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Abstract

In this paper, we investigate higher-order rogue wave solutions of the Kundu—Eckhaus equation,
which contains quintic nonlinearity and the Raman effect in nonlinear optics. By means of a
gauge transformation, the Kundu-Eckhaus equation is converted to an extended nonlinear
Schrodinger equation. We derive the Lax pair, the generalized Darboux transformation, and the
Nth-order rogue wave solution for the extended nonlinear Schrédinger equation. Then, by using
the gauge transformation between the two equations, a concise unified formula of the Nth-order
rogue wave solution with several free parameters for the Kundu—Eckhaus equation is obtained.
In particular, based on symbolic computation, explicit rogue wave solutions to the
Kundu-Eckhaus equation from the first to the third order are presented. Some figures illustrate
dynamic structures of the rogue waves from the first to the fourth order. Moreover, through
numerical calculations and plots, we show that the quintic and Raman-effect nonlinear terms

affect the spatial distributions of the humps in higher-order rogue waves, although the
amplitudes and the time of appearance of the humps are unchanged.

Keywords: rogue wave, Kundu—Eckhaus equation, generalized Darboux transformation

1. Introduction

The popularity of rogue waves (also known as freak waves,
monster waves, killer waves, mad- or rabid-dog waves and
similar names) has grown rapidly in recent years [1-3]. The
term ‘rogue waves’ was originally used to describe mys-
terious giant ocean waves, a horrible phenomenon that can
lead to water walls taller than 20-30 m and that represents a
catastrophe for ships, offshore oil platforms, and so on [1].
A wave can be assigned to this category when its height is
two or three times larger than the background crest and
appears from nowhere and disappears without a trace [4]. In
addition to being found in the deep ocean, rogue waves have
been discovered in other fields, among them optics [2, 3],
capillary flow [5], superfluidity [6], Bose—Einstein con-
densates [7], plasma physics [8], the atmosphere [9], and
even finance [10].

0031-8949/14/095210+15$33.00

It is well known that the standard nonlinear Schrédinger
(NLS) equation

i, + e + 2JuPu =0, (1)

which contains group velocity dispersion and self-phase
modulation, is a basic model that describes optical soliton
propagation in Kerr media [11]. The complete integrability
and multi-soliton solutions, breather solutions, and various
types of rogue wave solutions associated with the NLS
equation have been widely reported by many authors [12-21].
Nevertheless, in optic fiber communications systems, one
always has to increase the intensity of the incident light field
to produce ultrashort (femtosecond) optical pulses [37]. In
this case, the simple NLS equation is inadequate to accurately
describe the phenomena, and higher-order nonlinear terms,
such as third-order dispersion, self-steepening, and self-fre-
quency shift, must be taken into account [23-29].
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In this paper, we consider the Kundu—Eckhaus (KE)
equation, which contains quintic nonlinearity and the Raman
effect in nonlinear optics [30],

in, + g + 20ulPu + 4p%ul*u - 4iﬁ(|u|2) u=0, Q)

where u (x, t) is the complex smooth envelop function and the
subscripts x and ¢ are spatial and temporal partial derivatives.
is a real constant, ﬁ2 is the quintic nonlinear coefficient, and the
last term represents the Raman effect, which is responsible for
the self-frequency shift. The KE equation was proposed by
Kundu when he studied the gauge connections among some
generalized Landau—Lifshitz and higher-order NLS systems; it
adequately describes the propagation process of ultrashort
optical pulses in nonlinear optics [31] and examines the sta-
bility of the Stokes wave in weakly nonlinear dispersive matter
waves [32]. A series of important results related to equation (2)
have been obtained, such as the gauge connections between
equation (2) and other soliton equations [30], the Lax pair and
the Hamiltonian structure [33], and soliton solutions through
the Darboux transformation [34-36], based on an extended
Ablowitz—Kaup—Newell-Segur (AKNS) spectral problem,
Zhaqilao constructed a generalized Darboux transformation
(DT) for equation (2), and the explicit first-order rogue wave
solution and the modulus form of the second-order rogue wave
solution were given. Moreover, very recently, Zhao, Liu, and
Yang revisited the first-order rogue wave solution to
equation (2) through the method of transforming the Lax pair
matrix to the Jordan form, and some dynamic properties of the
rogue wave solution were analyzed [38].

Generalization to even higher-order solutions is difficult
and not trivial, as is remarked in [20]. Recently there has been a
notable surge in interest in classifying the hierarchy of higher-
order rogue wave solutions to NLS-type [39—41]. In general,
higher-order rogue wave solutions can be classified into fun-
damental, triangular, pentagram, heptagram, and even more
complicated patterns. However, to our knowledge, there are no
reports regarding higher-order rogue wave solutions to
equation (2). The generalized DT based on the aforementioned
extended AKNS spectral problem cannot be used directly to
generate higher-order rogue wave solutions because, in every
iterative process, it is necessary to solve two complicated
partial differential equations to get the concrete expressions of
a; j=1,2,...), and when j > 3, the solution procedure is
very difficult and the higher-order (second-order, third-order,
etc) rogue wave solutions cannot be explicitly derived, as is
remarked in [37]. Owing to the extensive applications of
equation (2), it is essential to find an effective formula to
generate higher-order rogue wave solutions for it. By studying
the dynamic properties of higher-order rogue waves, one can
have a more comprehensive understanding of the influencing
mechanism produced by the quintic and Raman-effect non-
linear terms on rogue waves in nonlinear optics.

The aim of our paper is to construct higher-order rogue
wave solutions to equation (2) and to discuss their dynamic
distributions by choosing different values of the free para-
meters. Instead of studying rogue wave solutions for
equation (2) directly, we concentrate on the solution to an

extended NLS equation that is gauge equivalent to it, that is,
ig, + g, + 2lqPq + 2i8(19Pq, - ¢*q})

~26q [ (laF) dx =0, 3)

whose Lax pair is the standard AKNS spectral problem
[34, 42] together with the corresponding auxiliary problem
(given hereafter). When f = 0, the preceding equation is
reduced to the standard NLS equation. In this paper, we first
construct the generalized DT [21, 43—47] and the Nth-order
rogue wave solution for equation (3). Then, by means of the
gauge transformation between the two equations, a concise
unified formula for an Nth-order rogue wave solution for
equation (2) is derived. Furthermore, the compact 2N X 2N
determinant representation of the formula is given. As an
application, based on symbolic computation [48-50], explicit
rogue wave solutions to equation (2), from the first to the third
order, are presented. Some figures are used to illustrate
dynamic structures of the rogue waves from the first to the
fourth order. Moreover, the influences produced by the small
parameter S on the higher-order rogue waves are discussed in
detail with the help of numerical calculations and plots. We
find that by taking different values of the small parameter f,
the spatial distributions of the humps in higher-order rogue
waves can be affected, whereas the amplitudes and the time of
appearance of the humps are unchanged.

The outline of our paper is as follows. In section 2, we
give the gauge transformation between equations (2) and 3
and derive the Lax pair of equation (3). In section 3, a gen-
eralized DT is constructed, and a concise unified formula for
an Nth-order rogue wave solution for equation (2) is given. In
section 4, some explicit rogue wave solutions, figures, and
numerical calculations are presented. The final section is a
discussion section.

2. Gauge transformation and Lax pair

In this section, we present the gauge transformation between
equations (2) and (3) and derive the Lax pair of equation (3)
by using the AKNS procedure [42]. We start from the
extended AKNS spectral problem [33]

y(x, 1)
= U R = R
b=y, y (()]

U= —il + iﬂ|u|2 u ’ @
—u* i — ipul?

with the auxiliary problem
=,
2ul + i, + 2pul*u
)

Vi1
V=
—2u*C + iul = 2p\ulPu* -W
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where
Voo = — 202 + iul? + ﬁ(uu;f - uu*) + 4,

u is the potential, and ¢ is a constant spectral parameter. By
making use of the compatibility condition U, — V,+
UV — VU = 0, one can directly obtain equation (2). Next,
according to [51] (section 1.4) and [52] (section 4.2), we
know that the following transformation,

exp (iﬁ / |q|2dx> 0

0 exp ( —ip f |q|2dx)
u = qexp (21/3 /|q|2dx), @)

converts the extended AKNS spectral problem (4) to the
standard AKNS spectral problem. Here ¢ = ¢ (x, ¢) is the new
potential and ¥ = (y (x, 1), ¢ (x, t))T is the new spectral
function. Hence, we have the following proposition.

Proposition 1. From a known solution q of the extended NLS
equation (3), the explicit formula (7) gives a new special
solution to the KE equation, and the Lax pair of the extended
NLS equation (3) reads

N -i{ q
Y. =U%, U = ¢ (8
-q* i
~ ~ ‘711 24"] + qu
Y =V¥, V= R , )
—20q* +iq;  -Wu

where

Vi ==208% + ilaP + (g9} - a.4%) = 18 [ (laP) dv

Proof. By directly substituting (7) into the KE equation,
together with the extended NLS equation (3), one can show
that the equation holds. Then, substituting (6) into (4) and (5),
and using the AKNS procedure, we can derive the linear
spectral problem (8) and (9). Furthermore, it is easy to verify
that the extended NLS equation (3) can be exactly reproduced
from the compatibility condition U-V.,+ UV -VU=0.

Remark 1. According to proposition 1, we see that
equations (2) and (3) are gauge equivalent to each other.
Therefore, considering the complete integrability of the KE
equation, the extended NLS equation (3) can also be regarded
as completely integrable.

3. Generalized Darboux transformation

In this section, by resorting to the Lax pair (8) and (9), we first
construct the classical DT and the generalized DT for

equation (3). Let H{ = (y;, d)])T be a solution to the Lax pair
equations (8) and (9) at g = ¢[0] and { = {;; subsequently,
the classical DT of equation (3) can be defined as

Y[l =TI[1]¥, T[1]=¢ - H[0]AH[0]!, (10)

U] [0] ¢][0]*
(o1 + |atorf')

0
o= 0
0 ¢
Now let ¥ = (y, ¢)' (1 <1< N) be a solution to the Lax
pair equations (8) and (9) for ¢ = ¢[0] and { = {;. Repeating

the above process N times, we get the N-step DT of
equation (3),

Y[N]=TI[N]T[N - 1]...T[1]1¥, T[]

g1 = q[0] - 2i(& - &) (i

where y, [0] =y, ¢,[0] = ¢,

y[0] —¢,[0TF
¢1 [0] l,1/1[0]>x<

=¢I - H[l - 1NAH[L- 1171, (12)
qIN1=qIN - 1] - 2i(ty - &)
— _ *
yy N = 11y IN = 1] 0

(Jywiv = 1f +|oyiv - 11f)
where (yll — 11, il — 1Y = ¥l - 1],

Hll-11=T1-1T[ - 2]---T[l])‘£:£ 7,

yill = 11 —yll = 1

Hil-1]= ,
Sl - 11 wll— 17
0
A,=[CI ] I <I<N.
0 ¢

Thus, in terms of the above facts, we can construct the
generalized DT for equation (3). Suppose ¥ ({; + 6) is a basic
solution to the Lax pair equations (8) and (9) where g = ¢[0]
and { = {; + 0; here ¢ is a small parameter. We assume that
the vector function ¥; can be expanded as a Taylor series at
6=0:

="+ P15+ PPs? + pPls?

+.. + NS (14)

where
i = (yl, gl )T - 1im590%%, k=012 ...

It is apparent that ¥”! is a special solution to the Lax pair
equations (8) and (9) for g = ¢[0] and { = &, so the first-step
generalized DT can be spontaneously given.

(1) The first-step generalized DT follows.

w[1]=T[¥, T[1]=¢I— H[OJAHO]™',  (15)
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Wi [0] ¢1[0]*
(Juato1] + | 101])

g1 = q[0] - 2i(& - &) (16)

where y;[0] = y), ¢, [0] = $/,

0] —ao,[0T* 0
0] = ‘//1[ ] ¢1[ ] A= (Cl *)
$,[0] i [OT* 0 &

(2) The second-step generalized DT follows.

In light of the first-step case, we realize that T [1]¥ is a
solution to the Lax pair equations (8) and (9)) for ¢ = ¢g[1]
and { = {; + 6. Therefore, the following limit:

T[1] H
(=546 . 0+ T[1D¥H
= lim
5—0 0

= + e = wi

offers a nontrivial solution to the Lax pair equations (8) and
9) for g = g[1] and ¢ = {;. At this point, the second-step
generalized DT holds:

Y21 =T[2IT[11¥, T[2] =& — H[1]AH[1T™Y, (17)

W1[1]¢1[1]*

g121 = q[11 - 2i(¢ - &) (18)

(jwataf +|eiuf)
where (y;[11, ¢, [11)T = H[1],
il 1T

&G0
, Ay = .
s i | [0 41*]

(3) The third-step generalized DT follows.
Analogous to the foregoing, we consider the following
limit:

H[l] =

[r2d7(]|_, #

. =g +o G+ TRDHE + T
lim = lim
50 52 50 52
=¥ + (z[2] + 1) Y + BI2501
=Y¥I[2].

Here we have used the identity
LI =0, BRI + B = 0.

Hence we obtain a nontrivial solution to the Lax pair
equations (8) and (9) for g = ¢[2] and { = {;. The third-step
generalized DT follows:

Y[3]1=TI[3]T[2]T[1]¥, T3]

= {1 - H[2]1AsH[2] ™, 19)
i (212"

(jwi2if +|mi2f)

g131 = q121 - 2i(& - ¢f) (20)

X Wang et al
where (y;[2], ¢, [21) = HI[2],
wi[2] =2 (Cl 0]
’ A3 = * M
121 wl2r 0 &

Continuing the foregoing process and combining all the
generalized DTs, the general case can be given.

H[2] =

Proposition 2. Denoting

I [ j-1
W= + YL + Y Y Gk

j=1 j=lk=1
+... + LUK - 1]... 1118,

then the Nth-step generalized DT yields
Y[N]=T[NIT[N - 1]...T[11Y, TI]

=¢ - H[l - NAH[L- 17171, 21)
Nl N[
gIN1 = q[01 - 2i(& - &) ) WAL (2

= (Jwiaf +[oaf)

where
(will. ¢yl11)" = ¥ 11)

[ =1] =gl = 1T*
Hl - 1] = wl 1 =&l ] ’

11— 11wl = 1T

0
A PPy
0 &

In what follows, on the basis of the Crum theorem [35]
and the determinant representation of the Nth-step generalized
DT for the NLS equation [21], we give the 2N X 2N deter-
minant representation of (22).

Ay

Proposition 3. Define

(& + 8Ywi (G + ) = ivl™ + wq ). 118 + wy [, 2167
+.. o+, moéT + ...,

(G +8Ydi(G+ 8) =L/ p + L. 116 + 1), 218>
+... .+ P, mo" + ...,

G=0,1,...., m=1,2,..),

with
nom) = =l 6+ 0wl + )|
1> m' 65”‘ ! 5=0’
d\lj, m] = %aa—m[(é’l + 5)j¢1(§1 + 5)] o
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Then (22) can be rewritten as

q[N] =
where
Q =
[0] [0]
24 - ¢1
4)1[0] l//l[O] #*
Giyp” = O

0 0] =
Lo Gl

€|
0] — 21,
1 2

w [0, 1]
# 10, 1]
yll, 1]
#(1, 1]

™ =M™ v g
[0, N — 1] -0, N — 1]*
¢ [0, N — 1] wl0, N — 1T*
yill, N—1] -1, N - 1T*

H1,N-1]

. yIN-1,N-1]

wll, N — 1

—@IN—-1,N - 1]*

(23)

=@ [0, 1T
wlo, 17
=l 17
yll, 17

GV NS0l IN = 1 1] =g [N — 1, 1T

—yi[N, 1T*

=@ [0, 1T
wl0, 17*
—i[1, 17*
will, 17

WIN.N-1]  —¢[N,N - 1F*
and
Q =
1/11[0] _¢][0]* l/ll[O, 1]
" yi $10. 1]
aul® =g wll, 1]
Gig” &l $il1, 1]
GV =GN T O g IN = 1, 1] =[N - 1, 1
GV gN Ty g IN =1, 1] N - 1 )
yl0, N - 1] —$\[0, N — 1T
¢ [0, N — 1] w0, N — 1T*
yll, N - 1] —p[1. N = 1T
will, N — 1T*

¢ [1, N —1]

CyIN-1,N—=1] =[N —1,N - 1F*

. pIN=1,N—-1]

yIN - 1, N - 1]*

Remark 2. What we should mention is that both (22) and (23)
lead to the Nth-order rogue wave solution to equation (3). But
in a practical application, we prefer to use the Darboux
transformation of degree one successively (22) rather than a
Darboux transformation with the high-order determinant
representation (23), so as to avoid the cumbersome calcula-
tion of the determinant of a matrix with a high order. Because
the algorithm of the Darboux transformation of degree one is
purely algebraic and independent of the seed solution, it is
convenient for working out the solutions by using symbolic
computation via computer.

At this point, we arrive at a simple unified formula for an
Nth-order rogue wave solution for equation (2).

Proposition 4. Let q[N] defined by (22) be a solution to the
extended NLS equation (3); then the following formula:

2
dx)

provides the explicit Nth-order rogue wave solution to the KE
equation.

uIN) = gV exp (205 lav) (24)

Here it is shown that we only have to work out rogue
wave solutions to equation (3); then the formula (24) gives
rise to the corresponding arbitrary-order rogue wave solutions
to equation (2). In the next section, we present some explicit
rogue wave solutions to equation (2) to illustrate how to use
the preceding formula.

4. Rogue wave solutions

In this section, we start from a nontrivial seed solution to
equation (2),

u[0] = a exp [i&l],

0y =ax + (—a2 + 20>+ 4 2a4)t, (25)
where a, a are real parameters. Without losing generality, we
set a=1, a = 0; then (25) is reduced to
u[0] = exp [i(4/)’2 + 2)¢t]. From the gauge transformation
between equations (2) and (3), a nontrivial seed solution to
equation (3) can be obtained as

q10] = exp [i0], 6 =—2px + (4/32 + 2)t. (26)
According to the preceding section, we know that it is
essential to obtain a basic solution to the Lax pair
equations (8) and (9) that can be expanded as a Taylor series.
To this end, motivated by the work of using DT theory
[21, 53, 54], we take { = f + ik, and then, solving the Lax
pair equations under the nontrivial seed solution (26) and this
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Figure 1. Evolution plot of the first-order rogue wave solution (29): (a) g =0; (b) f = 1/3; (¢c) p = —-1/3.

special spectral parameter, we obtain

(C] e — G e_”)eiig

(= | (27)
(Cle‘” - Cge”)e_ig
where
1 1
(h— h2—1)2 (h+\/h2—1)2
Cl = 9 C2 = —7
n -1 -1
N
n=—+vh*—-1 (x + 4Pt + 2iht + Zskuk],
k=1
where s = my + ing, (my, npy € R) and f is a small

parameter.
Taking h = 1 — if?, the vector function ¥{(f) can be
expanded as a Taylor series at f=0, that is,

H() =P + pllpz ppllet (28)

where ¥ = (y'], oV, (= 0, 1, 2) are explicitly given
in appendix A.

It is straightforward to verify that ¥ is a solution to the
Lax pair equations (8) and (9) for ¢ =g¢[0] and
¢ = § = p + i. In the following, by virtue of the formula (22)
with N=1, we calculate that

F iG
g[1] = exp [i0] —1
D,

where
Fi=—4x = 32 — 16(4p% + 1)2 + 3, Gy = 161,
Dy=4x7 + 32t + 16(4p> + 1)1 + 1.

Afterwards, the explicit first-order rogue wave solution to
equation (2) can be obtained as

2
ult) =gt exp [ 20p f|q1n)] ax] (29)
where, flq[l]lzdx = % with
Hy = 4x + 16(4p5% + 1)r% + 9x + 326(x2 + 1)1,

It is easy to verify the validity of the solution by putting it

back into equation (2), and we see that there is a free para-
meter f in the preceding solution. Now we discuss the
dynamic properties of the preceding solution. When g = 0,
(29) is just the standard Peregrine soliton solution to the NLS
equation [16]; see figures 1(a) and 2(a). There are one hump
and two valleys around the center: the maximum value of the
hump is 3 and occurs at (0,0), and the minimum value of the
two valleys is 0 and occurs at (+0.8660, 0). When g # 0, we
see that the shape of the rogue wave does not change dras-
tically; see figures 1(b) and 1(c). However, the quintic
andRaman-effect nonlinear terms do produce an important
skew angle relative to the ridge of the rogue wave in the
counter clockwise direction if f > 0, and in the clockwise
direction if f < 0; see figures 2(b) and (d). Moreover, as the
absolute value of f gets larger, the skew angle becomes lar-
ger; see figures 2(b)—(e).
Next, the following limit,

. T[1]|¢=/3+i+f25U1 (P +nhD%
11rn— =lim—————
=0 72 =0 2

=" + TP = Hi,
provides the generating function of the second-step general-

ized DT. Hence, resorting to the formula (22) with N = 2, we
have

b +1iG,

2

q[2] = exp [i0]

where

F> = 64x% — 144x* + 192n;x3 — 180x?
+245766 (4> + 1) 1 + 432n.x
+4096 (457 +1)'1° + (3072(20ﬁ2 +1)(4p> + 1)
~36864p* — 921604” — 8448) r*
+(4096ﬂ(20ﬂ2 +3)x3 = 92165 (4p% + 5)x
+1536m; — 184324%m; — 92166, + 122886%n, )
+((1536Oﬁ2 + 768)x4 - (13824ﬁ2 + 5760);;2
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Figure 2. Evolution density plot of the first-order rogue wave solution (29): (a) f = 0; (b) f = 1/3;(c) p=1/2;(d) p = =1/3; (e) p = —1/2.

—(9216ﬂm1 — 9216f%n; + 2304n1)x — 288082
—1872) 1% + (1536 fx® — 2304px° — (1152m,
—2304fm)x? — 1440px

—288m; + 1728 )1 + 45 + 144m? + 144n?,

Gy = 576mux — 491524 (45> + 1)rx — 12288 (457 + 1)1
—((73728ﬂ2 +6144)2% — 1843247 + 1536);3
—(12288px% — 9216fx — 92168%m; + 2304m
—9216fm) 1> — (768x* — 1152x2
—(4608fm, + 2304n,)x — 720)t + 144m,,

Dy = 64x% + 48x* + 192n,x3 + 108x?
+24576 (457 + 1) 1% — 144n.x
+4096(45% +1)'16 + (3072(20/32 +1)
x (457 + 1) + 768 (45 — 3)2)t4
+(4096/3(20/32 +3)x°
+3O72ﬂ(4ﬂ2 - 3)x + 1536m, — 184324%m,
—9216fn; + 12288ﬂ3n1)t3
+((1536Oﬂ2 +768)x* + 115226 — )2 + D)x?
—(9216ﬂm1 + 2304n; — 9216ﬂ2n1)x
+172852 + 1584) 12
+(1536px5 + 768fx* — (1152m; — 2304m5)x>

+864px + 864m; — 576n1ﬂ)t
+144m? + 144n? + 9.

After that, the explicit second-order rogue wave solution to
equation (2) takes the form of
2
dx |,

ul2] = g[2 exp [2iﬂ a2 (30)

(©

(d)

2 _H .
where [lg[2]Pdx = > with
Hy, = 64x7 + 432x° 4+ 192n1x* + 300x3
+432m2% + 4096 (457 + 1)1
+(144m? + 1440} + 225)x
+(24576ﬂ x (4p2 + 1)'x?
+245765 (45° + 1)2)1‘5
+(3072(208% + 1) (457 + 1)x°
+(503808ﬁ4 + 12902452 + 13056)x)t4
+(4096ﬁ(20ﬂ2 +3)x* + 92165 (286 + 3)x
+(1536m1 — 18432p%m; — 9216fn; + 12288ﬁ3n1)x
+30726(4p° - 3))t3
+((15360ﬁ2 +768)x° + (66048ﬂ2 + 19zo)x3
—(9216ﬁm1 + 2304n; — 9216ﬁ2n1)x2
+(10944p% — 720)x — 9216pm,
—2304n; + 9216%n; )1 + (1536ﬂx6
+8448px* — (1152m; — 2304n,)x* + 3168px?
—(1440m; — 4032, 8)x + 864p)t — 144n,.
It is straightforward to check, with the aid of Maple, that the
preceding solution satisfies equation (2).

By setting m; = 0, n; = 0 in the preceding solution, we
obtain the fundamental second-order rogue wave solution to
equation (2). In this case, it is easy to compute that x — oo,
t > oo, lu[2]l = 1 and that the maximum value 5 arrives at
(0, 0). In addition, similar to the first-order case, the quintic
and Raman-effect nonlinear terms also produce a skew angle
relative to the ridge of the rogue wave; see figure 3.

Apart from this, by setting m; = 100, n; = 0, the fun-
damental second-order rogue wave can be separated into three
first-order rogue waves: a single and a double spatial hump;

see figure 4. If f = 0, we observe that in figure 4(a), a single
hump appears at ¢ & —2.5626 and then swiftly decays, with
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Figure 3. Evolution plot of the second-order rogue wave solution (30) with m; =0, n; =0: (a) f =0; (b) g =

two spatial humps rising up simultaneously at# ~ 1.3169, and
the corresponding spatial coordinates are x = O,
x = + 4.6411, respectively. If g > 0, for example, f = 1/3,
we see that in figure 4(b), a single hump and two spatial
humps successively rise and climb to the maximum amplitude
att ~ —2.5626 and r ~ 1.3169, which is identical to the case
of f = 0. Nevertheless, the single hump has a translation in
the positive direction of the x-axis and its spatial coordinate
becomes x ~ 3.4168, whereas the double spatial hump moves
in the negative direction of the x-axis and the spatial coor-
dinates change to x & 2.8853 and x & —6.3970. The detailed
variation and spatial-temporal coordinates of maximum
amplitudes of the second-order rogue wave with triangular
pattern are listed in table 1. From figure 4(c) and table 1, we
notice that as f# gets larger, the amplitudes and the time of
appearance of the humps remain unchanged, but the humps
have a larger movement in the direction of the x-axis. If # < 0
, the humps will have translations in the opposite direction of
the x-axis and, comparing with the case of f > 0, the
amplitudes and the time of appearance of the humps are still
unchanged; see figures 4(d)—(e) and table 1.
Similarly, the following limit,

(i, %
lim

1/3; (¢) p = —1/3.

t ~ 2.3807 and t =~ 2.5135. In figure 6(b), as f = 1/3, we
observe that the time for the appearance of the humps is
invariable, the single hump and the double spatial hump have
translations in the positive direction of the x-axis, and the
triple spatial hump has a translation in the negative direction
of the x-axis. Table 2 is presented to show the detailed var-
iation and spatial-temporal coordinates of maximum ampli-
tudes in the third-order rogue wave with triangular pattern. As
with the second-order case, we see that in figure 6(c) and
table 2, as S gets larger, a larger movement for the humps in
the direction of the x-axis is produced by the the quintic and
Raman-effect nonlinear terms, whereas the amplitudes and
the time of appearance of the humps remain unchanged. In
addition, comparing with the case where > 0, as f < 0,
the humps will have a movement in the opposite direction of
the x-axis; see figures 6(d)—(e) and table 2. Here it should
be mentioned that although some errors and disparities indeed
exist in the calculation of the maximum amplitudes and the
spatial-temporal coordinates of the humps in rogue waves, the
main dynamic properties of the rogue waves and the influ-
ences produced by the nonlinear terms on the rogue waves
remain the same. Furthermore, when letting m; = 0,

(fz +T [2])(}(2 + T [1]),1,n1 = 0, my = 10000, n, = 0, the third-order rogue wave of

-0 f* f—>0 f*
=¥ + (B2 + GUD ¥ + TRATE = H(2),
is the generating function of the third-order generalized DT.
With the aid of (22) and (24), the third-order rogue wave
solution to equation (2) can be obtained. Here we give only
the explicit expression of the fundamental third-order rogue
wave solution (see appendix B). The parameters are chosen as
m1=0,n1=0,m2=0,n2=0.

From the concrete expressions given in appendix B, we
can work out that the maximum value of lu[3]l is 7 and is
reached at (0,0). Moreover, the quintic and Raman-effect
nonlinear terms still produce a skew angle relative to the ridge
of the third-order rogue wave; see figure 5.

In choosing m; =100, ny =0, my =0, n, =0, the
fundamental third-order rogue wave splits into six first-order
rogue waves forming a triangle; see figure 6. In figure 6(a), as
p =0, we see that a single hump develops at t ~¥ —4.5319,
and then two rogue waves symmetrically appear at
t ~# —1.2237. Finally, a triple spatial hump soon rises up at

circular pattern can be presented, and the quintic and Raman-
effect nonlinear terms can also produce a translation for the
humps in the direction of the x-axis; see figure 7.

Next, continuing the iterative process, the fourth-order
rogue wave solution to equation (2) can be obtained. Here, we
omit the cumbersome expression and just show some parti-
cular figures; see figure 8. The fundamental pattern is shown
in figure 8(a). We see that a single highest peak is localized in
the center and its amplitude is 9, and because of the existence
of the quintic and Raman-effect nonlinear terms, there is a
skew angle relative to the ridge of the rogue wave. The tri-
angular pattern with one, two, three, and four peaks succes-
sively arrayed in each temporal row is displayed in
figure 8(b); and the pentagram pattern, shown in figure 8(c),
contains two concentric circles, each with five humps.
Figure 8(d) describes the heptagram pattern, which is com-
posed of seven Peregrine solitons in the outer ring and a
second-order rogue wave in the center. By adequately
adjusting the free parameters, the middle second-order rogue
wave can split into three Peregrine solitons; see figure 8(e).
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Figure 4. Evolution density plot of the second-order rogue wave solution (30) with m; = 100, n; = 0: (a) # = 0; (b) f = 1/3; (c) f = 1/2;
d) p=-1/3;(e) p=—1/2.
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Figure 6. Evolution density plot of the third-order rogue wave solution with m; = 100, n; = 0, my = 0, np = 0: (a) = 0; (b) = 1/3; (c)
p=1/2;(d) p=-1/3;(e) p = —1/2.
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Table 1. Maximum value lul> of the humps in the second-order rogue wave with triangular pattern

p Single spatial hump Double spatial hump

0 9.2235(x = 0, t = —2.5626) 8.8950(x = —4.6411, t = 1.3169), 8.8950(x = 4.6411, t = 1.3169)

173 9.2235(x = 3.4168, t = —2.5626) 8.8950(x = —6.3970, t = 1.3169), 8.8950(x = 2.8853, t = 1.3169)
172 9.2235(x = 5.1252, t = —2.5626) 8.8950(x = —7.2749, t = 1.3169), 8.8950(x = 2.0074, t = 1.3169)
-173° 9.2235(x = =3.4168, t = =2.5626)  8.8950(x = —2.8853, ¢ = 1.3169), 8.8950(x = 6.3970, ¢t = 1.3169)
-1/2° 9.2235(x = =5.1252, t = —=2.5626)  8.8950(x = —2.0074, t = 1.3169), 8.8950(x = 7.2749, t = 1.3169)

5. Conclusion

In summary, we studied higher-order rogue wave solutions of
the KE equation, which contains quintic nonlinearity and
Raman effect in nonlinear optics. By means of a gauge
transformation, the KE equation was transformed into an
extended NLS equation (3) whose Lax pair is the standard

AKNS spectral problem and the corresponding auxiliary
spectral problem.

Based on a special solution (27) of the Lax pair
equations (8) and (9) for ¢ = ¢[0] and { = f + ik, a gen-
eralized DT and an Nth-order rogue wave solution to the
extended NLS equation (3) were constructed by using the
limiting technique. Hence, by resorting to the gauge
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Figure 7. Evolution plot of the third-order rogue wave solution with m; = 0, n; = 0, my = 10000, n, = 0: (a), (d) g = 0; (b), (e) f = 1/3;

(©), () p=-1/3.
Table 2. Maximum value lul? of the humps in the third-order rogue wave with triangular pattern
p Single spatial hump Double spatial hump
9.4178(x = 0, t = —4.5319) 9.1035(x = —4.2981, t = —1.2237),
9.1035(x = 4.2981, t = —1.2237)
1/3 9.4178(x = 6.0425, t = —4.5319) 9.1035(x = —2.6666, t = —1.2237),
9.1035(x = 5.9297, t = —1.2237)
12 9.4178(x = 9.0636, t = —4.5319) 9.1035(x = —1.8508, r = —1.2237),
9.1035(x = 6.7455, t = —1.2237)
-1/3 9.4178(x = —6.0425, t = —4.5319) 9.1035(x = =5.9297, t = —1.2237),
9.1035(x = 2.6666, t = —1.2237)
9.1035(x = —6.7455, t = —1.2237),
-12 9.4178(x = —9.0636, t = —4.5319) 9.1035(x = 1.8508, t = —1.2237)
Triple spatial hump
8.8132(x = —8.4380, t = 2.3807), 8.8047(x = 0, t = 2.5135), 8.8132(x = 8.4380, r = 2.3807)
8.8132(x = —11.6122, t = 2.3807), 8.8047(x = —3.3513, t = 2.5135), 8.8132(x = 5.2638, r = 2.3807)
8.8132(x = —13.1993, t = 2.3807), 8.8047(x = —5.0269, t = 2.5135), 8.8132(x = 3.6767, t = 2.3807)
8.8132(x = —5.2638, t = 2.3807), 8.8047(x = 3.3513, t = 2.5139), 8.8132(x = 11.6122, t = 2.3807)
8.8132(x = —3.6767, t = 2.3807), 8.8047(x = 5.0269, t = 2.5135), 8.8132(x = 13.1993, ¢ = 2.3807)

transformation between the KE equation and the extended
NLS equation (3), a concise unified formula for the Nth-order
rogue wave solution with several free parameters for the KE
equation was derived. Our formula overcomes the difficulty
remarked in [37], that is, that one has to solve two compli-
cated partial differential equations to explicitly determine
a; (j =1, 2, ...)in each iterative process. Based on symbolic
computation, the formula can be used as is to generate higher-
order rogue wave solutions to the KE equation. In particular,
we presented explicit rogue wave solutions from the first to
the third order of the KE equation, and we used figures to
illustrate the dynamic properties of the rogue waves from the
first to the fourth order. Moreover, by numerical calculations

10

and plots, the influences produced by the quintic and Raman-
effect nonlinear terms on the higher-order rogue waves were
discussed. It was shown that the quintic and Raman-effect
nonlinear terms affect the spatial distribution of the humps in
higher-order rogue waves, whereas the amplitudes and the
time of appearance of the humps are unchanged.

In addition, rogue waves on spatially periodic back-
ground envelopes such as cnoidal waves were recently
observed in the NLS equation [55], and it is entirely possible
that similar phenomena will be discovered in the KE
equation. At the same time, based on the explicit rogue wave
solutions to the KE equation given in this paper, the con-
nection between modulation instability and rogue waves may
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Figure 8. Evolution plot of the fourth-order rogue wave solution with g = 1/3: (a) m; =0, n, =0, my; =0, n, =0, m3 = 0, n3 = 0; (b)
m; =100, n1=0,my=0,n,=0,my=0, n3=0; (c) m =0, ng =0, my =10000, n, =0, m3 =0, n3 =0; (d)
m; = 0, ny = 0, my = 0, ny = 0, ms = 1000000, n3 = 0; (e) m) = 100, ny = 0, my = 0, ny = 0, ms = 1000000, ni = 0.

be established for the KE equation by virtue of the method
presented in [56], which is instructive for examining the
occurrence (or rather the growth phase) of rogue waves. Both
problems are important, and we will investigate them in a
future paper. Our results will be helpful for better observing
the evolution of rogue waves in a complicated optical system
with high-order nonlinear terms, and for better understanding
the influence produced by the quintic and Raman-effect
nonlinear terms on rogue waves. We hope that the results can
be verified in real physical experiments in the future.
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Appendix A. Explicit expressions of coefficients
in (27)

ll’l[O] = —eiie(Zx — dirt + 1), (]51[0] = e_%g(zx —dirr — 1),

1 i i

[1] — =0 : -3 ) . 3,3

= + e27(1 —1)(8ix’ + 12ix~ + 6ix — 647t

¥ (24 24) 2%( )( T
—(96ir2x + 48ir2) 1% + (487x2 + 48cx

—12(5 = 2ip))t — 3i — 24m; — 24in1),

[
9 24 24

—647%3 — (96112x - 48112)t2

—(i + L)e—éﬁu — i) (8ix? - 12ix + 6ix

+(482x? — 48zx — 12(5 - 2ip) )1
+3i — 24m1 - 2411’!1),

21 _
" 960 960

—120( — 1+ 8m + 8in1)x2 - 30(i + 32my + 32in1)x
+10247%5 + (256Oi14x + 1280i14)t4

_(L + L)eéﬂ(l + 1) (320" + 80ix* + 240ix

—(25607%? + 25607 + 1920( — 5 + 2i)72) 1

+( = 1280ir%c® — 1920iz%? + 960iz (11 — 6if)x
+480 (9 + 26 — 8my + 16imf — 8iny — 16fm;)7) 1>
+(320ex* + 6402x® — 480(7 — 6if)x’
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2
¢1[ 11—

+4801(5i + 24 — 8my + 16ipm, — 8in; — l6[in1)x

+60i(7i — 28 — 32m + 64ifm; — 32in; — 64pn)))t

+45i — 240m; — 240in; — 960im; + 960n,),

( 1 i
— + [—
960 960

—120(i + 8my + Sinl)x2 - 30(i - 32my — 32in1)x

+102475%5 + (256Oir4x - 1280ir4)z4

)e—ég(l + 1) (32ix® — 80ix* + 2400’

—(2560;%2 — 256073 + 1920( — 5 + 2iﬁ)rz)z3

+( = 1280ir%* + 1920iz% + 960iz (11 — 6if)x
+480( — 9i — 28 — 8my + 16im; — 8iny — 16fn;)7) 12
+(320ex* — 6402 — 480(7 — 6if)x?

+480i( — 51 — 2 — 8my + 16ipm; — 8in; — 16ﬂn1)x
—60i( = 7i + 2 — 32my + 64ifm; — 32iny — 64fn;))1
—45i — 240m; — 240in; — 960im; + 960n,),

here 7 = —1 + 2ip.

Appendix B. Explicit expressions of q [3] and u [3]

F; +iG3

q [3]1 = exp [i0] ———,

F;

D;
—4096x'% + 18432x!0 + 57600x8
+172800x° — 226800x* — 113400x2

2013265926 (45% + 1)'1''x — 16777216 (45> + 1)1

—(25165824(44ﬂ2 +1)(4p> +1)'2

—6291456 (48 B* + 26452 + 23) (4% + 1)3) 110

— (838860808 (44 2 + 3) (48> + 1)°x3
—1887436805 (165* + 724> + 9)

x (45> + 1)2x) 9

+(—15728640(528ﬂ4 + 7267 + 1)

x(4p> + 1)

+23592960 (452 + 1)(57656

+20964% + 39642 + 9)x? + 377487360048
—83047219204° — 23592960008* — 8965324808
+533790720) % + (25165824 5 (4 5% + 1)
x(528ﬁ4 + 1208% + 5)x5

+629145605 (1247 + 1)(48ﬂ4 + 1367 + 27) 3
X 235929608 (320/36 — 52844 — 10042 — l9)x) £
+(—(15502147584 B° + 528482304048

12

G;=

+4404019208% + 5242880)x°
+(15854469120ﬂ6 + 330301440008*

+5426380800% + 106168320) x* + (6606028800 4°
—77856768008* — 8847360008 — 56033280).x>
+7077888004° — 1769472004*

+137134080042 + 152616960) 1°

+ — (6291456 5 (528p* + 120p8% + 5)x7

+47185924 (1008 f* + 14004 + 115) x>
+294912005 (112* — 8857 - 5)x3

+221184008 (31 + 484* — 8 ) )15

+(—(519045120 p* + 707788804 + 983040) x®
+(990904320 f* + 82575360042 + 22609920) x°
+(1032192000 p* — 4866048003% — 9216000) x*
+(663552000 8* — 663552004% + 85708800) x>
—580608004* — 2944512004% — 83808000) T*
+(—13107208 (44 % + 3)x°

+117964804 (12 % + 5)x”

+14745608 (140 > — 33)x°

+110592004 (20 %> — 1)x3

—(58060800 4 + 147225600 f)x) 13
+(—(4325376 % + 98304) x!°

+(13271040 8% + 1843200) x® + (25804800 4
—2027520) x° + (41472000 £% — 691200) x*

—(21772800 % + 18403200) x> — 18144004 — 2268000)

+(—196608 px'! + 7372808x° + 18432004x7
+41472008x° — 36288004x> — 9072008 x)t + 14175,

100663296053 (4ﬁ2 + 1)4t10x + 100663296 (4ﬁ2 + 1)5z“

+(125829120(36ﬂ2 + 1)(4ﬁ2 + 1)3x2 — 31457280
x (486 + 8847 — 5)(4p + 1)2)t9
+(1006632960 8 (126> + 1) (46> + 1)2x3
—~7549747206 (44 + 1) (16 *

F2452 + D)x) 1% + (62914560 (442 + 1)
x(336 5% + 568> + 1)x*

—(42278584320 8% + 5284823040048
+79272345604% + 94371840) x2
—37748736008° — 28311552008
+268959744042 — 342097920) 17
+(25165824 B (1008 B* + 28052 + 15)x°
—4404019208 (1282 + 1) (4 8% + 3)x3
—707788808 (80 4* + 408> — 19)x) 16
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+((5284823040 * + 880803840432 + 15728640) x°
—(6606028800 #* + 330301440043% + 82575360) x*
—(3538944000 p* + 106168320043% — 168099840) x>
—5308416008* — 6193152004% — 236666880) t°+

(62914560ﬁ(12ﬁ2 + 1)x7 — 3303014408 (4 8% + 1)x°

+44236805 (2085* + 2004” + 145)x)t5
+((519045120/54 + 7077888047 + 983040) x*
+(3303014408* — 16515072082 — 2949120) x°
+55296OO(4/32 + 1)(28/32 - 1)x4

—589824004 (20 42 + 3)x3 — 44236800
xB (12 8% + T)x)t* + (70778880 2 + 1966080) x*
—(165150720 % + 13762560 x°
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—(199065600 % + 38707200) x>
+290304008% — 3801600) 13
+(3932160 fx° — 11796480px”
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+(98304x10 — 368640x% — 921600x6 — 2073600x*
+1814400x2 + 453600) 1,

D3 = 4096x'2 + 6144x!° + 34560x8 + 149760x°
+54000x* + 48600x2

+2013265926 (447 + 1)'1"%x + 16777216

+(575078400ﬁ4 + 3317760008% + 80179200)x2
+138240004* — 373248005 + 36806400)* + (13107208

X(44 2 + 3)x° + 117964808 (28 — (2 + 1)x”
+4423680ﬂ(28ﬁ2 + 3)x5 + 36864008 (52/32 + 15)x3

+691200 (204> - 27)x)t3 + ((4325376ﬂ2 +98304)x'
+(44236805% — 368640)x8 + (15482880ﬁ2

+552960) x° + (3594240057 + 3456000) x*
+(51840004% — 2332800) x> + 7776005% + 1490400) 2

+(196608x'! + 245760fx° + 11059208 + 3594240px3

2
dx |,

+8640004x> + 388800px )1 + 2025,

X (487 + 1)1 + (25165824 (44p% + 1) (45> + 1)

w31 = ¢ [3] exp [2iﬂ / \qm

+6291456 (16 % — 722 + 21) (4 82 + 1)3) 110 >

+(83886080 X (44 5% + 3) (452 + 1)x3 f
+629145605 (168* — 565> + 9) (45> + 1)2x) 9

dx s
D3
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Hj = 4096x'3 + 55296x!" + 96000x° + 426240x7
+952560x° ++ 264600x> + 99225x + 16777216
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