2 q3

d1 ≠ 0, d2 = d3 = 0 RW and one-dark soliton RW and one-bright soliton RW and one-bright soliton
d1 = 0, d2 ≠ 0, d3 = 0 RW and one-bright soliton RW and one-dark soliton 0
d1 = 0, d2 = 0, d3 ≠ 0 RW and one-bright soliton 0 RW and one-dark soliton
d1 ≠ 0, d2 = 0, d3 ≠ 0 RW and one-breather RW and one-bright soliton RW and one-breather
d1 ≠ 0, d2 ≠ 0, d3 = 0 RW and one-breather RW and one-breather RW and one-bright soliton
d1 = 0, d2 ≠ 0, d3 ≠ 0 RW and one-bright soliton RW and one-dark soliton RW and one-dark soliton
d1 ≠ 0, d2 ≠ 0, d3 ≠ 0 RW and one-breather RW and one-breather RW and one-breather

Table 3: Six types of the mixed first-order localised nonlinear waves.

Types   qi (i = 1, 2, 3)

Type 1   Three potential functions are all first-order RW
Type 2   There are two potential functions are RW and one-breather, and another one is RW and one-dark 

soliton
Type 3   The two potential functions are RW and one-dark soliton, and another one is RW and one-bright 

soliton
Type 4   The two potential functions are RW and one-breather, and another one is RW and one-bright soliton
Type 5   The two potential functions are RW and one-bright soliton, and another one is RW and one-dark 

soliton
Type 6   Three potential functions are all RW and one-breather
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3.2  �The Second-Order Localised Nonlinear 
Waves

In this section, we consider the following limit:
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a specific vector solution of Lax pair (2–3) at q1 = q1[1], 
q2 = q2[1], q3 = q3[1], and 1 8 .iλ λ τ= =  Through (15–29), 
the concrete expressions of the second-order localised 
nonlinear waves can be derived. However, this explicit 
expressions of q1[2], q2[2], and q3[2] are very tedious and 
complicated, their expressions of the simplest case 
α = β = 0 are only given in the following content. Here, the 
expressions for other cases are omitted. Besides, some 
dynamic properties of these solutions are discussed in 
detail. The validity of the expressions of qi (i = 1, 2, 3) can 
be directly verified by placing them in (1) through Maple 
software. It is similar to the first-order case that we discuss 
the dynamic properties of these nonlinear waves in six 
types.
(i)	 α = β = 0 and di ≠ 0 (i = 1, 2, 3). Choosing 

1 2 3
11, 2, 2, ,

100
d d d= = − = =ε  the concrete expres-

sions of the second-order localised waves can be given. 
In this case, the three components q1, q2, and q3 are all 
proportionable to each other, and they are the second-
order RW. When m1 = n1 = 0, they are the fundamental 
second-order RW, whereas m1 ≠ 0, n1 ≠ 0, they are the 
second-order RW of triangular pattern (see Fig. 9).
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Figure 9: Evolution plot of the second-order RW of triangular pattern in the the three-component coupled Hirota equations with the 

parameters chosen by = = − = = = =1 2 3 1 1
11, 2, 2, , 50:
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(ii)	 α = 0, β ≠ 0 and di ≠ 0 (i = 1, 2, 3). Here, q1 and q3 com-
ponents are all the hybrid solutions between a sec-
ond-order RW and two paralleled breathers, and q2 is 
the hybrid solution between a second-order RW and 
two dark solitons (see Fig. 10). When s1 = 0, a funda-
mental second-order RW and two parallel breathers 
separate in q1 and q3 components, and a fundamen-
tal second-order RW and two dark solitons separate 
in the q2 component. Increasing the absolute value of 
β, a fundamental second-order RW merges with two 
breathers or two dark solitons distinctively. Although 
s1 ≠ 0, we can see that the fundamental second-order 
RW splits into three first-order RWs and these three 
humps form a triangle in Figure 10.

(iii)	α = 0, β ≠ 0 and d1 ≠ 0, d2 ≠ 0, d3 = 0. Here, q1 and q2 
components are all the hybrid solutions between a 
fundamental second-order RW and two dark solitons, 
and q3 is the hybrid solution between a fundamental 
second-order RW and two bright solitons (see Fig. 11). 
The fundamental second-order RW in Figure  11c are 
also unobservable for the same reason as the first-
order case. By increasing the absolute value of β, a 
fundamental second-order RW merges with two dark 
or bright solitons. Choosing s1 ≠ 0, the fundamental 
second-order RW in Figure 11 splits into three first-
order RWs in Figure 12.

(iv)	 α ≠ 0, β ≠ 0 and d1 ≠ 0, d2 ≠ 0, d3 = 0. Here, q1 and q2 com-
ponents are all the hybrid solutions between a sec-
ond-order RW of triangular pattern and two breathers, 
and q3 component is the hybrid solution between a 
second-order RW of triangular pattern and two bright 
solitons (see Fig. 13). Here, the second-order RW in q3 
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Figure 11: Evolution plot of the interactional solution between the fundamental second-order RW and two-dark or two-bright solitons in the 
three-component coupled Hirota equations with the parameters chosen by β= = − = = = − = =1 2 3 1 1

1 11, 1, 0, , , 0:
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d d d m nε  (a) a 

fundamental second-order RW and two dark solitons separate in q1 component; (b) a fundamental second-order RW and two dark solitons 
separate in q2 component; (c) a fundamental second-order RW and two bright solitons separate in q3 component.

|q
1
|

0
108

6
4

2
0

–2
–4

t t

–6
–8
0.5

1
1.5

2
2.5a b c

|q
2
|

6
8

4
2

0

–2
–4

–6
–8
0.5

1
1.5

2
2.5

t

|q
3
|

6
8

4
2

0
–2

–4
–6

–8
0.5

1
1.5

2
2.5

–10
–20

x
0

10

–10
–20

x 0
10

–10
–20

x

Figure 10: Evolution plot of the interactional solution between the second-order RW of triangular pattern and two-breather or two-dark soliton 

in the three-component coupled Hirota equations with the parameters chosen by β= = = − = = − = =1 2 3 1 1
1 11, 1, 1, , , 50:

100 100,000
d d d m nε  

(a) a second-order RW of triangular pattern and two paralleled breathers separate in q1 component; (b) a second-order RW of triangular 
pattern and two dark solitons separate in q2 component; (c) a second-order RW of triangular pattern and two paralleled breathers separate in 
q3 component.

component is not discovered for the same reason as 
the first-order case.

(v)	 α ≠ 0, β ≠ 0, and d1 ≠ 0, d2 = d3 = 0. Here, we obtain 
the hybrid solution between two dark solitons and 
a fundamental second-order RW in q1 component, 
and the hybrid solutions between two bright soli-
tons and a fundamental second-order RW in q2 and 
q3 components (see Fig. 14). In Figure 15, it is shown 
that the interactional process in Figure 14 is also 
elastic, the amplitudes and velocities of these two 
dark and bright solitons remain unchanged after 
collision.

(vi)	α ≠ 0, β ≠ 0, and di ≠ 0 (i = 1, 2, 3). These three com-
ponents q1, q2, and q3 are all the hybrid solutions 
between a second-order RW of triangular pattern and 
two breathers (see Fig. 16). In the same way, increas-
ing the absolute values of α and β, we can find that 
the second-order RW merges with the two-breather 
distinctively.

In the first-order localised waves, we get the concrete 
expressions of these interactional solutions and give the 
classifications in six different cases. Instead of considering 
various arrangements of the three potential functions q1, 
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1 11, 1, 0, , , 50:
100 100,000

d d d m n  

(a) a second-order RW of triangular pattern and two dark solitons separate in q1 component; (b) a second-order RW of triangular pattern 
and two dark solitons separate in q2 component; (c) a second-order RW of triangular pattern and two bright solitons separate in q3 
component.
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Figure 13: Evolution plot of the interactional solution between the second-order RW of triangular pattern and two-breather or two-bright  

solitons in the three-component coupled Hirota equations with the parameters chosen by α β= = − = = = = −1 2 3
1 1 11, 1, 0, , , ,
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d d d ε  

m1 = n1 = 50: (a) a second-order RW of triangular pattern and two paralleled breathers separated in the q1 component; (b) a second-order RW of triangu-
lar pattern and two paralleled breathers separate in q2 component; (c) a second-order RW of triangular pattern and two bright solitons separate in q3 
component.

q2, and q3, the six mixed types first-order localised waves 
are obtained using our method in this article. However, 
the expressions of the second-order localised waves are 
greatly tedious and complicated, we cannot give these 
expressions in the general form. The classifications as the 
first-order ones are also not presented, and we can only 
give the six mixed types of interactional solutions, which 
are similar with the first-order case after fixing all the cor-
responding free parameters. Whether the second-order 
localised waves own more types or not, we cannot draw a 
firm conclusion now.

4  �Conclusions
In summary, some interesting and appealing localised 
nonlinear waves in the three-component coupled Hirota 
equations were generated by the generalised DT. By choos-
ing a periodic seed solution of (1), a peculiar vector solu-
tion of the Lax pair (2–3) is elaborately constructed. With 
a fixed spectral parameter and this special vector solution, 
we implement the Taylor series expansion of (29) at f = 0, 
then construct the generalised DT of this three-component 
coupled Hirota equations (1). Combining the generalised 
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Figure 16: Evolution plot of the interactional solution between a second-order RW of triangular pattern and two-breathers in the three-

component coupled Hirota equations with the parameters chosen by α β= = = − = = = − = =ε1 2 3 1 1
1 1 11, 1, 1, , , , 50:
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the three components are all that a second-order RW of triangular pattern separates with two parallel breathers (a) q1, (b) q2, and (c) q3.
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Figure 14: Evolution plot of the interactional solution between the fundamental second-order RW and two-dark solitons or two-bright soli-
tons in the three-component coupled Hirota equations with the parameters chosen by α β= = = = = = − = =1 2 3 1 1
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(a) a fundamental second-order RW and two dark solitons merge in q1 component; (b) a fundamental second-order RW and two bright soli-
tons merge in q2 component; (c) a fundamental second-order RW and two bright solitons merge in q3 component.
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DT and the special vector solution of the Lax pair (2–3), 
the multiparametric and semirational solutions are con-
structed. The free parameter plays an important role in con-
trolling the dynamic properties of these localised nonlinear 
waves, such as α, β, di (i = 1, 2, 3), and sj (j = 1, 2, …, N). The 
parameters α and β affect the position at which each non-
linear wave locates in the hybrid solution, e.g. separation 
and integration. Besides, the amplitudes di (i = 1, 2, 3) of the 
plane wave backgrounds determine different combinations 
of the interactional solutions in these three components q1, 
q2, and q3. The parameter sj controls the structures of high-
order rogue waves in the hybrid solutions.

Here, the dynamics of these interactional solutions 
are mainly discussed in six mixed types: (i) the hybrid 
solutions degenerate to the rational ones and the three 
components are all rogue waves; (ii) two components are 
hybrid solutions between rogue wave (RW) and breather 
(RW + breather), and one component is an interactional 
solution between RW and dark soliton (RW + dark soliton); 
(iii) two components are RW + dark soliton, and one com-
ponent is RW + bright soliton; (iv) two components are 
RW + breather, and one component is RW + bright soliton; 
(v) two components are RW + dark soliton, and one com-
ponent is RW + bright soliton; (vi) three components are 
all RW + breather.

In this article, we generalise Baronio et  al.’s [31] 
results with other multicomponent coupled system, and 
thus reach the higher-order localised waves of the three-
component coupled system by the generalised DT. Using 
the DT method, the rogue wave and dark-breather-rogue 
wave in the two-component coupled Hirota equations 
were generated by Wang and Chen [52]. Besides, in [44], 
Wang et  al. constructed some higher-order localised 
waves of the two-component coupled Hirota system. Here, 
we extend the two-component system in [44] to three-
component one [24, 39], then construct the correspond-
ing Lax pair with 4 × 4 matrices. Some new combinations 
of these interactional solutions in the coupled system (1) 
are given, such as Types 2, 3, 4, and 5 in Table 3 in the 
first-order localised waves and the corresponding cases in 
the second-order localised waves cannot be constructed 
in the two-component coupled Hirota equations [44, 52]. 
Through considering both two-component (even) and 
three-component (odd) coupled Hirota equations, we may 
well understand the localised waves of the multicompo-
nent coupled Hirota equations [24, 39]. Furthermore, we 
expect that these localised waves in this article will be 
verified in physical experiments in the future.
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