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A B S T R A C T

Darboux transformation method is one of the most essential and important methods for solving localized
wave solutions of integrable systems. In this work, we introduce the core idea of Darboux transformation
of integrable systems into the Lax pairs informed neural networks (LPNNs), which we proposed earlier. By
fully utilizing the data-driven solutions, spectral parameter and spectral function obtained from LPNNs, we
present the novel Darboux transformation-based LPNN (DT-LPNN). The notable feature of DT-LPNN lies in its
ability to solve data-driven localized wave solutions and spectral problems with high precision, and it also
can employ Darboux transformation formulas of integrable systems and non-trivial seed solutions to discover
novel localized wave solutions that were previously unobserved and unreported. The numerical results indicate
that, by utilizing the single-soliton solutions as the non-trivial seed solutions, we obtain novel localized wave
solutions for the Kraenkel–Manna–Merle (KMM) system by employing DT-LPNN, in which solution 𝑢 changes
from original bright single-soliton on zero background wave to new dark single-soliton dynamic behavior on
a variable non-zero background wave. Moreover, by treating the two-soliton solutions as the non-trivial seed
solutions, DT-LPNN generates novel localized wave solutions for the KMM system that exhibit completely
different dynamic behaviors from prior two-soliton solutions. DT-LPNN combines the Darboux transformation
theory of integrable systems with deep neural networks, offering a new approach for generating novel localized
wave solutions using non-trivial seed solutions.
1. Introduction

The utilization of deep learning methods for solving nonlinear par-
tial differential equations (PDEs) has emerged as a research hotspot in
recent years, and many effective deep learning approaches have been
proposed and successfully applied to efficiently solve a variety of PDEs
in multiple research fields [1–8]. Integrable systems, as a special class
of PDEs, play a crucial role in nonlinear science and mathematical
physics [9]. The origin and development of integrable system theory
are closely intertwined with the flourishing advancements in computer
science [10]. The resurgence of deep learning in recent years is con-
sidered a significant breakthrough in the field of computer science [11,
12]. Consequently, investigating various problems related to integrable
systems using deep learning methods represents a cutting-edge research
area.

In 2019, inspired by the physics-informed neural network (PINN)
algorithm proposed by Kaniadakis [1], Chen’s research team begin
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explored the application of deep learning methods in the study of inte-
grable systems [13]. Subsequently, they proposed the establishment of
a unified framework for integrable deep learning and dedicated efforts
to the research of efficient algorithms for integrable deep learning.
As of now, Chen’s research group has achieved numerous significant
research outcomes. Specifically, utilizing the PINN algorithm and its
various improved versions, they have successfully learned various high
precision data-driven localized wave solutions, including various rogue
waves [14], rogue waves on periodic background waves [15] and
interaction solutions [16] and so on. Additionally, they have inves-
tigated forward-inverse problems of various integrable models, such
as coupled integrable systems [17], nonlocal integrable systems [18],
high-dimensional integrable systems [19] and variable coefficient in-
tegrable systems [20]. Furthermore, other research groups have also
made excellent research work in the integrable deep learning field, such
as learning data-driven peakon solutions with discontinuous first-order
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derivative at the wave peak [21], studying nearly integrable systems
with various  -symmetric potentials [22,23], and proposing the two-
tage initial-value iterative neural network to simulate different types
onlinear solutions [24], we refer the reader to Refs. [25–30] for more
ork. Importantly, the significant features and theoretical methods of

ntegrable systems have been integrated with deep learning approaches,
hen obtained outstanding research outcomes, including the infinite
onservation law [31], Miura transformation [32] and Bäcklund trans-
ormation [25]. Prior to this, we successfully incorporated the most
rucial characteristic of integrable systems, namely Lax pairs, into deep
earning method and proposed a Lax pairs informed neural networks
LPNNs) capable of efficiently and accurately solving integrable systems
ith Lax pairs [33]. Therefore, the inspiration of this article stems

rom how to make full utilize of the data-driven spectral parameter and
pectral function obtained from the LPNNs.

The Darboux transformation is one of the most important methods
or systematically solving exact solutions to integrable systems [34].
t starts directly from the Lax pairs of integrable systems and obtains
ew Lax pairs with the same form by constructing appropriate gauge
ransformation to act on the original Lax pairs. Thereby one can obtain
he iterative relationship between the new and old spectral functions
nd the new and old solutions, and iterate a series of new solutions
n sequence. In 1882, the approach provided by Darboux in dealing
ith the spectral problem of the second-order ordinary differential
turm–Liouville equation was proven to play a vital role in the explicit
olution of PDEs [35], which is also considered the origin of Darboux
ransformation theory. For second-order differential equation

𝑥𝑥 − 𝑢𝜓 = 𝜆𝜓, (1.1)

under the transformation
⎧

⎪

⎨

⎪

⎩

�̂� = 𝜓𝑥 −
𝜓1,𝑥

𝜓1
𝜓

�̂� = 𝑢 − 2(ln𝜓1)𝑥𝑥
(1.2)

is invariant, namely �̂� , �̂� satisfy the same form as Eq. (1.1), as shown
bellow

̂ 𝑥𝑥 − �̂��̂� = 𝜆�̂�,

in which 𝜓1 is a particular solution of Eq. (1.1) as parameter 𝜆 =
1, we call transformation (1.2) as Darboux transformation of second-
rder differential equation. More generally, second-order differential
quation (1.1) usually correspond to the spatial part of the Lax pairs
or classical integrable systems, if the transformation (1.2) simulta-
eously takes into account the temporal part of the Lax pairs, thus
he Darboux transformations of the integrable systems are obtained. It
tarts from the old solution [also be called seed solution] 𝑢 and iter-
tively constructs new solution �̂� of the integrable system, for a more
etailed introduction, we refer the reader to Ref. [34]. In Ref. [33],
e can know that LPNNs can efficiently solve integrable systems with
ax pairs, and obtain abundant data-driven localized wave solutions,
pectral parameter and corresponding spectral function. Generally, the
arboux transformations of integrable systems involve both old and
ew solutions, spectral parameter and corresponding spectral function
n Lax pairs, as shown in Eq. (1.2). Fortunately, the aforementioned
uantities can all be obtained utilizing LPNNs, hence introducing the
arboux transformation into LPNNs is a natural and feasible idea.

Solving localized wave solutions for nonlinear integrable systems
s a research focus in integrable system theory. Common localized
ave solutions include soliton solution, breather solution, rogue wave

olution, peak solution, lump solution and mixed interaction solution,
mong others [10,36–39]. The commonly used methods for solving
onlinear integrable systems contain inverse scatting transformation
ethod [40], Hirota bilinear method [41], Bäcklund transformation
ethod [42] and Darboux transformation method [34] and so on.
owever, these methods usually only yield common localized wave
2

e

olutions. In recent years, the utilize of various solving methods to
enerate novel localized wave solutions has become a research hotspot.
s is well known, as long as there are enough layers and neurons in the
etwork, deep neural networks (NNs) can learn any Borel measurable
unctions due to their powerful approximation ability [43]. Moreover,
any important transformations in the integrable system theory are
articularly suitable for constructing relationships between new and
nown solutions, such as the Mirua transformation [44], Bäcklund
ransformation, and Darboux transformation. Significantly, Ref. [32]
rovided a possibility for new types of numerical solutions by fully
everaging the many-to-one relationship between solutions before and
fter Miura transformation, and offered a new approach for construct-
ng new localized wave solutions by combining NNs and integrable
ystem theory. Therefore, it is an important research direction to gener-
te novel localized wave solutions by combine the emerging deep NNs
ith various transformations in the integrable system theory.

In this work, we cleverly incorporate the Darboux transformation
heory into LPNNs, then propose a Darboux transformation-based LPNN
DT-LPNN), and utilize non-trivial seed solutions to construct novel
ocalized wave solutions for integrable systems. The main highlights
f this article are: In order to harness the spectral parameter and
pectral function learned in previous LPNNs, we incorporate the Dar-
oux transformation theory into LPNNs, resulting in the DT-LPNN. This
nhanced model not only solves localized wave solutions and spectral
roblems with high-accuracy, but also has the capability to discover
ovel localized wave solutions by means of non-trivial seed solutions.
e numerically generate two previously unreported and unobserved

ocalized wave solutions for the Kraenkel–Manna–Merle (KMM) system
y means of the DT-LPNN, particularly the dark soliton solution 𝑢
n a variable non-zero background wave, which is a very important
iscovery.

The paper’s organization is as follows: Section 2 introduces the
arboux transformation of integrable systems and innovative DT-LPNN
odel. In Section 3, we present a comprehensive display of numer-

cal experiments conducted to validate the effectiveness of our pro-
osed DT-LPNN method. Section 4 encapsulates our work and draws
eaningful conclusions from the outcomes.

. Methodology

Generally, we consider a multi-dimensional spatiotemporal real
onlinear integrable system with operator Lax pairs 𝑓oLp or matrix Lax
airs 𝑓mLp in the general form given by

[𝒒, 𝒒2,… ,∇𝑡𝒒,∇2
𝑡 𝒒,… ,∇𝐱𝒒,∇2

𝐱𝒒,… , 𝒒 ⋅∇𝑡𝒒,… , 𝒒 ⋅∇𝐱𝒒,…] = 0, (2.1a)

oLp ∶
{

𝐿𝜓 = 𝜆𝜓
𝜓𝑡 = 𝐴𝜓

, usually for 𝐱 ∈ 𝛺, or

𝑓mLp ∶
{

𝛹𝑥 =𝑀𝛹
𝛹𝑡 = 𝑁𝛹

, usually for 𝐱 = 𝑥, (2.1b)

n which potential 𝒒 = 𝒒(𝐱, 𝑡) ∈ R𝑛×1 is the 𝑛-dimensional latent
solution, 𝐱 ∈ 𝛺 specifies the 𝑛-dimensional space and 𝑡 ∈ [𝑆i, 𝑆f ]
denotes time [𝑆i and 𝑆f respectively indicate the initial time and final
time],  [⋅] is a complex nonlinear operator of 𝒒 and its spatiotem-
poral derivatives, ∇ is the gradient operator with respect to 𝐱 and 𝑡.

ere linear operator 𝐿 involves space 𝐱 and potential 𝒒, 𝜆 indicates
pectral parameter and 𝜓 represents spectral function corresponding
o spectral parameter. 𝛹 = 𝛹 (𝐱, 𝑡) stands for vector spectral func-
ion corresponding to spectral parameter 𝜆 in matrices 𝑀 and 𝑁 . In
eneral, low-dimensional integrable systems can be represented using
he operator Lax pairs or matrix Lax pairs, while high-dimensional
ntegrable systems are typically expressed using the operator Lax pairs,
his also explains why the spatial variable of the matrix Lax pairs
mLp in Eq. (2.1b) is 𝐱 = 𝑥 [namely one-dimensional space]. Specific
xamples can refer to Ref. [33].
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Usually, from Lax pairs (2.1b), we can derive all integrable systems
by means of the following compatibility condition equation 𝑓cce [for
ax pairs of operator form] and zero curvature equation 𝑓zce [for Lax

pairs of matrix form], that is

𝑓cce ∶ 𝜓 𝐱⋯ 𝐱
⏟⏟⏟
∀ℎ, ℎ≥1

𝑡 − 𝜓𝑡 𝐱⋯ 𝐱
⏟⏟⏟
∀ℎ, ℎ≥1

= 0, (2.2)

and

𝑓zce ∶𝑀𝑡 −𝑁𝑥 + [𝑀,𝑁] = 0, (2.3)

where ℎ ≥ 1 is a finite positive integer, and the size of ℎ is determined
by the dimensions of space 𝐱 and the form of Lax pairs spatial part,
𝐱⋯𝐱 indicates 𝜓 taking ℎth partial derivative of space 𝐱. In fact, 𝜓𝐱⋯𝐱 𝑡

is obtained by taking partial derivative of 𝑡 on both sides of the first
equation [namely 𝐿𝜓 = 𝜆𝜓 , here the specific form of 𝐿 has been
known] of operator Lax pairs 𝑓oLp in Eq. (2.1b), and 𝜓𝑡 𝐱⋯𝐱 is obtained
by taking the ℎ-order partial derivative of 𝐱 on both sides of the second
equation [namely 𝜓𝑡 = 𝐴𝜓 , here the specific form of 𝐴 has been known]
of operator Lax pairs 𝑓oLp in Eq. (2.1b).

Then we consider the initial and boundary conditions of spatiotem-
poral nonlinear integrable system denoted by

[𝒒, 𝜓∕𝛹 ; 𝐱 ∈ 𝛺, 𝑡 = 𝑆i] = 0,

[𝒒, 𝜓∕𝛹,∇𝐱𝒒; 𝐱 ∈ 𝜕𝛺, 𝑡 ∈ [𝑆i, 𝑆f ]] = 0.
(2.4)

Here 𝜕𝛺 indicates boundary of 𝛺. If we consider a complex valued
potential �̃� ∈ C𝑛×1 for nonlinear integrable system, we can utilize
decomposition �̃� = �̃�+i�̃� to derive two real-value functions �̃� ∈ R𝑛×1 and
�̃� ∈ R𝑛×1, then back to the problem of Eq. (2.1a). The initial and bound-
ary points set ib for training is sampled randomly via corresponding
initial and boundary conditions (2.4), and the collocation points set c
for training is generated by means of the Latin Hypercube Sampling
method [45].

2.1. Darboux transformation of integrable systems with Lax pairs

The Darboux transformation method stands as a theoretical ap-
proach employed to exactly solve integrable systems with Lax pairs,
holding a significant role in the landscape of integrable system the-
ory [34]. The core concept of Darboux transformation is to construct
new exact solutions using known exact solutions, which is essentially a
special gauge transformation. Starting from the Lax pairs of integrable
system, the Darboux transformation can be directly obtained, which
can usually be iterated sequentially to obtain the relationship between
multiple new solutions and seed solutions. Usually, after determining
the spectral parameter of Lax pairs, the seed solution is usually cho-
sen as either a trivial solution or a plane wave solution, which can
easily solve the spectral function and then iteratively construct a new
solution. In this part, for generating novel localized wave solutions of
integrable systems via deep learning method, we combine the Darboux
transformation method with the powerful solving ability of localized
wave solutions and spectral problems in LPNNs, to construct novel
localized wave solutions via non-trivial seed solutions.

Next, we assume that the integrable system (2.1) with Lax pairs
possesses the 1-fold operator Darboux transformation 𝐷[1] or matrix
Darboux transformation 𝑇 [1], which satisfy

𝜓 [1] = 𝐷[1]𝜓, or𝛹 [1] = 𝑇 [1]𝛹. (2.5)

Then 𝜓 [1] and 𝛹 [1] satisfy new operator Lax pairs 𝑓noLp or new matrix
Lax pairs 𝑓nmLp, as shown bellow

𝑓noLp ∶
{

𝐿[1]𝜓 [1] = 𝜆𝜓 [1]

𝜓 [1]
𝑡 = 𝐴[1]𝜓 [1] , usually for 𝐱 ∈ 𝛺, or

𝑓nmLp ∶

{

𝛹 [1]
𝑥 =𝑀 [1]𝛹 [1]

𝛹 [1]
𝑡 = 𝑁 [1]𝛹 [1] , usually for 𝐱 = 𝑥, (2.6)
3

s

here the form of the new Lax pairs (2.6) is consistent with that of
ax pairs (2.1b). Here operators 𝐿[1] and 𝐴[1], matrixes 𝑀 [1] and 𝑁 [1]

nvolve new potential function 𝒒new of integrable system, which satisfies

[𝒒new, 𝒒2new,… ,∇𝑡𝒒new,∇2
𝑡 𝒒new,… ,∇𝐱𝒒new,

∇2
𝐱𝒒new,… , 𝒒new ⋅ ∇𝑡𝒒new,… , 𝒒new ⋅ ∇𝐱𝒒new,…] = 0,

n which the form of nonlinear operator  here is the same as that
f nonlinear operator  in Eq. (2.1a). Subsequently, with the help
f Darboux transformation theory and symbolic calculation, we can
erive Darboux transformation related to the particular solution of Lax
airs, and obtain the following 1-fold Darboux transformation theorem
etween new and seed solutions:

heorem 2.1. The integrable system (2.1) has the Darboux transforma-
ion formula of new solution

new = 𝒒seed + 𝜞 (𝐱, 𝑡, 𝜓s∕𝛹s, 𝜆1), (2.7)

n which 𝒒seed satisfies the Lax pairs (2.1b), while 𝒒new satisfies the Lax
airs (2.6) after Darboux transformation (2.5), they both are solutions of
ntegrable system (2.1a). Moreover, 𝜞 ∈ R𝑛×1 is an arbitrary function that
s only related to space 𝐱, time 𝑡, spectral parameter 𝜆1 and spectral function
s∕𝛹s, while spectral functions 𝜓𝑠 and 𝛹𝑠 are the particular solutions
btained from the Lax equations (2.1b) when the spectral parameter 𝜆 = 𝜆1
nd the seed solution 𝒒 = 𝒒seed.

Generally, if we take a trivial seed solution 𝒒seed = 𝟎, then we can
btain the exact 1-soliton solution 𝒒new of the integrable system (2.1a)
y means of 1-fold Darboux transformation (2.7). Correspondingly, if
e further construct the 𝑁-fold operator Darboux transformation 𝐷[𝑁]

r matrix Darboux transformation 𝑇 [𝑁] [here 𝑁 ≥ 2 is a positive
nteger], then one can obtain 𝑁-soliton solution of integrable system
2.1a). For more details, we refer the reader to Ref. [34].

However, once we consider non-trivial seed solution 𝒒seed, it be-
omes very difficult for solving spectral problem (2.1b). From Ref. [33],
y designing novel network architectures and loss functions, we pro-
osed the LPNNs tailored for the integrable systems with Lax pairs,
ncluding LPNN-v1 and LPNN-v2. The most noteworthy advantage of
PNN-v1 is that it can transform the solving of nonlinear integrable
ystems into the solving of relatively simpler Lax pairs, and it not
nly efficiently solves data-driven localized wave solutions, but also
btains spectral parameter and corresponding spectral function in Lax
airs of integrable systems. On the basis of LPNN-v1, we addition-
lly incorporate the compatibility condition/zero curvature equation
f Lax pairs in LPNN-v2, its major advantage is the ability to solve
nd explore high-accuracy data-driven localized wave solutions and
ssociated spectral problems for integrable systems with Lax pairs. That
s to say, if we use non-trivial seed solutions as the training target,
PNNs cannot only obtain high-precision non-trivial seed solutions, but
lso obtain the corresponding spectral parameter and spectral function
f spectral problem, which is exactly the data required for our new
olutions’ Darboux transformation (2.7). Therefore, we can utilize the
utput of LPNNs and Darboux transformation formula to construct
ovel localized wave solutions for integrable system (2.1).

.2. Darboux transformation-based LPNN

Based on the LPNNs in Ref. [33] and Darboux transformation The-
rem 2.1 of new solution for integrable system, we present the DT-
PNN, Fig. 1 displays schematic architecture of the DT-LPNN model
or integrable system.

Different from the LPNNs, in Fig. 1𝐚, except for the NN part of left
anel and the Lax pairs informed part of right panel, the middle panel
lso includes the Darboux transformation part with spectral parameter
. In the left panel of Fig. 1𝐚, we employ a standard fully connected NN,
ith input layer contains 𝐱 and 𝑡, and output layer contains the seed
olution of integrable system and the spectral function of the Lax pairs.
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Fig. 1. Schematic architecture of the DT-LPNN model for integrable system. 𝐚. The NN part (left panel), Darboux transformation part (middle panel), and Lax pairs informed part
(right panel). 𝐛. The components of the loss function and optimize process in DT-LPNN.
From the Darboux transformation part of middle panel in Fig. 1𝐚, a new
solution 𝒒new is yielded by employing the Darboux transformation of
integrable system, where the Darboux transformation formula usually
involves the seed solution 𝒒seed, spectral parameter 𝜆 and corresponding
particular solution 𝜓𝑠∕𝛹𝑠 of spectral function. Furthermore, in the Lax
pairs informed part of Fig. 1𝐚 right panel, the Lax pairs and their related
constraints are also completely different from LPNNs in Ref. [33], as
they consist of three parts: Lax pairs of integrable system, compatibility
condition/zero curvature equation for seed solution, and compatibility
condition/zero curvature equation for new solution. Correspondingly,
lower panel 𝐛 of Fig. 1 exhibits different composition of loss function,
then novel total loss function is defined as

(ib,c;𝜽, 𝜆) = ibd(ib;𝜽) + Lpr (c;𝜽, 𝜆) + czsr (c;𝜽)

+ cznr (c;𝜽). (2.8)

Here, ibd represents the initial and boundary data loss, Lpr indicates
residual loss of Lax pairs, they can be defined as following

ibd(ib;𝜽) =
1
𝑁ib

‖

‖

‖

𝒒𝜽,ibseed − 𝒒𝒎,ibseed
‖

‖

‖

2

2
, (2.9)

Lpr (c;𝜽, 𝜆) =
1
𝑁c

‖

‖

‖

𝑓 c
oLp∕𝑓

c
mLp

‖

‖

‖

2

2
, (2.10)

where 𝑁ib and 𝑁c represent respectively the number of elements in sets
ib and c, ‖⋅‖2 denotes the 𝐿2 norm. Then 𝒒𝜽,ibseed represents the learning
results of 𝒒𝜽seed acting on initial and boundary points set ib. Besides,
𝒒𝒎,ibseed represents the measurement data of 𝒒seed on initial and boundary
points set ib. The 𝑓 c

oLp [or 𝑓 c
mLp] is value of operator Lax pairs 𝑓oLp [or

matrix Lax pairs 𝑓mLp] on collocation points set c. The czsr and cznr
respectively represent the residual loss for compatibility condition/zero
curvature equation of seed solution 𝒒seed and the residual loss of com-
patibility condition/zero curvature equation of new solution 𝒒new, as
following

czsr (c;𝜽) =
1
𝑁c

‖

‖

‖

{𝑓cce∕𝑓zce}c𝒒seed
‖

‖

‖

2

2
, (2.11)

cznr (c;𝜽) =
1
𝑁c

‖

‖

‖

{𝑓cce∕𝑓zce}c𝒒new
‖

‖

‖

2

2
, (2.12)

similarly, the {𝑓cce∕𝑓zce}c𝒒seed is value of compatibility condition/zero
curvature equation for seed solution on collocation points c, while
the other is value of compatibility condition/zero curvature equation
for new solution on collocation points c. From the loss function (2.8),
one can observe that although the new solution does not have corre-
sponding initial and boundary condition constraints, but it is required
4

to satisfy the corresponding compatibility condition/zero curvature
equation and is forcibly added to the loss function, which will ensure
that the new solution generated from DT-LPNN satisfies the integrable
system under study. We introduce the Darboux transformation method
of integrable system into deep NN and construct a new loss function to
propose the DT-LPNN model that can generate novel localized wave
solutions. Ultimately, we display the primary steps of DT-LPNN in
Algorithm 2.2.

Algorithm 2.2: The Darboux transformation-based LPNN for
integrable system.

Step 1: Specification of training set in computational domain:
initial and boundary training points: ib, Residual collocation

training points: c.
Step 2: Derive the Darboux transformation formula for the

relationship between new solution and seed solution via Darboux
transformation theory of integrable system with Lax pairs.

Step 3: Construct NN output [including spectral function
𝜓∕𝛹 , seed solution 𝒒seed] with random initialization of parameter
𝜽.

Step 4: Employ aforementioned Darboux transformation
formula to construct Darboux transformation part, and obtain new
solution 𝒒new via the seed solution 𝒒seed, spectral parameter 𝜆 and
corresponding particular solution of spectral function 𝜓∕𝛹 .

Step 5: Construct the Lax pairs informed part by substituting
NN output and new solution 𝒒𝐧𝐞𝐰 into the Lax pairs of integrable
system, compatibility condition equation [operator form]/zero
curvature equation [matrix form] for seed solution and new
solution.

Step 6: Specification of the total loss function (ib,c;𝜽, 𝜆).
Step 7: Seek the optimal parameters 𝜽∗ using appropriate

optimization algorithms for minimizing the total loss function  as
𝜽∗ = arg min

𝜽∈
(ib,c;𝜽, 𝜆).

3. Numerical experiment

In this section, we utilize DT-LPNN to study data-driven seed solu-
tions, solve spectral problem and discover new localized wave solutions
for integrable system with Lax pairs, then provide detailed numerical
results and related dynamic behavior figures, and compare them with
other deep learning methods. Uniformly, the DT-LPNN presented in
this paper is implemented in Python based on the TensorFlow library.
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All deep learning methods involved in this work (including PINN,
LPNNS and DT-LPNN) adopt the hyperbolic tangent function (tanh) as
the activation function and both possess 5 hidden-layer NNs with 100
neurons per hidden layer, namely 𝐿 = 5 in Fig. 1.

As one of the most important theoretical methods for integrable
ystems, the Darboux transformation iteratively constructs nonlinear
ocalized wave solutions starting from the seed solution of Lax pairs,
hich can systematically provide a series of accurate solutions for

ntegrable systems. Its core idea is to find the gauge transformation
ormula for Lax pairs and the relationship between the new and seed
olution of integrable system. Based on the LPNNs in Ref. [33], we
ntroduce the Darboux transformation and propose novel DT-LPNN
lgorithm that can effectively construct new solutions of integrable
ystem. The specific operations are as follows:
1. For the integrable system with Lax pairs studied, we obtain

corresponding Darboux transformation formula between new and seed
solution.

2. We use non-trivial seed solution as input data for training in the
NN part of DT-LPNN to learn seed solution and spectral function.

3. We embed the corresponding Darboux transformation formula in
the Darboux transformation part of DT-LPNN to obtain new localized
wave solution based on the network output and corresponding spectral
parameter.

4. In the Lax pairs informed part of DT-LPNN, except for the con-
ventional constraints in the loss function of LPNNs, it is also necessary
to force the new solution to satisfy the compatibility condition/zero
curvature equation of the Lax pairs, thereby ensuring the reliability of
the new solution.

Next, we exhibit a detailed example of applying DT-LPNN to con-
struct new localized wave solutions for integrable system.

3.1. Darboux transformation of Kraenkel–Manna–Merle system

In order to describe the propagation of nonlinear electromagnetic
short-waves in a saturated ferrite only in the 𝑥-direction perpendicular
to the external saturating magnetic field, Kraenkel et al. constructed the
KMM system [46]. Subsequently, by introducing a blend of coordinate
transformations and expansion series of the magnetization density,
Nguepjouo et al. have transformed the KMM system into the nonlinear
evolution system [47], as shown below

𝑢𝑥𝑡 − 𝑢𝑣𝑥 + 𝜅𝑣𝑥 = 0,

𝑣𝑥𝑡 + 𝑢𝑢𝑥 = 0,
(3.1)

here the quantities 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) represent the magnetization density
and the magnetic induction respectively. The parameter 𝜅 stands for the
contribution of damping effects. After that, Kuetche et al. investigated
an existing prolongation structure of the coupled system (3.1) resorting
to its soliton structure, then extended the previous existing prolonga-
tion structure of the system while generating its higher-dimensional
generalization associated to its general Lax pairs, then showed the sys-
tem is integrable under the zero damping effect condition (𝜅 = 0) [48],
opening the way in looking for its localized wave solutions via the
inverse scattering transformation method and Darboux transformation
method [49,50]. The associated Lax pairs have therefore been provided,
having as expression

𝑓mLp ∶
{ 𝛹𝑥 =𝑀𝛹

𝛹𝑡 = 𝑁𝛹
, 𝑀 =

[

𝜆𝑣𝑥 𝜆𝑢𝑥
𝜆𝑢𝑥 −𝜆𝑣𝑥

]

, 𝑁 =

[ 1
4𝜆 − 1

2 𝑢
1
2 𝑢 − 1

4𝜆

]

. (3.2)

We can directly derive the KMM system (3.1) with 𝜅 = 0 using the zero
curvature equation (2.3) and corresponding Lax pairs (3.2). Especially,
we set spectral function 𝛹 (𝑥, 𝑡) ∈ R2×1 and spectral parameter 𝜆 ∈ R,
thus we take 𝛹 (𝑥, 𝑡) = (𝜓1(𝑥, 𝑡), 𝜓2(𝑥, 𝑡))T, where 𝜓𝑗 (𝑥, 𝑡) ∈ R1×1[𝑗 = 1, 2].
Actually, we can also generalize the spectral function and spectral
parameter to 𝛹 ∈ C2×1, 𝜆 ∈ C, but in practical operation, we found
that the training effect is better in the aforementioned special situation.
5

From Ref. [50], one can obtain the 1-fold Darboux transformation
and single-soliton solutions. Specifically, the 1-fold matrix Darboux
transformation 𝑇 [1] of Lax pairs (3.2) for KMM system can be defined
as

𝛹 [1] = 𝑇 [1]𝛹, (3.3)

here 𝛹 [1] satisfies
{

𝛹 [1]
𝑥 =𝑀 [1]𝛹 [1]

𝛹 [1]
𝑡 = 𝑁 [1]𝛹 [1] , 𝑀

[1] =
[

𝜆𝑣new,𝑥 𝜆𝑢new,𝑥
𝜆𝑢new,𝑥 −𝜆𝑣new,𝑥

]

,

𝑁 [1] =

[

1
4𝜆 − 1

2 𝑢new
1
2 𝑢new − 1

4𝜆

]

. (3.4)

rom Eqs. (3.3)–(3.4), one can derive

[1]
𝑥 =𝑀 [1]𝑇 [1] − 𝑇 [1]𝑀, 𝑇 [1]

𝑡 = 𝑁 [1]𝑇 [1] − 𝑇 [1]𝑁.

hen one can deduce the gauge transformation as

[1] = 𝐼 + 𝜆𝑅[1], 𝑅[1] =

[

𝑟[1]11 𝑟[1]12

𝑟[1]12 −𝑟[1]11

]

,

here 𝐼 is identity matrix, and let 𝑇 [1]|
|

|

|

𝜆=𝜆1

[

𝜓1
𝜓2

]

= 0, one can obtain

𝑟[1]11 =
𝜓2
2 − 𝜓2

1

𝜆1(𝜓2
1 + 𝜓2

2 )
, 𝑟[1]12 =

−2𝜓1𝜓2

𝜆1(𝜓2
1 + 𝜓2

2 )
.

he iterative relationship between the new and seed solution can be
btained, as shown in the following theorem.

heorem 3.1. The KMM system (3.1) has the Darboux transformation
ormulas of new solutions

new = 𝑢seed −
2𝜓1𝜓2

𝜆1(𝜓2
1 + 𝜓2

2 )
, (3.5)

new = 𝑣seed +
𝜓2
2 − 𝜓2

1

𝜆1(𝜓2
1 + 𝜓2

2 )
+ 𝑔1(𝑡), (3.6)

n which 𝑢seed and 𝑣seed satisfy the Lax pairs (3.2), while 𝑢new and 𝑣new
atisfy the Lax pairs (3.4) after Darboux transformation (3.3), they both
re solutions of KMM system (3.1).

Particularly, if we choose trivial seed solutions to the KMM system
3.1) as follows

seed = 0, (3.7)

seed = 𝛼𝑥. (3.8)

hereby, we are able to directly obtain the spectral function of the
ax pairs (3.2) under the trivial seed solution (3.7)–(3.8) responding
o 𝜆 = 𝜆1 as

𝜓1
𝜓2

]

=
⎡

⎢

⎢

⎣

e
𝛼𝜆1𝑥+

1
4𝜆1

𝑡+𝜉10

e
−
(

𝛼𝜆1𝑥+
1

4𝜆1
𝑡+𝜉10

)

⎤

⎥

⎥

⎦

,

where 𝜉10 is arbitrary constant. Once we let 𝜆1 = −3∕2, 𝛼 = 1∕3, 𝜉10 =
0, 𝑔1(𝑡) = tanh(3𝑡), then we can obtain the single-soliton solutions of the

MM system (3.1) via Theorem 3.1, shown below

ss(𝑥, 𝑡) =
4e−𝑥

3e−2 𝑥−
1
3 𝑡 + 3e

1
3 𝑡
,

𝑣ss(𝑥, 𝑡) =
[𝑥 + 3 tanh (3𝑡) + 2] e−2𝑥−

1
3 𝑡 + e

1
3 𝑡 [𝑥 + 3 tanh (3𝑡) − 2]

1 1
.

(3.9)
3e−2𝑥− 3 𝑡 + 3e 3 𝑡
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3.2. Non-trivial seed solutions: single-soliton solutions

However, once we select a non-trivial seed solutions, the corre-
sponding spectral function cannot be directly given, as the corre-
sponding spectral function is complex and may not be analytically
represented at this time. Therefore, in this part, we utilize the powerful
solving ability of NNs to numerically simulate the spectral functions
corresponding to non-trivial seed solutions. Furthermore, based on the
spectral functions obtained from non-trivial seed solutions, we em-
bed the Darboux transformation formulas (3.5)–(3.6) of new solutions
into the Darboux transformation part of DT-LPNN to construct new
unknown localized wave solutions. Then we force the new solutions
satisfy zero curvature equation (2.3) of the Lax pairs (3.2) in the loss
function, to ensure that the obtained new solutions are the solutions
of the KMM system (3.1). Specifically, we treat the single-soliton so-
lutions (3.9) as non-trivial seed solutions in Darboux transformation
Theorem 3.1, and obtain corresponding initial and boundary training
points, then utilize DT-LPNN to learn the non-trivial seed solutions,
spectral parameter and corresponding spectral function, as well as
novel localized wave solutions.

Next the spectral parameter is initialized to 𝜆 = 1.5, while the spec-
tral function is initialized to 𝜓𝑗 = 0 and satisfy the free initial–boundary
condition, then we consider the following initial and boundary value
conditions of KMM system in spatiotemporal region [−4, 4] × [−1, 1]:

𝑢(𝑥, 𝑡 = −1) = 𝑢ss(𝑥,−1), 𝑣(𝑥, 𝑡 = −1) = 𝑣ss(𝑥,−1), 𝑥 ∈ [−4, 4],

𝑢(−4, 𝑡) = 𝑢ss(−4, 𝑡), 𝑢(4, 𝑡) = 𝑢ss(4, 𝑡),

𝑣(−4, 𝑡) = 𝑣ss(−4, 𝑡), 𝑣(4, 𝑡) = 𝑣ss(4, 𝑡), 𝑡 ∈ [−1, 1].

(3.10)

After that, by using 𝑁c = 10000 collocation points and selecting
𝑁ib = 500 initial and boundary points from the initial–boundary condi-
tions (3.10), we succeeded in obtaining data-driven spectral function
𝜓𝑗 , spectral parameter 𝜆, single-soliton seed solutions 𝑢, 𝑣, and new
localized wave solutions 𝑢new, 𝑣new by means of the DT-LPNN. The
network achieve relative 𝐿2 norm error of 1.048773e−03 for the 𝑢(𝑥, 𝑡)
and relative 𝐿2 norm error of 7.619877e−04 for the 𝑣(𝑥, 𝑡), and the total
number of L-BFGS iterations within 4700.7526 s is 7106 times.

Fig. 2 provides the training results arising from the DT-LPNN for the
data-driven single-soliton solutions, spectral problem and novel local-
ized wave solutions of the KMM system. In the top panel of Fig. 2(a),
the true, learned and error dynamics density plots with corresponding
amplitude scale size on the right side for data-driven seed solutions
[bright single-soliton] 𝑢, 𝑣 have been exhibited. Meanwhile, in the
middle panel of Fig. 2(a), the sectional drawings of the prediction and
true seed solutions have been shown at the three distinct moments
𝑡 = −0.83, 0, 0.83, here the aforementioned three distinct moments are
displayed by using dashed lines of corresponding colors in the top
panel of Fig. 2(a). In the bottom panel of Fig. 2(a), we display the
prediction density plots and sectional drawings for the prediction new
solutions 𝑢new, 𝑣new [here dark single-soliton 𝑢new propagates on variable
non-zero background wave]. Fig. 2(b) exhibits the loss function curve
figure [panel b1] and spectral parameter 𝜆 [panel b2] evolution graph
arising from the DT-LPNN with 7106 steps L-BFGS optimizations on
the loss function, where learned spectral parameter 𝜆 = 0.74149. The
three-dimensional plots with contour map for the data-driven spectral
function are depicted in Fig. 2(c1) and (c2). Fig. 2(d1) and (d2) display
the three-dimensional plots with contour map for the data-driven seed
solutions, while Fig. 2(d3) and (d4) showcase the three-dimensional
plots with contour map for the data-driven new solutions. We surprised
to find that novel localized wave solutions can be generated through
the DT-LPNN, which provide more opportunities for the extension of
Darboux transformation theory and the discovery of novel localized
wave solutions. From Fig. 2(d), we find that using bright single-soliton
solution [observe from the perspective of solution 𝑢] as seed solu-
tion in DT-LPNN can learn new dark single-soliton solution [observe
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from the perspective of solution 𝑢new] through numerical Darboux
transformation, which is a new discovery that has not been reported
before.

Moreover, we also applied other types of NNs to solve the KMM
system and provided detailed training results in Table 1. From Table 1,
owing to the relatively complex Lax pairs information, we can observe
that the training effect of LPNN-v1 is poor, while the training error of
LPNN-v2 is similar to that of PINN, but the training time is longer, so
the overall cost-effectiveness is low. From Table 1, we can intuitively
observe that LPNNs and DT-LPNN cannot only solve integrable systems
but also solve spectral problem of integrable system and numerically
obtain spectral parameter and spectral function, where the spectral
function 𝛹 corresponds to the vector spectral function {𝜓1, 𝜓2}, which
are all inaccessible to PINN. Interestingly, after spending a long training
time, DT-LPNN achieved the best training results and can generate
novel localized wave solutions based on Darboux transformation the-
ory, which is a characteristic that the other three NNs do not possess.
From Theorem 3.1 and initial–boundary condition (3.10) of seed solu-
tions, one can know that the new localized wave solutions 𝑢new, 𝑣new are
equal to the data-driven bright single-soliton solutions plus a fractional
function related to the data-driven spectral parameter and spectral
function. Furthermore, from Fig. 2, one can observe that the new
localized wave solution 𝑢new is a dark soliton solutions on a variable
non-zero background wave, which is different from the dark soliton
solution 𝑢 on a zero background plane wave in Ref. [50]. To our best
knowledge, the novel data-driven localized wave solutions discovered
in this article has not been observed and reported yet, thus we believe
that we have generated and discovered a novel data-driven localized
wave solution of the KMM system via the DT-LPNN.

3.3. Non-trivial seed solutions: two-soliton solutions

In the previous subsection, we used single-soliton solutions as non-
trivial seed solutions and generated novel localized wave solutions
via the DT-LPNN, which is a dark soliton solution on a variable non-
zero background wave as from the perspective of 𝑢new. In this part,
we further consider using two-soliton solutions as non-trivial seed
solutions, and then apply DT-LPNN to construct new localized wave
solutions for the KMM system (3.1). From the Theorem 1 of Ref. [51],
one can directly derive the two-soliton solutions by applying 𝑁-fold
Darboux transformation with parameters 𝑁 = 2, 𝛼 = 1∕3, 𝜃(𝑡) = cos(3𝑡)
and spectral parameters 𝜆1 = −3∕2, 𝜆2 = −1, as follows

𝑢ts(𝑥, 𝑡) =
−20e−

7
3 𝑥−

1
2 𝑡 + 30e−

8
3 𝑥−

1
3 𝑡 + 30e−

2
3 𝑥+

1
3 𝑡 − 20e−𝑥+

1
2 𝑡

75e−
4
3 𝑥−

1
6 𝑡 + 75e−2𝑥+

1
6 𝑡 + 3e−

10
3 𝑥−

5
6 𝑡 + 3e

5
6 𝑡 − 144e−

5
3 𝑡
,

ts(𝑥, 𝑡) =
𝛶

75e−
4
3 𝑥−

1
6 𝑡 + 75e−2𝑥+

1
6 𝑡 + 3e−

10
3 𝑥−

5
6 𝑡 + 3e

5
6 𝑡 − 144e−

5
3 𝑡
,

(3.11)

ere

=[𝑥 + 3 cos(3𝑡) + 5]e−
10
3 𝑥−

5
6 𝑡 + [25𝑥 + 75 cos(3𝑡) + 25]e−

4
3 𝑥−

1
6 𝑡

+ [25𝑥 + 75 cos(3𝑡) − 25]e−2𝑥+
1
6 𝑡 + [𝑥 + 3 cos(3𝑡) − 5]e

5
6 𝑡

− [48𝑥 + 144 cos(3𝑡)]e−
5
3 𝑥.

We can observe that the form of two-soliton solutions are quite intri-
cate, so it is very difficult to generate novel localized wave solutions
using it as seed solutions. Therefore, if utilizing the DT-LPNN can
successfully generate novel localized wave solutions, it can also reflect
the effectiveness of our proposed DT-LPNN algorithm.

Next we consider the initial and boundary conditions of KMM sys-
tem (3.1) with zero damping effect condition when the spatiotemporal
variables {𝑥, 𝑡} ∈ [−5, 5] × [−1.5, 1.5], shown as bellow

𝑢(𝑥, 𝑡 = −1.5) = 𝑢ts(𝑥,−1.5), 𝑣(𝑥, 𝑡 = −1.5) = 𝑣ts(𝑥,−1.5), 𝑥 ∈ [−5, 5],

𝑢(−5, 𝑡) = 𝑢ts(−5, 𝑡), 𝑢(5, 𝑡) = 𝑢ts(5, 𝑡),

𝑣(−5, 𝑡) = 𝑣ts(−5, 𝑡), 𝑣(5, 𝑡) = 𝑣ts(5, 𝑡), 𝑡 ∈ [−1.5, 1.5].

(3.12)
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Fig. 2. The training results of single-soliton solutions 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), spectral function 𝜓𝑗 (𝑥, 𝑡) and new localized wave solutions 𝑢new(𝑥, 𝑡), 𝑣new(𝑥, 𝑡) for KMM system arising from the
DT-LPNN. (a) Top panel: the ground truth, prediction and error dynamics density plots of seed solutions. Middle panel: sectional drawings which contain the true and prediction
seed solutions at three distinct moments. Bottom panel: the prediction density plots and sectional drawings of prediction new solutions at three distinct moments; (b) Evolution
graph of the loss function [panel b1] and spectral parameter 𝜆 [panel b2] in DT-LPNN; (c) The three-dimensional plots with contour map for the data-driven spectral function
corresponding to spectral parameter 𝜆 = 0.74149; (d) The three-dimensional plots with contour map for the data-driven seed solutions and new solutions.
Table 1
Performance comparison between DT-LPNN, LPNN-v2, LPNN-v1 and conventional PINN for solving KMM system in Section 3.2.

Networks 𝐱 × 𝑡 ib ,c Optimizer 𝜆 𝛹 𝐿2 Norm error Training time Discovering new solutions

PINN [−4,4] × [−1,1] 500,10,000 L-BFGS × × 𝑢 ∶ 2.400451e−03
𝑣 ∶ 1.108590e−03

229.2775 s ×

LPNN-v1 [−4,4] × [−1,1] 500,10,000 L-BFGS 0.092695
√

𝑢 ∶ 9.495077e−01
𝑣 ∶ 3.426840e−01

190.0058 s ×

LPNN-v2 [−4,4] × [−1,1] 500,10,000 L-BFGS −0.216471
√

𝑢 ∶ 3.537780e−03
𝑣 ∶ 1.155043e−03

426.5229 s ×

DT-LPNN [−4,4] × [−1,1] 500,10,000 L-BFGS 0.74149
√

𝑢 ∶ 1.048773e−03
𝑣 ∶ 7.619877e−04

4700.7526 s
√

We initialize spectral parameter to 𝜆 = 0.5, then we initialize the
spectral function to 𝜓𝑗 = 0 and let it satisfy the free initial–boundary
condition. By utilizing the initial and boundary conditions (3.12), we
choose 𝑁ib = 500 initial–boundary points and 𝑁c = 20000 collocation
points to generate the training data set for DT-LPNN. We successfully
trained and obtained the data-driven two-soliton solutions of the KMM
system (3.1) using DT-LPNN, here the relative 𝐿2 norm error of the
solution 𝑢(𝑥, 𝑡) is 2.734971e−03, and the relative 𝐿2 norm error of the
solution 𝑣(𝑥, 𝑡) is 5.493715e−03, the learned spectral parameter is 𝜆 =
7

0.700718, and the training time and loss function iteration times of the
network are 21160.1722 s and 9118 times, respectively. Moreover, we
obtain new localized wave solutions 𝑢new, 𝑣new for the KMM system via
DT-LPNN, which possess unique forms that have never been reported
or discovered before.

After utilizing two-soliton solutions as non-trivial seed solutions,
we present the vivid numerical results of DT-LPNN for solving the
KMM system and generating novel localized wave solutions in Fig. 3.
Specifically, we display detailed density plots of the ground truth,
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Fig. 3. The training results of two-soliton seed solutions 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), spectral function 𝜓𝑗 (𝑥, 𝑡) and new localized wave solutions 𝑢new(𝑥, 𝑡), 𝑣new(𝑥, 𝑡) for KMM system arising from the
DT-LPNN. (a) Top panel: the ground truth, prediction and error dynamics density plots of seed solutions. Middle panel: sectional drawings which contain the true and prediction
seed solutions at three distinct moments. Bottom panel: the prediction density plots and sectional drawings of prediction new solutions at three distinct moments; (b) Evolution
graph of the loss function [panel b1] and spectral parameter 𝜆 [panel b2] in DT-LPNN; (c) The three-dimensional plots with contour map for the data-driven spectral function
corresponding to spectral parameter 𝜆 = 0.700718; (d) The three-dimensional plots with contour map for the data-driven seed solutions and new solutions.
prediction and error dynamics for seed solutions 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) in the top
panel of Fig. 3(a), as well as exhibit the sectional drawings at three
distinct moments corresponding to the green/purple dashed lines of
density plots in the middle panel of Fig. 3(a). Besides that, we showcase
the prediction density plots and sectional drawings at three distinct
moments for prediction new solutions 𝑢new(𝑥, 𝑡), 𝑣new(𝑥, 𝑡) in the bottom
panel of Fig. 3(a). The evolution graphs of the loss function [panel
b1] and spectral parameter 𝜆 [panels b2] are revealed in Fig. 3(b).
Fig. 3(c1–c2) display the three-dimensional plots with contour map
of the data-driven spectral function 𝜓𝑗 corresponding to spectral pa-
rameter 𝜆 = 0.700718. Fig. 3(d1–d2) display three-dimensional plots
with contour map for the data-driven seed solutions 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), while
Fig. 3(d3–d4) exhibit the three-dimensional plots with contour map
for the data-driven new solutions 𝑢new, 𝑣new. Moreover, we provide a
detailed performance comparison of using four different algorithms to
solve the KMM system in Table 2. From Table 2, we can observe that
LPNN-v1 has the shortest training time but lower training accuracy,
while LPNN-v2 has the highest training accuracy. The training time of
the standard PINN algorithm is longer than LPNN-v1 but shorter than
LPNN-v2, and the training accuracy is lower than LPNN-v2 but higher
8

than LPNN-v1. However, the three algorithms cannot generate novel
localized wave solutions. DT-LPNN can generate novel localized wave
solutions after spending longer training time, and the training accuracy
can also reach the ideal level.

4. Conclusions

In this work, in order to fully utilize the spectral parameter and
corresponding spectral function obtained from our proposed LPNNs,
we introduce the Darboux transformation method into LPNN and pro-
pose novel DT-LPNN model. The strongest advantage of DT-LPNN is
its ability to discover novel localized wave solutions for integrable
systems, while also ensuring high training accuracy. As is well known,
the Darboux transformation method can iteratively construct 𝑁-soliton
solutions, breathers, and rogue wave solutions of integrable systems
via trivial seed solutions. However, leveraging the advantages of the
LPNNs algorithm, our proposed DT-LPNN can start from non-trivial
seed solutions and embed the Darboux transformation formula related
to the seed solution, spectral parameter and spectral function obtained
from the NN part into the Darboux transformation part of DT-LPNN,
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Table 2
Performance comparison between DT-LPNN, LPNN-v2, LPNN-v1 and conventional PINN for solving KMM system in Section 3.3.

Networks 𝐱 × 𝑡 ib ,c Optimizer 𝜆 𝛹 𝐿2 Norm error Training time Discovering new solutions

PINN [−5,5] × [−1.5,1.5] 500,20,000 L-BFGS × × 𝑢 ∶ 2.619494e−03
𝑣 ∶ 6.804712e−03

2205.5888 s ×

LPNN-v1 [−5,5] × [−1.5,1.5] 500,20,000 L-BFGS −0.003843
√

𝑢 ∶ 3.236687e−01
𝑣 ∶ 2.887497e+00

873.6259 s ×

LPNN-v2 [−5,5] × [−1.5,1.5] 500,20,000 L-BFGS −0.006139
√

𝑢 ∶ 2.416786e−03
𝑣 ∶ 4.423797e−03

5225.5579 s ×

DT-LPNN [−5,5] × [−1.5,1.5] 500,20,000 L-BFGS 0.700718
√

𝑢 ∶ 2.734971e−03
𝑣 ∶ 5.493715e−03

21,160.1722 s
√

thereby generating novel localized wave solution. Finally, we recon-
struct fresh Lax pairs informed part and new loss function, it forces
the newly generated solution satisfy the compatibility condition/zero
curvature equation of Lax pairs corresponding to the integrable system
to ensure the reliability of the new solution.

We apply DT-LPNN to study the KMM system and corresponding
Lax pairs, obtaining high-precision data-driven seed solutions, spectral
parameter and spectral function, as well as generating novel localized
wave solutions. Specifically, we treat the bright single-soliton solu-
tions as non-trivial seed solutions and generate new dark single-soliton
solutions on variable non-zero background wave [observe from the
perspective of 𝑢 and 𝑢new], which is a novel localized wave solution of
he KMM system that has not been reported or discovered. Moreover,
e also treat the two-soliton solutions as a non-trivial seed solutions
nd generate novel localized wave solutions for the KMM system that
as not been reported or discovered, which is completely different from
he dynamics behaviors of the two-soliton solutions. The numerical
esults indicate that DT-LPNN cannot only solve integrable systems and
pectral problems with high accuracy, but also discover novel localized
ave solutions.

Regarding the promotional research of DT-LPNN, we have also at-
empted to utilize the DT-LPNN to study other integrable systems with
ax pairs. However, for many classic integrable systems, it is difficult
o generate novel localized wave solutions, such as the Korteweg–de
ries equation, modified Korteweg–de Vries equation and nonlinear
chrödinger equation in Ref. [33]. The main problems that exist in the
esearch process are:

1. We cannot construct novel localized wave solution successfully
ecause the denominator of the fraction function 𝜞 in Darboux trans-

formation Theorem 2.1 is sufficiently small during the iteration of the
loss function, resulting in the loss function failing to converge or even
deteriorate sharply.

2. We can construct novel localized wave solution successfully, but
the new solution is almost identical to the non-trivial seed solution,
owing to the very small spectral parameter and spectral function cause
the function 𝜞 in Darboux transformation Theorem 2.1 to approach 0
sufficiently.

The cause of the above problems may be that it is very difficult to
discover novel localized wave solutions for classical integrable systems,
or it may be that the non-trivial seed solutions in DT-LPNN are not
selected properly, and so on. Nevertheless, once providing suitable in-
tegrable models to study, we believe that the DT-LPNN proposed in this
article possesses the ability to generate novel localized wave solutions
for integrable systems with Lax pairs. In conclusion, this article lever-
ages the advantages of LPNNs based on Lax pairs for spectral problems,
and first time combines the core idea of Darboux transformation theory
to iteratively generate novel localized wave solutions from a small
number of initial and boundary data points, this work has significant
research value and application prospects.
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