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a b s t r a c t

The nonlocal symmetry which is obtained from Lax pair and the residual symmetry relating

to truncated Painlevé expansion are derived. The link between the residual symmetry and

the nonlocal symmetry which is obtained from Lax pair is presented. The residual symmetry

can be localized to Lie point symmetry by prolonging the original equation to a larger sys-

tem. The finite transformation of the residual symmetry is equivalent to the second type of

Darboux transformation. Furthermore, applying the standard Lie group approach to the pro-

longed system, new similarity reductions and the exact interaction solutions between soli-

tons and cnoidal periodic waves are given, which is difficult to be found by other traditional

methods.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

As we all know, symmetry analysis plays an important role in nonlinear mathematical physics [1–5]. Thanks to the classical

or nonclassical Lie group method [3,4], one can reduce dimensions of differential equations and construct some exact solutions

of these differential equations. Nevertheless, for the integrable model, there may exist nonlocal symmetries which are obtained

by inverse recursion operators [6–8], Darboux transformation (DT) [9–11], Bäcklund transformation (BT) [12], the Möbious (con-

formal) invariant form [13], pseudopotential [14], potential system [4,5], negative hierarchies [15,16], the self-consistent sources

[17] and so on.

After the derivation of nonlocal symmetry, it is necessary to inquire whether nonlocal symmetries can transformed into

local ones. The general localization method was proposed by Krasil’shchik and Vinogradov [18]. Bluman introduced the concept

of potential symmetry [5] which possess close prolongation to obtain solutions of differential system. Galas [14] derived the

nonlocal Lie–Bäcklund symmetries by introducing the pseudopotentials as an auxiliary system. Recently, Lou et al. [19,20] found

that the residual symmetry of the truncated Painlevé expansion is a nonlocal symmetry. The residual symmetry can be localized

to find finite transformation and obtain new symmetry reduction solutions.

We consider the (2+1)-dimensional breaking soliton equation [21]

vt + vxxy − 4vvy − 2vx∂
−1
x vy = 0, (1)

with ∂−1
x = ∫ ·dx. Setting v = ux, Eq. (1) becomes

uxt + uxxxy − 4uxuxy − 2uxxuy = 0, (2)
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which describes the (2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the

x-axis [22]. For y = x, Eq. (1) is reduced to the KdV equation. The Painlevé property, the Lax pair, the Hamiltonian structure, and

various exact solutions have been studied [23–34]. In this paper, the analytic interaction solutions between solitons and cnoidal

periodic waves for the (2+1)-dimensional breaking soliton equation are shown by means of the nonlocal symmetry method.

The paper is arranged as follows. In Section 2, for the (2+1)-dimensional breaking equation, we derive the nonlocal symmetry

which is obtained from Lax pair and the residual symmetry relating to truncated Painlevé expansion. The link between the

residual symmetry and the nonlocal symmetry which is obtained from Lax pair is presented. The residual symmetry is localized

to Lie point symmetry by prolonging the original equation to a larger system. For the prolonged system, the finite symmetry

transformation is obtained by using Lie’s first theorem in Section 3. In Section 4, some new exact solutions are derived via the

similarity reductions of the prolonged system. In the last section, some conclusions and discussions are given.

2. Nonlocal symmetry and its localization

Eq. (2) possesses the Lax pair [25]

ψxx − uxψ = 0, (3)

ψt − 2uyψx + uxyψ − λψ = 0. (4)

A symmetry σ u of Eq. (2) is defined as a solution of its linearized equation

σ u
xt + σ u

xxxy − 4uxσ
u
xy − 2uyσ

u
xx − 4uxyσ

u
x − 2uxxσ

u
y = 0, (5)

which means Eq. (2) is form invariant under the infinitesimal transformation

u → u + εσ u, (6)

with the infinitesimal parameter ε.

Proposition 1. Eq. (2) has a nonlocal symmetry given by

σ u = e−2λtψ2, (7)

where ψ satisfies the Lax pair (3)–(4).

Proof. By direct calculation.

It is seen that the symmetry (7) is a local symmetry of the system (2)–(3). The linearized equation of the Eq. (3) reads

σψ
xx − ψσ u

x − uxσ
ψ = 0, (8)

with σ u given by (7).

It is not difficult to verify that the solution of Eq. (8) with (7) has the following form:

σψ = 1

2
ψφ, (9)

where the new quantity φ is defined as

φx = e−2λtψ2. (10)

One compatibility condition of (10) is worth to be mentioned here

φt = 2e−2λt (2ψxψy − 2ψψxy + uyψ
2), (11)

which means the condition φxt = φtx is satisfied identically. Furthermore, the linearized equation of its symmetry σφ reads

σφ
x = 2e−2λtψσψ, (12)

and a straightforward calculation shows that σφ has the simple form

σφ = 1

2
φ2. (13)

The results (9) and (13) reveal the nonlocal symmetry (7) in the original space {x, y, t, u} has been successfully localized to a

Lie point symmetry in the enlarged space {x, y, t, u, ψ , φ}.

Here, it should be emphasized that the differential equation that quantity φ need to be satisfied is nothing but the Schwartzian

form of Eq. (2)

Cx + KSx + 2SKx + Kxxx = 0, (14)

where

C = φt

φx
, K = φy

φx
, S = φxxx

φx
− 3

2

φ2
xx

φ2
x

. (15)

The above Schwartzian equation is consistent with the result of [35].
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Now, applying the following transformation:

ψ = eλt
√

φx, (16)

to Lax pair (3)–(4), we obtain

ux = 1

2

φxxx

φx
− 1

4

φ2
xx

φ2
x

, (17)

φxt + φxxxy − 3φxxφxxy

φx
− φxxφt

φx
− φxyφxxx

φx
+ 3φxyφ2

xx

φ2
x

= 0, (18)

and the equivalent nonlocal symmetry of u

σ u = φx. (19)�

Remark 1. Eq. (18) is just the Schwartzian equation (14). What more interesting here is that the symmetry (19) is the residual

symmetry of Eq. (2), and Eq. (17) is a nonauto-BT which transforms the original Eq. (2) into its Schwartzian equation (14). The

transformation Eq. (16) is the link between the nonlocal symmetry (7) which is obtained form Lax pair and the residual symmetry

(19).

Here, we can obtain the residual symmetry of Eq. (2) by the truncated painlevé analysis. Balancing the nonlinear and disper-

sive terms in the Eq. (2), its truncated Painlevé expansion can be expressed as

u = u0

φ
+ u1, (20)

where u0, u1 and φ are arbitrary functions with respect to x, y and t. substituting Eq. (20) into Eq. (2) and vanishing coefficients

of the different powers 1
φ

, we obtain

u0 = −2φx, u1 = 1

2

φxx

φx
+ 1

4

∫
φ2

xx

φ2
x

dx. (21)

Consequently,

u = −2φx

φ
+ 1

2

φxx

φx
+ 1

4

∫
φ2

xx

φ2
x

dx (22)

is a solution of Eq. (2) with φ satisfying Schwartzian equation (14). The Schwarzian equation (14) is invariant under the Möbious

transformation

φ → a + bφ

c + dφ
, (ad �= bc), (23)

which means (13) is the symmetry of Schwartzian equation (14).

The residual of truncated Painlevé expansion (20) with the singular manifold φ, i.e., u0 is a symmetry of Eq. (2) with the

solution u1. Thus, Eq. (19) is the residual symmetry of Eq. (2), and Eq. (17) is a nonauto-BT. It is worthy to mention that the

residual symmetry (19) is just related to the the Möbious transformation symmetry (13) by the linearized equation of nonauto-

BT (17).

As we know, the nonlocal symmetries can not be used to find explicit solutions for differential equations directly. Thus, the

next step is to transform the nonlocal symmetries into local ones, one may extend the original system to a closed prolonged

system which possesses a Lie point symmetry that is equivalent to the nonlocal symmetry.

The nonlocal residual symmetry of Eq. (2) can be localized to Lie point symmetry

σ u = g, σ g = φg, σ φ = 1

2
φ2, (24)

for the prolonged system

uxt + uxxxy − 4uxuxy − 2uxxuy = 0,

ux = 1

2

φxxx

φx
− 1

4

φ2
xx

φ2
x

, (25)

g = φx.

Finally, the prolonged system (25) is closed after covering dependent variables u, g and φ with the vector form

V = g
∂

∂u
+ φg

∂

∂g
+ 1

2
φ2 ∂

∂φ
. (26)
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3. Finite symmetry transformation

In this section, we study the finite symmetry transformation of Lie point symmetry (26). According to Lie’s first theorem, by

solving the following initial value problem:

dû(ε)

dε
= ĝ(ε), û(0) = u,

dĝ(ε)

dε
= φ̂(ε)ĝ(ε), ĝ(0) = g, (27)

dφ̂(ε)

dε
= 1

2
φ̂(ε)2, φ̂(0) = φ,

we arrive at the symmetry group transformation theorem as follows:

Theorem 1. If {u, g, φ} is a solution of the prolonged system (25), then so is {û, ĝ, φ̂} with

û(ε) = u + 2gε

2 − φε
, ĝ(ε) = 4g

(2 − φε)2
, φ̂(ε) = 2φ

2 − φε
, (28)

for an arbitrary group parameter ε.

The finite transformation (28) provide a way to generate a new solution from given one. It is necessary to point out that

this finite transformation is distinct from the usual DT. Actually, it is equivalent to the Levi transformation, i.e., the second type

of DT. In addition, the last equation of (28) is nothing but the corresponding Möbious transformation about the Schwartzian

equation (14).

4. New similarity reductions

To seek corresponding new similarity reductions related to the residual symmetry of Eq. (2), we employ the classical Lie point

symmetry method to study the prolonged system (25) and assume that the symmetries have the vector form

V = X
∂

∂x
+ Y

∂

∂y
+ T

∂

∂t
+ U

∂

∂u
+ G

∂

∂g
+ 	

∂

∂φ
, (29)

where X, Y, T, U, G and 	 are the functions with respect to {x, y, t, u, g, φ}, which means that the prolonged system (25) is invariant

under the transformations

{x, y, t, u, g, φ} → {x + εX, y + εY, t + εT, u + εU, g + εG, φ + ε	}, (30)

with a small parameter ε. Equivalently, the symmetries in the vector form (29) can be written as a function form

σ u = Xux + Yuy + Tut − U,

σ g = Xgx + Ygy + Tgt − G,

σ φ = Xφx + Yφy + Tφt − 	.

(31)

Moreover, σ u, σ g and σφ satisfy the linearized equations for the prolonged system (25)

σ u
xt + σ u

xxxy − 4uxσ
u
xy − 2uyσ

u
xx − 4uxyσ

u
x − 2uxxσ

u
y = 0,

2φ3
x σ

u − φ2
x σ

φ
xxx + φxφxxσ

φ
xx + (φxφxxx − φ2

xx)σ
φ
x = 0,

σ g = σφ
x .

(32)

Substituting Eq. (31) into Eq. (32) and eliminating uxt, gxx, gt, φx and φt in terms of the prolonged system (25), we obtain an

over-determined set of equations for the functions X, Y, T, U, G and 	. Solving the determining equations, the general solutions

of them take the form

X = 1

2
(c1 − c3)x + f1,

Y = c3y + c4, T = c1t + c2,

U = −1

2
(c1 − c3)u + f2g − 1

2
f1t y + f3,

G = ( f2φ + f4)g,

	 = 1

2
f2φ

2 + 1

2
(c1 − c3 + 2 f4)φ + f5,

(33)

where f2 ≡ f2(y) is an arbitrary function of y, f1 ≡ f1(t) and f3 ≡ f3(t) are arbitrary functions of t, f4 ≡ f4(y, t) and f5 ≡ f5(y, t) are

arbitrary functions of {y, t} and c , c , c and c are arbitrary constants. Especially, when f = f = f = f = c = c = c = c = 0
1 2 3 4 1 3 4 5 1 2 3 4
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Table 1

Lie bracket.

[Vi , Vj] V1 V2 V3 V4 V5(f1) V6(f2) V7(f3) V8(f4) V9(f5)

V1 0 −V2 0 0 V5( f̃1) V6(
1
2

f2) V7( f̃2) V8(tf4t) V9( f̃3)

V2 0 0 0 V5(f1t) 0 V7(f3t) V8(f4t) V9(f5t)

V3 0 −V4 V5(
1
2

f1) V6( f̃4) V7(− 1
2

f3) V8(yf4y) V9( f̃5)

V4 0 V7(− 1
2

f1t ) V6(f2y) 0 V8(f4y) V9(f5y)

V5( f̂1) 0 0 0 0 0

V6( f̂2) 0 0 V6(− f2 f4) V8(− f2 f5)

V7( f̂3) 0 0 0

V8( f̂4) 0 V9(− f4 f5)

V9( f̂5) 0
and f2 = 1, the degenerated symmetry is just Eq. (24), and when f2 = 0, the related symmetry is only the general Lie point

symmetry of the original Eq. (2).

From (33), we can obtain that the symmetry algebra of the prolonged system (25) is generated by the four vector fields

V1 = 1

2
x

∂

∂x
+ t

∂

∂t
− 1

2
u

∂

∂u
+ 1

2
φ

∂

∂φ
,

V2 = ∂

∂t
,

V3 = −1

2
x

∂

∂x
+ y

∂

∂y
+ 1

2
u

∂

∂u
− 1

2
φ

∂

∂φ
,

V4 = ∂

∂y
,

(34)

and the infinite-dimensional subalgebra

V5( f1) = f1
∂

∂x
− 1

2
f1t y

∂

∂u
,

V6( f2) = f2g
∂

∂u
+ f2gφ

∂

∂g
+ 1

2
f2φ

2 ∂

∂φ
,

V7( f3) = f3
∂

∂u
,

V8( f4) = f4g
∂

∂g
+ f4φ

∂

∂φ
,

V9( f5) = f5
∂

∂φ
.

(35)

Applying the commutator operators [Vm,Vn] = VmVn − VnVm, we obtain the commutator table presented in Table 1 with the

(i, j)th entry indicating [Vi, Vj], where

f̃1 = t f1t − 1

2
f1, f̃2 = t f3t + 1

2
f3, f̃3 = t f5t − 1

2
f5, f̃4 = y f2y − 1

2
f2, f̃5 = y f5y + 1

2
f5.

Some corresponding group invariant solutions can be given by solving the characteristic equations

dx

X
= dy

Y
= dt

T
= du

U
= dg

G
= dφ

	
. (36)

In the following part of the paper, two nontrivial cases are discussed in detail.

Case 1. The first type of special soliton–cnoidal waves solution

Without loss of generality, we assume c1 = c2 = c3 = f3 = 0, c4 = 1, f1 = 1
k
, f2 = c6, f4 = c7 and f5 = c8, and redefine


2 = c2
7 − 2c6c8. By solving (36), the group invariant solutions read

u = U − 2c6



G tanh

[
1

2
k
(x + 	)

]
,

g = −Gsech2
[

1

2
k
(x + 	)

]
, (37)

φ = − c7

c
− 


c
tanh

[
1

2
k
(x + 	)

]
,

6 6
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Fig. 1. The first type of special soliton–cnoidal wave interaction solution for Eq. (1) expressed by Eq. (41), with the parameters k = 0.5, c = r1 = 2, m = 0.9 and

n = 0.5. (a) The profile of the special structure at t = 0 and y = 0; (b) the profile of the special structure at t = 0 and x = 0; (c) perspective view of the wave; (d)

overhead view of the wave.
where U ≡ U(ξ , η), G ≡ G(ξ , η) and 	 ≡ 	(ξ , η) are the group invariant functions while ξ = −kx + y and η = t are the similarity

variables.

Substituting Eq. (37) into the prolonged system (25) yields

G = −k
2

2c6

(k	ξ − 1),

Uξ = −1

4
k
2(k	ξ − 1)2 − 1

4
k2

2k	ξξξ	ξ − 2	ξξξ − k	2
ξξ

(k	ξ − 1)2
,

(38)

where 	 satisfies the following reduction equation

2k2	ξξξ + 3k3	2
ξξ + k5
2	4

ξ − 4k4
2	3
ξ + 6k3
2	2

ξ − 2k2(k	3
ξ + 2
2)	ξ − 2(k	ξ − 1)	η + k
2 = 0. (39)

We just write a special solution of the reduction equation (39) in the form

	 = r0ξ + ω0η + cEπ (sn(r1ξ + ω1η, m), n, m). (40)

It leads to the soliton–cnoidal wave solution of the Eq. (1) as follows:

v = c2k4r2
1n2
2S4T 2

2(nS2 − 1)2
− 2ck3r2

1n
SCDT

(nS2 − 1)2
+ k2r2

1(2nC2 + n − 1)D2

(nS2 − 1)2
+ k2r2

1m2C2

nS2 − 1
− c2k4r2

1n2
2S4

4(nS2 − 1)2
, (41)

where {c, k, r1, m, n} are arbitrary constant, S ≡ sn(−kr1x + r1y + ω1t, m), C ≡ cn(−kr1x + r1y + ω1t, m), D ≡ dn(−kr1x + r1y +
ω1t, m), T ≡ tanh{ 1 k
[(1 − kr0)x + r0y + ω0t + cEπ (S, n, m)]} and
2
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Fig. 2. Two-soliton solution for Eq. (1) expressed by Eq. (41), with the parameters c = 1.2, k = r1 = 1, m = 1 and n = 0.5. (a) The profile of the special structure

at t = 0 and y = 0; (b) the profile of the special structure at t = 0 and x = 0; (c) perspective view of the wave; (d) overhead view of the wave.
r0 = 1 − ckr1

k
,

ω0 = 2ck2r3
1(−n + m2 + 1),

ω1 = 2k2r3
1(3n − m2 − 1),


2 = 4(n − 1)(n − m2)

c2k2n
.

(42)

In solution (41) , Eπ (ζ , n, m) is the third type of incomplete elliptic integral.

The solution given in (41) denotes the analytic interaction solution between the soliton and the cnoidal periodic wave. In

Fig. 1, we plot the interaction solution between the solitary wave and the cnoidal wave when the value of the Jacobi elliptic

function modulus m �= 1. We can see that a dark soliton propagates on a cnoidal wave background instead of on the plane

continuous wave background. This kind of solution can be easily applicable to the analysis of physically interesting processes. If

setting the modulus m = 1, the soliton–cnoidal wave interaction solution reduces back to the two-dark-soliton solution, whose

interaction behavior is displayed in Fig. 2.

Case 2. The second type of special soliton–cnoidal waves solution

In this case, we let c1 = c3 = f3 = 0, f2 = c6, f4 = c7, f5 = c8 and f1 = ht with h ≡ h(t), and redefine k1 = c2
c4

, k2 = 1
c2

and


2 = c2
7

− 2c6c8. Following the similar procedure as Case 1, we derive the group invariant solutions

u = U + k2(h − k1yht − C1)

2k1

− 2c6



G

{
tanh

[
1

2
k1k2
(y + 	)

]
− 1

}
, (43)

g = −Gsech2
[

1

2
k1k2
(y + 	)

]
,
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Fig. 3. The second type of special soliton–cnoidal wave interaction solution for Eq. (1) given by Eq. (47), with the parameters c = k1 = r1 = 1, k2 = 1.2, ω1 = 0.3,

m = 0.9, n = 0.5 and h = 2 sin
2(t). (a) One-dimensional image at t = 0 and y = 0; (b) one-dimensional image at t = 0 and x = 0; (c) one-dimensional image at

x = 0 and y = 0; (d) two-dimensional image at t = 0; (e) two-dimensional image at y = 0; (f) two-dimensional image at x = 0; (g) overhead view of (d); (h)

overhead view of (e); (i) overhead view of (f).
φ = − c7

c6

− 


c6

tanh

[
1

2
k1k2
(y + 	)

]
,

where C1 is arbitrary constant, U ≡ U(ξ , η), G ≡ G(ξ , η) and 	 ≡ 	(ξ , η) are the group invariant functions while ξ = −k1y + t

and η = x − k2h are the similarity variables.

Substituting Eq. (43) into the prolonged system (25) leads to

G = k1k2

2

2c6

	η,

Uη = −k1k2
	ηη + 1

4
k2

1k2
2


2	2
η + 1

2

	ηηη

	η
− 1

4

	2
ηη

	2
η

,

(44)

where 	 is a solution of the reduction equation

k1	ξη

(
k2

1k2
2


2	4
η − 3	2

ηη

)
+ 	2

η(	ξη − k1	ξηηη) + 	η(3k1	ηη	ξηη + k1	ηηη	ξη − 	ξ	ηη) = 0. (45)

We take a special solution of the reduction equation (45) in the form

	 = r0ξ + ω0η + cEπ (sn(r1ξ + ω1η, m), n, m), (46)

which leads to the soliton–cnoidal wave solution of the Eq. (1):

v = k2
1k2

2ω
2
0n2
2S4T 2

2(nS2 − 1)2
− 2ck1k2ω

2
1n
SCDT

(nS2 − 1)2
− ω2

1(2nC2 + n − 1)D2

(nS2 − 1)2
− k2

1k2
2ω

2
0n2
2S4

4(nS2 − 1)2
+ ω2

1m2C2

nS2 − 1
, (47)

where {c, k1, k2, r1, ω1, m, n} are arbitrary constant, S ≡ sn(ω1x − k1r1y + r1t − k2ω1h, m), C ≡ cn(ω1x − k1r1y + r1t − k2ω1h, m),

D ≡ dn(ω1x − k1r1y + r1t − k2ω1h, m), T ≡ tanh{ 1 k1k2
[ω0x + (1 − k1r0)y + r0t − k2ω0h + cEπ (S, n, m)]} and
2
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Fig. 4. Two-soliton solution for Eq. (1) given by Eq. (47), with the parameters c = k1 = r1 = ω1 = 1, k2 = 1.2, m = 1, n = 0.7 and h = 2 sin
2(t). (a) One-

dimensional image at t = 0 and y = 0; (b) one-dimensional image at t = 0 and x = 0; (c) one-dimensional image at x = 0 and y = 0; (d) two-dimensional image

at t = 0; (e) two-dimensional image at y = 0; (f) two-dimensional image at x = 0; (g) overhead view of (d); (h) overhead view of (e); (i) overhead view of (f).
r0 = −cr1(1 + 4k1ω
2
1n),

ω0 = −cω1,


2 = 4(n − 1)(n − m2)

c2k2
1
k2

2
n

.

(48)

In solution (47) , Eπ (ζ , n, m) is the third type of incomplete elliptic integral. In order to study the properties of this solution,

we give some pictures as shown below in Figs. 3 and 4.

Fig. 3 displays the second type of special soliton–cnoidal wave structure of v determined by (47) when the vaule of the Jacobi

elliptic function modulus m �= 1. One can see that a dark soliton propagates on a cnoidal wave background. When the modulus

m = 1, the soliton–cnoidal wave interaction solution reduces back to the two-dark-soliton solution, whose interaction behavior

is exhibited in Fig. 4.

5. Summary and discussion

In conclusion, the nonlocal symmetry of the (2+1)-dimensional breaking soliton equation is derived from the Lax pair. Un-

der the transformation ψ = eλt
√

φx, this nonlocal symmetry becomes residual symmetry which is obtained by the truncated

painlevé analysis. Then, the residual symmetry is readily localized to Lie point symmetry by prolonging the original equation to

a larger system. Meanwhile, we observe that the residual symmetry is just related to the Möbious transformation symmetry by

the linearized equation of nonauto-Bäcklund transformation.

The standard Lie point symmetry approach is used to study the finite symmetry transformation and similarity reductions of

the prolonged system. Two types of special interaction solution between the soliton and the cnoidal periodic wave are presented.

This kind of solution can be easily applicable to the analysis of physically interesting processes.
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The method presented here could be applied to other physical interested models, especially for supersymmetric models and

discrete ones. The link between the residual symmetry and other kinds of nonlocal symmetries, which can be obtained from

Bäcklund transformation, negative hierarchies, and the self-consistent sources, etc., is also an interesting topic. The above topics

will be discussed in our future research work.
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