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Abstract By the Bäcklund transformation method, an important (2+1)-dimensional nonlinear barotropic and quasi-
geostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Bäcklund transformation theo-
rems are proposed and used to get explicit solutions of the BQGPV equation. Furthermore, all solutions of a second
order linear ordinary differential equation including an arbitrary function can be used to construct explicit solutions of
the (2+1)-dimensional BQGPV equation. Some figures are also given out to describe these solutions.
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1 Introduction

It is known that most of the models of atmospheric and

ocean dynamical systems are nonlinear differential equa-

tions. The explicit solutions of these differential equa-

tions can well depict and reflect fruitful phenomena in

fluids and other physical fields. However, due to the

high nonlinearity of the models, it is often difficult to

solve these differential equations analytically. Based on

the classical Lie symmetry approach,[1−4] Huang[5] inves-

tigated the (2+1)-dimensional nonlinear barotropic and

quasi-geostrophic potential vorticity (BQGPV) equation

without forcing and dissipation on a β-plane channel and

obtained its some types of explicit solutions including the

ring solitary waves and the breaking soliton type of vor-

ticity solutions. The BQGPV equation reads

∂

∂t
∇2ψ − F

∂ψ

∂t
+ J(ψ,∇2ψ) + β

∂ψ

∂x
= 0 , (1)

where ∇2 = ∂2/∂x2+∂2/∂y2 denotes the two-dimensional

Laplacian operator, J(a, b) = axby − aybx is the Ja-

cobian operator, ψ is the dimensional steam function,

F = L2/R2
0 is the square of the ratio of the characteristic

horizonal length scale L to the Rossby deformation radius

R0, β = β0(L
2/U), and β0 = (ω0/R0) cosφ0, in which R0

is the Earth’s radius, ω0 is the angular frequency of the

Earth’s rotation, φ0 is the latitude, and U is the character-

istic velocity scales. The subscripts x, y represent partial

derivatives.

The BQGPV equation (1) as one of the most impor-

tant models of the atmospheric and ocean dynamical sys-

tems can be widely used to study the development of

turbulence and coherent structures in atmosphere and in

magnetized plasmas.[6−9] Furthermore, Eq. (1) is a poten-

tial vorticity conservation and its solutions can indicate

the movement state of free ocean depending on its initial

conditions. In Ref. [10], based on the standard multi-scale

expansion method and the long wave approximation, one

possible approximate solution to Eq. (1) was gained by

Tang et al. and it has been used to explain the life cycle

of a blocking system without loss of the long wave property

of the Rossby wave. Then Eq. (1) was restudied[11−12] by

Huang and Tang et al. using the classical Lie symmetry

approach again. Tang et al. found a new symmetry and

obtained two new types of similarity reduction solutions

as a note to the results in Ref. [5].

In this paper, Eq. (1) is reinvestigated in an alterna-

tive way, i.e. Bäcklund transformation and more exact so-

lutions of Eq. (1) are constructed. In Ref. [13], Lou et al.

have made use of this simple and essential technique, i.e.

Bäcklund transformation, to obtain some types of exact

solutions of (2 + 1)-dimensional Euler equation. Here, it

is found that the same method in Ref. [13] is also valid

for Eq. (1). In Sec. 2, some Bäcklund transformation the-

orems for the BQGPV equation are given out. With the

help of Bäcklund transformation, some types of exact solu-

tions are obtained and some figures are given out in Sec. 3.

Section 4 is our conclusions.

2 Bäcklund Transformations of BQGPV

Equation

Firstly, for the convenience of our computation, we

rewrite Eq. (1) in the following equivalent form

q = ψxx + ψyy ≡ ∇2ψ , (2)
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qt − Fψt + J(ψ, q) + βψx = 0 . (3)

Then we can investigate Eqs. (2) and (3) instead of Eq. (1).

Theorem 1 If {q0, ψ0} is a solution of Eqs. (2) and (3),

so is {q1, ψ1} under the definition

q1 = q0 + ω , ψ1 = ψ0 + p , (4)

where {ω, p} is a solution of

ω = ∇2p , (5)

ωt − Fpt + J(p, ω) + J(ψ0, ω) + J(p, q0) + βpx = 0 . (6)

Proof Direct calculations.

From Bäcklund transformation (4), one can find new

exact solutions {q1, ψ1} from known ones {q0, ψ0} when

{ω, p} are solved from Eqs. (5) and (6). Furthermore, we

put a constraint between ω and p as general as

ω = Q(p) , (7)

where Q(p) is an arbitrary function of p. Due to this

ansatz, we may have a much simplified Bäcklund trans-

formation theorem:

Theorem 2 If {q0, ψ0} is a solution of Eqs. (2) and (3),

so is {q1, ψ1} under the definition

q1 = q0 +Q(p) , ψ1 = ψ0 + p , (8)

where Q(p) is an arbitrary function of p and p is a solution

of the over-determined equation system

∇2p = Q(p) , (9)

pt + J(ψ0, p) = 0 , (10)

− Fpt + J(p, q0) + βpx = 0 . (11)

Proof As for Eq. (9), it is just a simple combination of

Eqs. (5) and (7). Substituting the ansatz (7) into Eq. (6)

of Theorem 1, we have

(pt + J(ψ0, p))Qp − Fpt + J(p, q0) + βpx = 0 , (12)

where Qp ≡ dQ/dp. One can see that Eq. (12) is correct

for arbitrary Q(p) if and only if Eqs. (10) and (11) are

satisfied simultaneously. Theorem 2 is proven.

However, if the known solutions {q0, ψ0} are very com-

plicated, it is still very difficult to construct some exact

solutions by solving Eqs. (9), (10), and (11). So to make

sure Eqs. (10) and (11) be solved easily, we can select the

seed solution for a very special and simple form

q0 = c , (13)

i.e. q0 is an arbitrary constant. Firstly, we should solve an-

other seed solution ψ0 by substituting q0 = c into Eqs. (2)

and (3)

ψ0xx + ψ0yy = q0 , (14)

q0t − Fψ0t + J(ψ0, q0) + βψ0x = 0 . (15)

For the assumption q0 = c, Eqs. (14) and (15) can be

solved readily. One can see that the corresponding general

solution of Eqs. (14) and (15) has the form of (i ≡
√
−1)

ψ0 =
c

4

[

y2 +
(

x+
β

F
t
)2]

+ f1

[

y +
(

x+
β

F
t
)

i
]

+ f2

[

y −
(

x+
β

F
t
)

i
]

, (16)

where

f1 ≡ f1

[

y +
(

x+
β

F
t
)

i
]

, f2 ≡ f2

[

y −
(

x+
β

F
t
)

i
]

are arbitrary functions of the indicated variables. Fur-

thermore, ψ0 is assured to be real on condition that f2 is

a complex conjugate of f1 and vice verse. In order to get

explicit solutions of Eqs. (2) and (3), here we select

f1 + f2 = m1y +m2

(

x+
β

F
t
)

, (17)

i.e.

f1 =
m1 −m2i

2

[

y +
(

x+
β

F
t
)

i
]

,

f2 =
m1 +m2i

2

[

y −
(

x+
β

F
t
)

i
]

,

where m1 and m2 are arbitrary real constants. Hence for-

mula (16) becomes

ψ0 =
c

4

[

y2 +
(

x+
β

F
t
)2]

+m1y +m2

(

x+
β

F
t
)

. (18)

Then substituting the seed solution {q0, ψ0} with the

form of Eq. (13) and (18) into Eqs. (10) and (11), one can

get

p = P (c((Fx + βt)2 + F 2y2)

+ 4F 2(m2x+m1y) + 4Fβ(m2t− y)) . (19)

For convenience, we denote

ξ = c[(Fx + βt)2 + F 2y2]

+ 4F 2(m2x+m1y) + 4Fβ(m2t− y) . (20)

Substituting p = P (ξ) with Eq. (20) into Eq. (9), we can

obtain
[

m2
2F

2 +(Fm1−β)2 +
cξ

4

]d2P (ξ)

dξ2
+
c

4

dP (ξ)

dξ
= Q(P (ξ)) .

The above results can be summarized as the following the-

orem:

Theorem 3 If P (ξ) ≡ P is a solution of the second order

ordinary differential equation
[

m2
2F

2+(Fm1−β)2+
c

4
ξ
]d2P (ξ)

dξ2
+
c

4

dP (ξ)

dξ
= Q(P ) , (21)

with ξ = c[(Fx + βt)2 + F 2y2] + 4F 2(m2x + m1y) +

4Fβ(m2t− y), Q(P ) being an arbitrary function of P and

c, m1, m2 being arbitrary constants, then ψ given by

ψ =
c

4

[

y2 +
(

x+
β

F
t
)2]

+m1y+m2

(

x+
β

F
t
)

+P (ξ)(22)

is a solution of the BQGPV equation (1).

3 Some Special Explicit Solutions from

Bäcklund Transformations

From Theorem 3, one can get fruitful explicit solutions

of Eq. (1) only by solving a second order ordinary differ-

ential equation with an arbitrary function Q(P ). In this

section, we select some special Q(P ) and give out the cor-

responding explicit solutions of Eq. (1). For the arbitrary

constant c in Theorem 3, there are two circumstances, i.e.
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c = 0 and c 6= 0. Then for these two cases, we will study

them separately.

3.1 Special Explicit Solutions from c 6= 0 in

Theorem 3

For the parameter c 6= 0 in Eq. (21), we give out some

explicit solutions of Eq. (1) for the special selections of

Q(P ).

(i) For the selection Q(P ) = c0, Eq. (21) becomes

[

m2
2F

2+(Fm1−β)2+
c

4
ξ
]d2P (ξ)

dξ2
+
c

4

dP (ξ)

dξ
−c0 = 0 , (23)

where c0 is also an arbitrary constant. Solving Eq. (23),

one can get

P (ξ) =
[k1

c
− 16c0

c2
(m2

2F
2 + (Fm1 − β)2)

]

ln(4m2
2F

2 + (Fm1 − β)2 + cξ) +
4c0
c
ξ + k2 ,

with k1 and k2 being two arbitrary constants. Hence, one can obtain one explicit solution of Eq. (1) via (22) directly,

there being

ψ =
(

4c0F
2 +

c

4

)(

x2 + y2 +
β2

F 2
t2

)

+
(

8c0βF +
cβ

2F

)

xt+
(

m2 +
16c0m2F

2

c

)

x

+
(

m1 −
16c0βF

c
+

16c0m1F
2

c

)

y +
(m2β

F
+

16c0m2βF

c

)

t+ k2 +
[k1

c
− 16c0

c2
(m2

2F
2 + (Fm1 − β)2)

]

× ln(c2((Fx + βt)2 + F 2y2) + 4Fc(Fm2x+ (Fm1 − β)y + βm2t) + 4(Fm1 − β)2 + 4m2
2F

2) . (24)

When c0 = 0 and k1 = 0 in Eq. (24), we obtain a polynomial solution of Eq. (1). In other cases, the solution

obtained in the form of Eq. (24) will be with singularities due to the logarithm function.

Figures 1(a) and 1(b) display the structure for the solution (24) under the parameter selections

β = 1 , F = 1 , c = 0.1 , m1 = 1 , m2 = 0 , k1 = −10 , k2 = 0 , (25)

with c0 = 1/16 and c0 = 1 at time t = 0, respectively. Both of the singularities are (0, 0).

Fig. 1 The special solution ψ given by Eq. (24) with Eq. (25) and (a) c0 = 1/16, (b) c0 = 1, both at time t = 0.

(ii) Selecting Q(P ) = mP (ξ) in Eq. (21), one can obtain
[

m2
2F

2 + (Fm1 − β)2 +
c

4
ξ
]d2P (ξ)

dξ2
+
c

4

dP (ξ)

dξ
−mP (ξ) = 0 , (26)

where m is an arbitrary constant. Solving P (ξ) in Eq. (26) and substituting it into Eq. (22), we get the second type

of explicit solution of Eq. (1)

ψ =
c

4

[

y2 +
(

x+
β

F
t
)2]

+m1y +m2

(

x+
β

F
t
)

+ l1J
{

0, 4
√
−m

[

F 2
(

x2 + y2 +
β2

F 2
t2

)

+ 2βFxt+
4m2F

2

c
x+

4F (m1F − β)

c
y +

4m2βF

c
t+

4(m2
2F

2 + (Fm1 − β)2)

c2

]1/2}

+ l2Y
{

0, 4
√
−m

[

F 2
(

x2 + y2 +
β2

F 2
t2

)

+ 2βFxt+
4m2F

2

c
x

+
4F (m1F − β)

c
y +

4m2βF

c
t+

4(m2
2F

2 + (Fm1 − β)2)

c2

]1/2}

, (27)

where l1, l2 are arbitrary constants, J and Y are the Bessel functions of the first and the second kind, respectively.

Then we give out Fig. 2 to display the property of the solution (27). The parameter selections in Figs. 2(a) and 2(b)
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are respectively

β = 1 , F = 1 , c = 0.1 , m1 = 1 , m2 = 0 , m = −1/16 , l1 = 15 , l2 = 0 , (28)

β = 1 , F = 1 , c = 0.1 , m1 = 0 , m2 = 1 , m = −1/16 , l1 = 10 , l2 = 0 , (29)

at time t = 0.

Fig. 2 (a) and (b) describe the steam function ψ given by Eq. (27) with Eqs. (28) and (29) separately at time
t = 0.

(iii) Selecting Q(P ) = exp(P ), Eq. (21) becomes
[

m2
2F

2 + (Fm1 − β)2 +
c

4
ξ
]d2P (ξ)

dξ2
+
c

4

dP (ξ)

dξ
− exp(P ) = 0 . (30)

The explicit solution of Eq. (30) is

P (ξ) = ln
[ (a1 − c2)sech2[(1/2)(

√
c2 − a1/c)(ln(4m2

2F
2 + 4(m1F − β)2 + cξ) − a2))

8(4m2
2F

2 + 4(m1F − β)2 + cξ)

]

, (31)

where a1 and a2 are two arbitrary constants.

Hence from P (ξ) in Eq. (31) with ξ in Eq. (20), one can gain the explicit solution of Eq. (1) from Eq. (22). Because

the expression of special solution is so complicated that we do not write it here.

(iv) For the Q(P ) = ξ2 sin(ξ), Eq. (21) becomes
[

m2
2F

2 + (Fm1 − β)2 +
c

4
ξ
]d2P (ξ)

dξ2
+
c

4

dP (ξ)

dξ
− ξ2 sin(ξ) = 0 . (32)

By solving P (ξ) in Eq. (32), one can readily check that

ψ =
1

c
{Ci (ζ + k)[8k sin(k) + (4k2 − 8) cos(k)]

+ Si (ζ + k)[(4k2 − 8) sin(k) − 8k cos(k)]

+ 4[(k − 1)ζ sin(ζ) + (k − 3) cos(ζ)]

+ b1 ln(c(ζ + k)) +
c

4F 2
(ζ + 4Fβy + 4b2F

2)} (33)

is the explicit solution of Eq. (1). In Eq. (33), Si, Ci are

respectively the Sine integral and the Cosine integral and
b1, b2 are two arbitrary constants. Here for convenience,

we denote

ζ = cF 2
(

x2 + y2 +
β2

F 2
t2

)

+ 2cβFxt+ 4F (F − β)y ,

k =
4(β − F )2

c
. (34)

3.2 Special Exact Solutions from c = 0 in

Theorem 3

In this section, we will give out some another explicit

solutions of Eq. (1) for the parameter c = 0 in Eq. (21).

In this case, theorem 3 will be more special and simplified.

Here we rewrite it as follows.
Theorem 4 If P (ξ) ≡ P is a solution of the two-order

ordinary differential equation

(m2
2F

2 + (Fm1 − β)2)
d2P (ξ)

dξ2
= Q(P ) , (35)

with

ξ = F (m2x+m1y) + β(m2t− y) ,

Q(P ) being an arbitrary function of P and m1,m2 being
arbitrary constants, then ψ given by

ψ = m1y +m2

(

x+
β

F
t
)

+ P (ξ) (36)

is a solution of the BQGPV equation (1).
For Q(P ) in Eq. (35), we can not list all of them and

Eq. (35) is not solved easily for every Q(P ). Here we only

list some special selections which are of interest to us. We
will select Q(P ) as P 2, −P 3, exp(P ), sin(P ), tanh(ξ),

ξ sin(ξ), and −ξP . Substituting them into Eq. (35), the

corresponding solutions can be solved readily. We list

them in the following.
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P1(ξ) = 6R2P (ξ + c1, 0, c2) , P2(ξ) = c3sn
[

c3

( ξ√
2R

+ c4

)

, i
]

,

P3(ξ) = − ln(2) + ln
[

− c5sech
2
(

√
c5(ξ + c6)

2R

)]

,

P4(ξ) = 2 arctan
[

cn
(

√
c7R2 + 2

2R
(ξ + c8),

2√
c7R2 + 2

)

, sn
(

√
c7R2 + 2

2R
(ξ + c8),

2√
c7R2 + 2

)]

,

P5(ξ) = − 1

2R2
[ξ2 + dilog (1 + exp(2ξ))] +

(

c9 −
ln 2

R2

)

ξ + c10 ,

P6(ξ) = − 1

R2
[ξ sin(ξ) + 2 cos(ξ)] + c11ξ + c12 , P7(ξ) = c13Ai (−R−2/3ξ) + c14Bi (−R−2/3ξ) .

Here,

dilog (x) =

∫ x

1

ln z

1 − z
dz ,

Ai and Bi are Airy wave function,

R =
√

m2
2F

2 + (Fm1 − β)2 , i ≡
√
−1

and ck (k = 1, . . . , 14) are arbitrary constants.

Then the corresponding explicit solutions ψk of Eq. (1)

are obtained by Eq. (36), i.e.

ψk = m1y+m2

(

x+
β

F
t
)

+Pk(ξ) , (k = 1, . . . , 7) , (37)

with ξ = F (m2x+m1y) + β(m2t− y).

Some figures are given out to depict these solutions

ψk (k = 2, 3, 4, 6, 7).

Figure 3 shows the real part of complex solution ψ2

and the corresponding parameters are

β = 1 , F = 1 , m1 = 0 ,

m2 = 1 , c3 = 1 , c4 = 1 , (38)

with t = 1.

Fig. 3 The real part of ψ2 given by Eq. (37) with
Eq. (38) at t = 1.

Figure 4 depicts ψ3 with the parameters

β = 1 , F = 1 , m1 = 0 ,

m2 = −1 , c5 = −5 , c6 = 1 , (39)

at time t = 1.

Fig. 4 ψ3 in Eq. (37) with Eq. (39) at t = 1.

Figure 5 describes the solution ψ4 in Eq. (37). The

parameter selections of ψ4 in Figs. 5(a) and 5(b) are re-

spectively

β = 1 , F = 1 , m1 = 0 ,

m2 = 0 , c7 = 1 , c8 = 1 , (40)

β = 1 , F = 1 , m1 = 0 ,

m2 = 1 , c7 = 1 , c8 = 1 , (41)

both at time t = 1.

Figure 6 describes the solution ψ6 in Eq. (37) at t = 0.

The parameter selections in ψ6 are

β = −1 , F = 1 , m1 = 0 ,

m2 = −1 , c11 = 0.1 , c12 = 0 . (42)

Figure 7 depicts ψ7 in Eq. (37) with the parameters

β = 0.1 , F = 2 , m1 = −1 ,

m2 = 1 , c13 = 10 , c14 = 0 , (43)

at t = 0.
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Fig. 5 (a) ψ4 given by Eq. (37) with Eq. (40) and (b)
ψ4 given by Eq. (37) with Eq. (41) both at t = 1.

Fig. 6 ψ6 in Eq. (37) with Eq. (42) at t = 0.

Fig. 7 ψ7 in Eq. (37) with Eq. (43) at t = 0.

4 Conclusions

For the BQGPV equation (1) being one of the most im-

portant models of the atmospheric and ocean dynamical

systems, to obtain its explicit solutions is very meaning-

ful. Lou et al. have gained some types of explicit solutions

using the classical symmetry. But solving some of the re-

duced equations of Lie group is still difficult. To gain more

explicit solutions of Eq. (1), the Bäcklund transformation

method is used in this paper. Firstly, some simple spe-

cial Bäcklund transformation theorems are proposed. It

is shown that all solutions of a second order linear ordinary

differential equation can be used to construct exact solu-

tions of (2+1)-dimensional BQGPV equation. For eleven

special circumstances of the ordinary differential equation,

we give out their solutions. Based that the corresponding

explicit solutions of Eq. (1), which are expressed by spe-

cial functions, are obtained. Furthermore, some figures are

given out to depict these solutions. These figures show rich

structures of solutions of BQGPV equation, which may be

interesting in studying atmospheric and ocean dynamical

systems. However, some explicit solutions we obtained

have singularities. How to explain these singularities and

to search for more exact solutions with no singularities of

the BQGPV equation are left to be investigated later.
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