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In this paper, a (3 + 1)-dimensional nonlinear evolution equation is studied via the Hi-

rota method. Soliton, lump, breather and rogue wave, as four types of localized waves,
are derived. The obtained N-soliton solutions are dark solitons with some constrained

parameters. General breathers, line breathers, two-order breathers, interaction solutions

between the dark soliton and general breather or line breather are constructed by choos-
ing suitable parameters on the soliton solution. By the long wave limit method on the

soliton solution, some new lump and rogue wave solutions are obtained. In particular,

dark lumps, interaction solutions between dark soliton and dark lump, two dark lumps
are exhibited. In addition, three types of solutions related with rogue waves are also

exhibited including line rogue wave, two-order line rogue waves, interaction solutions

between dark soliton and dark lump or line rogue wave.

Keywords: Hirota bilinear method; (3 + 1)-dimensional nonlinear evolution equation;

rogue wave; lump; breather; interaction solution.

1. Introduction

Studied here is a (3 + 1)-dimensional nonlinear evolution equation:

3uxz − (2ut + uxxx − 2uux)y + 2(ux∂
−1
x uy)x = 0 . (1)

It was proposed during the research of Algebraic-geometrical solutions by Geng.1

Since then, lots of researchers have paid attentions to it. In Ref. 2, N -soliton solution

expressed by Wronskian form was constructed. In Ref. 3, resonant solution and

§Corresponding author.
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complexion solution were derived by virtue of the N -fold Darboux transformation

(DT) of the AKNS spectral problems. In Ref. 4, rational solutions were explicitly

derived by the constructed bilinear Bäcklund transformation (BT). In Ref. 5, ratio-

nal solutions and rogue waves to Eq. (1) were obtained based on the procedure of a

symbolic computation method. In Ref. 6, the Bell-polynomial approach was applied

to seek the integrable properties of (1) and some exact solutions were derived with

the help of line superposition principle and homoclinic test method. In Refs. 7–9,

multiple front wave solutions were studied for the models related with Eq. (1) via

Hirota’s method and Cole–Hopf transformation. In Ref. 10, Eq. (1) was verified

Painlevé integrable and Φ-integrable. In Ref. 11, multiple exp-function approach

was applied to this equation for constructing multiple wave solutions and the elas-

tic interaction behavior of solitons was explored. In Ref. 12, multi-soliton solutions

were investigated by the homoclinic test method and the three-wave approach. In

Ref. 13, interaction solutions were gained which showed that a lump was swallowed

by a stipe. In Ref. 14, two types of resonant multiple wave solutions were obtained

based on the linear superposition principle. In Ref. 15, general higher-order rogue

waves were obtained by Hirota method. In Ref. 16, diversity of exact solutions was

studied by the test function approach and the Hirota bilinear method. M -lump

solutions and mixed lump-soliton solutions were obtained in Refs. 17 and 18.

It is not difficult to trace a strong line between Eq. (1) and the noted KdV

equation. Let

x→
√

3x, t→ 6
√

3t, u→ u .

The main term 2ut+uxxx−2uux of Eq. (1) can be transformed to the KdV equation.

In addition, if setting y = x, z = t under appropriate scaling transformation,

x→ 1

2
x, t→ −1

8
t, u→ 6u .

Equation (1) is also transformed to the KdV equation. As an extension of the KdV

equation, Eq. (1) might be applied to pattern shallow water waves and short waves

in nonlinear dispersive media.

To illustrate some physical phenomena further, it becomes more and more im-

portant to construct explicit solutions and interaction solutions among nonlinear

waves. In the past years, many approaches have been developed to obtain exact

solutions for nonlinear evolution equations, such as BT,19 the Inverse Scattering

transformation (IST),20,21 DT,22,23 Lie symmetry approach,24–31 Hirota bilinear

method32,33 and so on. For a given nonlinear system, Hirota method is an effec-

tive and direct method to seek the corresponding explicit solutions. Soliton,34,35

lump,36–41 breather42–46 and rogue wave,47–59 as four types of localized wave solu-

tions, have attracted particular attentions in both theories and experiments.

Under the following transformation

u = −3(ln f)xx = −3
fxx
f

+ 3
f2x
f2

, (2)
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Equation (1) is sent to the following bilinear form:

(3DxDz − 2DyDt −D3
xDy)(f · f) = 0 , (3)

where f = f(x, y, z, t), D3
xDy, DxDz and DtDy are bilinear derivative operators32

with

Dα
xD

β
yD

γ
zD

δ
t (f · g) =

(
∂

∂x
− ∂

∂x′

)α(
∂

∂y
− ∂

∂y′

)β (
∂

∂z
− ∂

∂z′

)γ (
∂

∂t
− ∂

∂t′

)δ
× f(x, y, z, t)g(x′, y′, z′, t′) |x′=x,y′=y,z′=z,t′=t . (4)

The goal of this paper is to study four types of localized waves and interaction

solutions among localized waves to Eq. (1) by virtue of the method applied in

Refs. 60 and 64. The reminder of the paper is constructed as follows. N -soliton

solution is derived according to Hirota approach in Sec. 2. Then it follows three

kinds of localized waves by taking complex conjugate of the parameters and long

wave limit on the N -soliton solution. Some cases of interaction solutions are also

investigated. The last section is a short conclusion.

2. Localized Wave and Interaction Solutions

2.1. The N-soliton solution

With the aid of Hirota bilinear method, we first derive N -order soliton solution of

Eq. (1), which can be obtained by substituting

f =
∑
µ=0,1

exp

 N∑
i=1

µiηi +

N∑
1≤i<j

µiµj ln(Aij)

 (5)

into Eq. (2) via the Hirota direct method, and

ωi = −k
2
i pi − 3qi

2pi
, ηi = ki(x+ piy + qiz + ωit) + η0i ,

Aij =
(ki(ki − kj)pj + qj)p

2
i − ((ki − kj)kjpj + qj + qi)pjpi + p2jqi

(ki(ki + kj)pj + qj)p2i + ((ki + kj)kjpj − qj − qi)pjpi + p2jqi

(i, j = 1, 2, . . . , N) ,

(6)

where ki, pi, qi and η0i are arbitrary constants,
∑
µ=0,1 is the summation with

possible combinations of ηi, ηj = 0, 1(i, j = 1, 2, . . . , N).

To demonstrate the dynamic behavior of the soliton solution, we take N = 1, 2, 3

for example. It is assumed that

f = 1 + expη1 ,

f = 1 + expη1 + expη2 +A12 expη1+η2 ,

f = 1 + expη1 + expη2 + expη3 +A12 expη1+η2 +A13 expη1+η3

+A23 expη2+η3 +A12A13A23 expη1+η2+η3 ,

(7)
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (Color online) Three examples of dark soliton solutions of Eq. (1) at the (x, t) plane
with parameters in Eq. (9). Up rows: three dimension graphs of soliton solutions; Down rows: the

propagation of solitons over time.

with the parameters in accordance with Eq. (6). Then the dynamic behavior can

be demonstrated with the following parameters:

N = 1, k = 2, p = 1, q = 1, η01 = 0 ;

N = 2, k1 = 1, k2 = 2, q1 = 1, q2 = 2, p1 = 2, p2 = 3, η01 = η02 = 0 ;

N = 3, k1 = 1, k2 = 2, k3 = 1, q1 = 2, q2 = 1, q3 = 2, p1 = 1.2 , (8)

p2 = 2.3, p3 = 3.3, η01 = η02 = η03 = 0 .

It is visually shown that these solutions are dark solitons and the collisions are

elastic, which can be seen from Fig. 1. The small-amplitude solitons propagate fast

than the large-amplitude ones. After the collision of the dark solitons, their speeds

and shapes do not change, but the phases have a change.

2.2. The breather solutions

By taking complex conjugate approach on the soliton solutions, we will derive

analytical expressions of breather solutions for Eq. (1). In different planes, the

breathers can exhibit different dynamical characteristics.

In the case of N = 2, let the parameters in Eq. (5) satisfy the following con-

straints:

k1 = k∗2 = aI, q1 = q2 = b, p1 = p∗2 = c+ dI . (9)
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(a) (b) (c)

Fig. 2. (Color online) Breathers of Eq. (1) in three different planes with parameters constrained

by a = b = c = d = 1, η01 = η02 = 0: (a) (x, t) plane, (b) (y, t) plane and (c) (z, t) plane.

(a) (b) (c)

Fig. 3. (Color online) Line breathers of Eq. (1) in the (x, z) plane at y = 0. The parameters are
the same as in Fig. 2.

Now f in Eq. (5) can be restated as

f = 1 +

(
1 +

a2c3 + a2cd2

bd2

)
exp

(
−2ady +

3abdt

c2 + d2

)
+ exp

(
Ia

(
x+ (c+ Id)y +

1

2

(
a2 +

3b

c+ Id

)
t+ bz

))
+ exp

(
−Ia

(
x+ (c− Id)y +

1

2

(
a2 +

3b

c− Id

)
t+ bz

))
. (10)

Then, the general breathers can be derived by choosing suitable parameters in

Eq. (9), whose dynamical behavior is demonstrated in Fig. 2. In the (x, t) and (z, t)

planes, these breathers have the same period. They are both localized in time di-

rections, and periodic in space directions, while in (y, t) plane, the breather is a

quasi-breather, which propagates in the angular bisector of the coordinates. Based

on the same parameter conditions, the line breather in the (x, z) plane can be con-

structed, whose global dynamic behavior is demonstrated in Fig. 3. These periodic

line waves are line breathers, whose limiting cases can generate the fundamental line

rogue waves. The line breather begins at a constant background to the maximum

amplitude 2.9996 at t = 0. Finally, it damps to the original background.
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(a) (b) (c)

Fig. 4. (Color online) The spatial structure of interaction solution between dark soliton and line

breather in (x, z) plane at y = 0. The parameters are constrained in Eq. (11).

In the case of N = 3, we would like to derive interaction solutions between soli-

tons and breathers in six different planes by choosing suitable parameters. Without

loss of generality, with the choices of the parameters

N = 3, k1 = k∗3 = I, p1 = p∗3 = 2 + 3I, q1 = q3 = 2 ,

k2 = 3, p2 = 2, q2 = 1, η01 = η02 = η03 = 0 ,
(11)

it can be adduced that

f = 1 + exp

(
3x+ 6y − 45

4
t+ 3z

)
+

22

9
exp

(
−6y +

18

3
t

)
+ 2 exp

(
−3y +

9

13
t

)
cos

(
x+ 2y +

25

26
t+ 2z

)
+

30206

1989
exp

(
3x− 513

52
t+ 3z

)
+

31944

6409
exp

(
3x+ 3y − 549

52
+ 3z

)
sin

(
x+ 2y +

25

26
t+ 2z

)
− 574

6409
exp

(
3x+ 3y − 549

52
t+ 3z

)
cos

(
x+ 2y +

25

26
t+ 2z

)
. (12)

Then, the interaction phenomena can be seen in Figs. 4 and 5. Obviously, the six

planes own different dynamical behavior and physical phenomena, especially in the

(x, z) plane. The periods and propagation directions of these interaction solutions

are distinct with each other. From Fig. 4, it can be seen that the amplitude of

the interaction solution reaches maximum 9.3143 at t = 0. The soliton divides the

background periodic wave into two parts, and the amplitude of the left part is

obviously greater than the right part’s. Over time, the line breather disappears and

soliton will be left alone.

In the case of N = 4, interaction solutions between breathers are constructed

with the choices of suitable parameters. The function f in the four soliton solution

u for Eq. (1) has the following form:

f = 1 + expη1 + expη2 + expη3 + expη4 +A12 expη1+η2 +A13 expη1+η3

+A14 expη1+η4 +A23 expη2+η3 +A24 expη2+η4 +A34 expη3+η4
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(a) (b) (c)

(d) (e)

Fig. 5. (Color online) The spatial structure of interaction solution between dark soliton and

general breathers in different planes. The parameters are constrained in Eq. (11).

+A12A13A23 expη1+η2+η3 +A12A14A24 expη1+η2+η4 +A13A14A34 expη1+η3+η4

+A23A24A34 expη2+η3+η4 +A12A13A14A23A24A34 expη1+η2+η3+η4 , (13)

with the parameters in accordance with Eq. (6). Let the parameters in Eq. (5) as

follows:

k1 = k∗2 = I, k3 = k∗4 = 2I, p1 = p∗2 = 1 + I, p3 = p∗4 = 2 + I ,

q1 = q2 = 1, q3 = q4 = 2, η0i = 0 (i = 1, 2, 3, 4) .
(14)

It thus follows

f = 1 + 3 exp

(
3

2
t− 2y

)
+ 21 exp

(
12

5
t− 4y

)
+

68607

3169
exp

(
39

10
t− 6y

)
+ 2 exp

(
3

4
t− y

)
cos

(
x+ y + z +

5

4
t

)
+

1

117253
exp

(
27

10
t− 4y

)
×
(

352638 cos

(
2x+ 4y + 4z +

32

5
t

)
+ 213840 sin

(
2x+ 4y + 4z +

32

5
t

))
+

1

3169
exp

(
39

20
t− 3y

)(
1210 cos

(
3x+ 5y + 5z +

153

20
t

)
+ 264 sin

(
3x+ 5y + 5z +

153

20
t

))
+

1

117253
exp

(
63

20
t− 5y

)
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×
(

2867634 cos

(
x+ y + z +

5

4
t

)
− 332640 sin

(
x+ y + z +

5

4
t

))
+

1

37
exp

(
39

20
t− 3y

)(
210 cos

(
x+ 3y + 3z +

103

20
t

)
+ 72 sin

(
x+ 3y + 3z +

103

20
t

))
+ 2 exp

(
6

5
t− 2y

)
× cos

(
2x+ 4y + 4z +

32

5
t

)
, (15)

then two kinds of two-order breathers can be derived, which are demonstrated in

Figs. 6–8. In Figs. 6 and 7, the breathers are two general breathers interacting with

each other. For the general breathers, the amplitudes reach maximum values 5.6334

and 4.8569. In Fig. 8, the breathers are two-line breathers. During the propagation,

the two line breathers appear from a constant plane and then damp to the original

plane and the amplitude reaches to the maximum 5.5309 at t = 0. The collision

processes of the two type breathers are elastic.

(a) (b) (c)

Fig. 6. (Color online) Elastic collision of two general breathers in (x, y) plane. Parameters are
given in Eq. (14).

(a) (b) (c)

Fig. 7. (Color online) Elastic collision of two general breathers in (x, y) plane. Parameters are

given in Eq. (14).
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (Color online) Elastic collision of two line breathers in (x, z) plane. Parameters are given

in Eq. (14).

2.3. The lump solutions

With the long wave limit method65,66 on multi-soliton solution, the lump solutions

will be derived with choosing suitable parameters. In the case of N = 2, we can

give the lump solution with appropriate parameters in Eq. (5) as follows:

N = 2, k1 = l1ε, k2 = l2ε, η01 = η0∗2 = Iπ , (16)

it thus transpires that

f = (θ1θ2 + θ0)l1l2ε
2 +O(ε3) . (17)

By taking the limit of ε→ 0 in Eq. (17), it follows

u =
3(θ21 + θ22 − 2θ0)

(θ1θ2 + θ0)2
(18)

with

θ0 = − 2p2p1(p1 + p2)

(p1 − p2)(p1q2 − p2q1)
,

θi = x+ piy + qiz +
3qit

2pi
(i = 1, 2) .

(19)

By setting p2 = p∗1, q2 = q∗1 , it is obvious that the rational solution u in Eq. (18) is

nonsingular. Without loss of generality, we assume that p1 = a1 +Ib1, q1 = a2 +Ib2
and a1, a2, b1, b2 are all real constants in Eq. (18).
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(a) (b) (c)

(d) (e) (f)

Fig. 9. (Color online) The dark lump solutions in different planes with a1 = b2 = 2, a2 = b1 = 3

in Eq. (18).

When a1 6= 0, the trajectory can be defined along the path [x(t), y(t)] as follows:

x+ a1y + a2z +
3(a1a2 + b1b2)

2(a21 + b21)
t = 0 ,

b1y + b2z +
3(a1b2 − a2b1)

2(a21 + b21)
t = 0 ,

(20)

it can be adduced that the solution u in Eq. (18) is a constant and keeps the

permanent lump conditions in the process of propagations. By selecting suitable

parameters, we can derive dark lumps in six different planes, which are visually

demonstrated in Fig. 9 and localized in all directions.

In the case of N = 3, we derive interaction solutions between solitons and lumps

in different planes by applying the long wave limit approach on the three-soliton

solution. To demonstrate these nonsingular interaction solutions, we first constraint

the parameters similar in Eq. (16),

N = 3, k1 = l1ε, k2 = l2ε, k3 = k3, η01 = η0∗2 = Iπ, η03 = η03 , (21)

and a suitable limit of ε→ 0, it then follows

f = (θ1θ2 + a12)l1l2 + (θ1θ2 + a12 + a13θ2 + a23θ1 + a13a23)l1l2e
η3 , (22)
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(a) (b) (c)

Fig. 10. (Color online) Elastic collision of dark soliton and dark lump in the (x, y) plane. Pa-

rameters are given in Eq. (24) and the other planes have similar process.

where

θi = x+ piy + qiz +
3qit

2pi
,

aij = − 2pjpi(pi + pj)

(pi − pj)(piqj − pjqi)
,

ai3 = − 2p3pi(pi + p3)k3
q3p2i + (k23p3 − qi − q3)p3pi + p23qi

(i = 1, 2) .

(23)

Let

p1 = p∗2 = 1 + I, q1 = q∗2 = 3 + I, p3 = 2, q3 = 1, η03 = 0, k3 = 2 . (24)

We derive interaction solution of Eq. (1) in the (x, y) plane, whose dynamical be-

havior is plotted in Fig. 10. It is clear that the lump and the soliton are dark states.

During the propagation, the collision between them is elastic. With a shifting of t,

the patterns of the dark soliton and the dark lump do not change. At t = 0, the

peak and valley of the dark lump solution are divided by the dark soliton.

In the case of N = 4, similar with the above two cases, assuming

k1 = l1ε, k2 = l2ε, k3 = l3ε, k4 = l4ε, η01 = η0∗2 = η03 = η0∗4 = Iπ , (25)

it follows

f = (θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3

+ a34θ1θ2 + a12a34 + a13a24 + a14a23)l1l2l3l4ε
4 +O(ε5) , (26)

where

θi = x+ piy + qiz +
3qit

2pi
,

aij = − 2pipj(pi + pj)

(pi − pj)(piqj − pjqi)
(i, j = 1, 2, 3, 4) .

(27)
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(a) (b) (c)

Fig. 11. (Color online) Elastic collision of two dark lumps in the (x, y) plane. Parameters are

constrained in Eq. (29) and (a) t = −10, (b) t = 0 and (c) t = 10.

Let

p1 = p∗2 = a1 + Ib1, p3 = p∗4 = a2 + Ib2 ,

q1 = q∗2 = c1 + Id1, q3 = q∗4 = c2 + Id2 ,
(28)

where ai, bi, ci, di (i = 1, 2) are all real constants. Different interaction solutions in

different planes can be derived with the choices of appropriate parameters. Without

loss of generality, setting

a1 = 1, b1 = 1, a2 = 1, b2 = 2, c1 = 2, d1 = 1, c2 = 2, d2 = 3 , (29)

two-order dark lump can be derived. Dynamical behavior in the (x, y) plane is

visually shown in Fig. 11. Both three dimensions and projected images are plotted to

exhibit the dynamical characteristics. Obviously, the two-order dark lump solution

keeps permanent lump state with the development of time.

2.4. The rogue wave solution

In this part, we can not only construct lump solutions, but also the rogue wave

solutions with the long wave limit method on the soliton solution. Now, we will

give out the detailed process of constructing rogue wave solutions and interaction

solutions and demonstrate dynamic characteristics.

In the case of N = 2, when b2 = 0 in the trajectory Eq. (20), namely q1 and

q2 are real constants, line rogue wave solutions of Eq. (1) can be obtained. To

better demonstrate this phenomenon, we constraint the parameters as constructing

the lump solutions. For instance, when a1 = 1, b1 = 2, a2 = 2, b2 = 0, line

rogue wave is constructed in (x, z) plane. It comes from a constant background

and disappears in the infinity. The amplitude reaches maximum 9.6 at t = 0. The

dynamic behavior can be seen in Fig. 12. In the case of N = 3, by assuming

p1 = p∗2 = 1 + I, q1 = q2 = 3, p3 = q3 = −1, η03 = 0, k3 = 2, interaction solution

between dark soliton and line rogue wave will be generated in (x, z) plane. The

dynamic features of the interaction solution are exhibited in Fig. 13.
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Dynamics of localized waves in a (3 + 1)-dimensional nonlinear evolution equation

(a) (b) (c)

Fig. 12. (Color online) Line rogue waves (18) with a1 = 1, b1 = 2, a2 = 2, b2 = 0 at y = 0.

(a) (b) (c)

Fig. 13. (Color online) Collision of dark soliton and line rogue wave in the (x, z) plane at y = 0.

(a) (b) (c)

(d) (e) (f)

Fig. 14. (Color online) Two line rogue waves in the (x, z) plane with a1 = 1, b1 = 1, a2 = 3, b2 =
2, c1 = 1, c2 = 2, d1 = d2 = 0 at y = 0.
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(a) (b) (c)

Fig. 15. Collision between line rogue wave and dark lump in the (x, z) plane with a1 = 1, b1 =

1, a2 = 3, b2 = 2, c1 = 2, d1 = 1, c2 = 2, d2 = 0 at y = 0.

In the case of N = 4, two kinds of interaction solutions can be obtained by

selecting distinct parameters. When a1 = 1, b1 = 1, a2 = 3, b2 = 2, c1 = 1, c2 =

2, d1 = d2 = 0, two line rogue waves could be obtained in (x, z) plane. Dynamic

phenomena are clearly plotted in Fig. 14, which are similar with the above single

line rogue wave and amplitude is up to the maximum 2.7079 at t = 0 in Fig. 14(c).

When a1 = 1, b1 = 1, a2 = 3, b2 = 2, c1 = 2, d1 = 1, c2 = 2, d2 = 0, another

interaction solution between dark lump and line rogue wave is derived in the (x, z)

plane. To demonstrate their collision process more intuitively, the related graphs

for this interaction solution can be seen in Fig. 15. The process of their collision is

similar to the collision between dark soliton and line rogue wave.

3. Summary and Discussion

In summary, four kinds of localized wave solutions of the (3 + 1)-dimensional

nonlinear evolution equation are investigated in this paper. By the Hirota bilinear

method, N -soliton solutions are constructed and the plots of one, two and three

dark solitons in the (x, t) plane are given (see Fig. 1). By the complex conjugate

method on soliton solutions, breathers, interaction solutions between breathers and

solitons are obtained in six different planes. General breathers (see Fig. 2), line

breathers (see Fig. 3), interaction solutions between dark soliton and line breather

(see Fig. 4) or general breather (see Fig. 5) and two-order breathers (see Figs. 6–8)

are obtained, respectively. Line breathers are periodic line waves and periodic in

both x- and z-directions, while general breathers are periodic in one direction and

localized in another direction. By the long wave limit method, lumps and rogue

waves are derived with the same constrained parameters. Three types of solutions

related with lumps are exhibited in this paper, including dark lumps (see Fig. 9)

in six different planes, interaction solutions between dark solitons and dark lumps

(see Fig. 10) in the (x, y) plane, interaction solutions between two dark lumps (see

Fig. 11) in the (x, y) plane. The dark lumps are localized in all directions. With the

same method, three types of solutions related with rogue waves are also exhibited

in the (x, z) plane, including line rogue wave (see Fig. 12), interaction solution
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between dark soliton and line rogue wave (see Fig. 13), interaction solution be-

tween two line rogue waves (see Fig. 14), interaction solution between dark lump

and line rogue wave (see Fig. 15).
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