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a b s t r a c t

In this paper, we construct a generalized Darboux transformation to the coupled Hirota
equations with high-order nonlinear effects like the third dispersion, self-steepening and
inelastic Raman scattering terms. As application, an Nth-order localized wave solution on
the plane backgrounds with the same spectral parameter is derived through the direct it-
erative rule. In particular, some semi-rational, multi-parametric localized wave solutions
are obtained: (1) vector generalization of the first- and the second-order rogue wave so-
lutions; (2) interactional solutions between a dark–bright soliton and a rogue wave, two
dark–bright solitons and a second-order rogue wave; (3) interactional solutions between a
breather and a rogue wave, two breathers and a second-order rogue wave. The results fur-
ther reveal the striking dynamic structures of localizedwaves in complex coupled systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, localized waves including bright or dark solitons, breathers and rogue waves have attracted
widespread attention in the research field of mathematical physics [1–12]. A breather is localized in space or time, namely,
Akhmediev breather [3] orMa breather [4]. While a roguewave is localized in both space and time, it appears from nowhere
and disappears without a trace [12], and has become a hottest topic in the research field of localized waves in very recent
years. Many nonlinear single-component systems are found to possess rogue wave solution, the nonlinear Schrödinger
(NLS) equation [12–21], the derivative NLS equation [22,23], the Hirota equation [24], the Sasa–Satsuma equation [25],
the variable coefficient NLS equation [26], the discrete NLS equation [27], the Davey–Stewartson (DS) equation [28], etc.
Nevertheless, as is known to us, some complex systems such as Bose–Einstein condensates, nonlinear optical fibers always
involve more than a single component [29–31], so the latest studies on rogue waves or the other kinds of localized waves
have gradually been focused on themulti-component systems, inwhich the localizedwaves can presentmanynovel peculiar
phenomenons such as dark rogue waves in the coupled Gross–Pitaevskii equations [32], four-petaled flower rogue waves
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in the three-component NLS equations [30]. Notably, in coupled systems, interactions between Peregrine soliton and the
other nonlinear waves have become a hot topic of great interest, which has been explicitly shown that a Peregrine soliton
attracts a dark–bright soliton or a breather in the Manakov system [29,33–35].

It is well known that the classical Darboux transformation (DT) [36–41] can be iterated one by one such that all spectrum
parameters are chosen differently, or there will be singularities in the elements of Darboux matrix. Consequently, the
classical DT cannot be directly used to construct rogue wave solutions or the more complicated localized wave solutions
of the nonlinear equations. To overcome this problem, the so-called generalized DT was put forward by Guo, Ling and Liu
to investigate rogue wave solutions of the scalar NLS equation [21], then it was soon successfully applied to the Hirota
equation [21], the derivative NLS equation [23], the ABmodel [42] and so on [43].What ismore, recently, Ling, Guo and Zhao
generalize this method to research higher-order rogue wave solutions of the vector NLS equations [44] (Manakov model)
with the aid of the corresponding 3 × 3 matrix spectra. They find some striking phenomena that four or six fundamental
rogue waves can emerge for second-order vector rogue wave in the coupled system. Hence the generalized DT also provides
an effective way to find higher-order localized wave solutions of the coupled systems.

In this paper, motivated by the work of Baronio [29] and Guo [21,44], we discuss localized wave solutions of the coupled
Hirota (CH) equations

iut +
1
2
uxx + (|u|2 + |v|2)u + iϵ[uxxx + (6|u|2 + 3|v|2)ux + 3uv∗vx] = 0, (1)

ivt +
1
2
vxx + (|u|2 + |v|2)v + iϵ[vxxx + (6|v|2 + 3|u|2)vx + 3vu∗ux] = 0. (2)

Here u(x, t), v(x, t) are the complex smooth envelop functions, and ϵ is a small dimensionless real parameter. The CH
equations with high-order effects like the third dispersion, self-steepening and inelastic Raman scattering terms were first
proposed by Tasgal and Potasek to describe a non-relativistic boson field [45]. They are important in optics to illustrate the
transmission when pulse lengths become comparable to the wavelength, while in this case the simple Manakov model is
inadequate, and the high-order nonlinear effects must be considered [46]. Some important results have been obtained for
Eqs. (1) and (2), such as the Lax pair, the classical Darboux transformation, the Painlevé analysis, the bright and dark soliton
solutions [45–47]. Especially, in Ref. [48], Chen and Song give the lower-order fundamental and dark rogue wave solutions
of Eqs. (1) and (2), which extremely indicate the interesting structures of localized waves in Eqs. (1) and (2).

In the present paper, we concentrate on interactional solutions between rogue waves and the other nonlinear waves
such as dark–bright solitons and breathers of Eqs. (1) and (2), which, to the best of our knowledge have not been reported
by any authors. By resorting to the Taylor series expansion coefficients of a special solution to the linear spectral problem
of Eqs. (1) and (2), a generalized DT with several free parameters is constructed. As an application, a unified formula of Nth-
order localized wave solution on the plane backgrounds with the same spectral parameter is derived through the direct
iterative rule. In particular, apart from the vector generalization of the first- and the second-order rogue wave solutions to
the decoupled Hirota equation, some novel localized wave solutions of Eqs. (1) and (2) are provided, such as interactional
solutions between a dark–bright soliton and a rogue wave, two dark–bright solitons and a second-order rogue wave, and
interactional solutions between a breather and a rogue wave, two breathers and a second-order rogue wave. The free
parameters play a crucial role to affect the dynamic distributions of localized waves in the coupled system. Some different
types of figures by adjusting the free parameters are explicitly shown to illustrate the dynamic properties of the localized
nonlinear waves. Our results can be seen as the generalization of the work reported by Baronio et al. [29] to the complex
coupled system with high-order nonlinear terms.

The paper is organized as follows. In Section 2, the generalized DT of Eqs. (1) and (2) is constructed. In Section 3, some
explicit general localized wave solutions and interesting figures are given. The last section contains some discussion.

2. Generalized Darboux transformation

In this section, we construct the generalized DT to Eqs. (1) and (2). The Lax pair of it can be expressed as [45]
Φx = UΦ, U = ζU0 + U1, (3)

Φt = VΦ, V = ζ 3V0 + ζ 2V1 + ζV2 + V3, (4)
where

U0 =
1

12ϵ


−2i 0 0
0 i 0
0 0 i


, U1 =

 0 −u −v
u∗ 0 0
v∗ 0 0


, V0 =

1
16ϵ

U0, V1 =
1
8ϵ

U0 +
1

16ϵ
U1,

V2 =
1
4


ie −

u
2ϵ

− iux −
v

2ϵ
− ivx

u∗

2ϵ
− iu∗

x −i|u|2 −ivu∗

v∗

2ϵ
− iv∗

x −iuv∗
−i|v|2

 , V3 =


ϵ(e1 + e2)+

i
2
e ϵe3 −

i
2
ux ϵe4 −

i
2
vx

−ϵe∗

3 −
i
2
u∗

x −ϵe1 −
i
2
|u|2 ϵe5 −

i
2
vu∗

−ϵe∗

4 −
i
2
v∗

x −ϵe∗

5 −
i
2
uv∗

−ϵe2 −
i
2
|v|2

 ,
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with
e = |u|2 + |v|2, e1 = uu∗

x − u∗ux, e2 = vv∗

x − v∗vx,

e3 = uxx + 2eu, e4 = vxx + 2ev, e5 = u∗vx − vu∗

x .

Here Φ = (ψ(x, t), φ(x, t), χ(x, t))T , u and v are potentials, ζ is the spectral parameter, u∗ and v∗ denote complex
conjugate ofu and v. Throughdirect calculation, one candirectly get Eqs. (1) and (2) by using the zero curvature equationUt−

Vx + UV − VU = 0.
After that, let Φ1 = (ψ1, φ1, χ1)

T be a solution of (3) and (4) with u = u[0], v = v[0] and ζ = ζ1, then based on the
classical DT of the Ablowitz–Kaup–Newell–Segur (AKNS) spectral problem [36], the following formulas

Φ[1] = T [1]Φ, T [1] = ζ I − H[0]Λ1H[0]−1, (5)

u[1] = u[0] + i(ζ1 − ζ ∗

1 )
ψ1[0]φ1[0]∗

4ϵ(|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2)
, (6)

v[1] = v[0] + i(ζ1 − ζ ∗

1 )
ψ1[0]χ1[0]∗

4ϵ(|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2)
, (7)

satisfy
Φ[1]x = U[1]Φ[1], Φ[1]t = V [1]Φ[1], (8)

where ψ1[0] = ψ1, φ1[0] = φ1, χ1[0] = χ1,

I =

1 0 0
0 1 0
0 0 1


, H[0] =


ψ1[0] φ1[0]∗ χ1[0]∗

φ1[0] −ψ1[0]∗ 0
χ1[0] 0 −ψ1[0]∗


, Λ1 =


ζ1 0 0
0 ζ ∗

1 0
0 0 ζ ∗

1


,

U[1], V [1] have the same form as U, V except the old potentials u, v are replaced by the new ones u[1], v[1], and (5)–(7)
are called the classical DT of the Lax pair (3) and (4).

Thus, assume Φl = (ψl, φl, χl)
T (1 ≤ l ≤ N) be a basic solution of the Lax pair (3) and (4) with u = u[0], v = v[0] and

ζ = ζl, then by making use of the above DT N times, we get the N-step DT of Eqs. (1) and (2)

Φ[N] = T [N]T [N − 1] · · · T [1]Φ, T [l] = ζ I − H[l − 1]ΛlH[l − 1]−1, (9)

u[N] = u[N − 1] + i(ζN − ζ ∗

N )
ψN [N − 1]φN [N − 1]∗

4ϵ(|ψN [N − 1]|2 + |φN [N − 1]|2 + |χN [N − 1]|2)
, (10)

v[N] = v[N − 1] + i(ζN − ζ ∗

N )
ψN [N − 1]χN [N − 1]∗

4ϵ(|ψN [N − 1]|2 + |φN [N − 1]|2 + |χN [N − 1]|2)
, (11)

where

H[l − 1] =


ψl[l − 1] φl[l − 1]∗ χl[l − 1]∗

φl[l − 1] −ψl[l − 1]∗ 0
χl[l − 1] 0 −ψl[l − 1]∗


, Λl =


ζl 0 0
0 ζ ∗

l 0
0 0 ζ ∗

l


,

with (ψl[l − 1], φl[l − 1], χl[l − 1])T = Φl[l − 1] and
Φl[l − 1] = Tl[l − 1]Tl[l − 2] · · · Tl[1]Φl, Tl[j] = T [j]|ζ=ζl , 1 ≤ l ≤ N, 1 ≤ j ≤ l − 1.

In the following, according to the above classical DT (5)–(7), we construct the generalized DT to Eqs. (1) and (2). Note
that,

Φ1 = Φ1(ζ1 + δ) (12)
is a special solution of (3) and (4) with u = u[0], v = v[0] and ζ = ζ1 + δ. HereΦ1 = (ψ1, φ1, χ1)

T , δ is a small parameter.
Next, it is significant that we supposeΦ1 be expanded as the Taylor series

Φ1 = Φ
[0]
1 + Φ

[1]
1 δ + Φ

[2]
1 δ

2
+ Φ

[3]
1 δ

3
+ · · · + Φ

[N]

1 δN + · · · , (13)

whereΦ[l]
1 = (ψ

[l]
1 , φ

[l]
1 , χ

[l]
1 ),Φ

[l]
1 =

1
l!
∂ lΦ1
∂δl

|δ=0(l = 0, 1, 2, . . .).
From the above assumption, it is easy to find thatΦ[0]

1 is a particular solution of (3) and (4) with u = u[0], v = v[0] and
ζ = ζ1. So the first-step generalized DT can be directly given by means of the formulas (5)–(7).

(1) The first-step generalized DT.

Φ[1] = T [1]Φ, T [1] = (ζ I − H[0]Λ1H[0]−1), (14)

u[1] = u[0] + i(ζ1 − ζ ∗

1 )
ψ1[0]φ1[0]∗

4ϵ(|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2)
, (15)

v[1] = v[0] + i(ζ1 − ζ ∗

1 )
ψ1[0]χ1[0]∗

4ϵ(|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2)
, (16)
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where ψ1[0] = ψ
[0]
1 , φ1[0] = φ

[0]
1 , χ1[0] = χ

[0]
1 and

H[0] =


ψ1[0] φ1[0]∗ χ1[0]∗

φ1[0] −ψ1[0]∗ 0
χ1[0] 0 −ψ1[0]∗


, Λ1 =


ζ1 0 0
0 ζ ∗

1 0
0 0 ζ ∗

1


.

(2) The second-step generalized DT.
It is obvious that T [1]|Φ1 is a solution of the Lax pair (3) and (4) with u[1], v[1], ζ = ζ1 + δ, and so is T [1]Φ1/δ.

Consequently, considering the following limit process

lim
δ→0

T [1]|ζ=ζ1+δΦ1

δ
= lim

δ→0

(δ + T1[1])Φ1

δ
= Φ

[0]
1 + T1[1]Φ

[1]
1 ≡ Φ1[1],

we find a nontrivial solution of the Lax pair (3) and (4) with u[1], v[1], ζ = ζ1, and here we have used the identity
T1[1]Φ

[0]
1 = 0. Then the second-step generalized DT holds

Φ[2] = T [2]T [1]Φ, T [2] = (ζ I − H[1]Λ2H[1]−1), (17)

u[2] = u[1] + i(ζ1 − ζ ∗

1 )
ψ1[1]φ1[1]∗

4ϵ(|ψ1[1]|2 + |φ1[1]|2 + |χ1[1]|2)
, (18)

v[2] = v[1] + i(ζ1 − ζ ∗

1 )
ψ1[1]χ1[1]∗

4ϵ(|ψ1[1]|2 + |φ1[1]|2 + |χ1[1]|2)
, (19)

where (ψ1[1], φ1[1], χ1[1])T = Φ1[1],

H[1] =


ψ1[1] φ1[1]∗ χ1[1]∗

φ1[1] −ψ1[1]∗ 0
χ1[1] 0 −ψ1[1]∗


, Λ2 =


ζ1 0 0
0 ζ ∗

1 0
0 0 ζ ∗

1


.

(3) The third-step generalized DT.
Similarly, by using the following limit

lim
δ→0

[T [2]T [1]]|ζ=ζ1+δΦ1

δ2
= lim

δ→0

(δ + T1[2])(δ + T1[1])Φ1

δ2
= Φ

[0]
1 + (T1[2] + T1[1])Φ

[1]
1 + T1[2]T1[1]Φ

[2]
1 ≡ Φ1[2],

a special solution of the Lax pair (3) and (4) with u[2], v[2], ζ = ζ1 can be obtained, and the identities

T1[1]Φ
[0]
1 = 0, T1[2](Φ

[0]
1 + T1[1]Φ

[1]
1 ) = 0

have been applied in the above derivation process. Then the third-step generalized DT can be given

Φ[3] = T [3]T [2]T [1]Φ, T [3] = (ζ I − H[2]Λ3H[2]−1), (20)

u[3] = u[2] + i(ζ1 − ζ ∗

1 )
ψ1[2]φ1[2]∗

4ϵ(|ψ1[2]|2 + |φ1[2]|2 + |χ1[2]|2)
, (21)

v[3] = v[2] + i(ζ1 − ζ ∗

1 )
ψ1[2]χ1[2]∗

4ϵ(|ψ1[2]|2 + |φ1[2]|2 + |χ1[2]|2)
, (22)

where (ψ1[2], φ1[2], χ1[2])T = Φ1[2],

H[2] =


ψ1[2] φ1[2]∗ χ1[2]∗

φ1[2] −ψ1[2]∗ 0
χ1[2] 0 −ψ1[2]∗


, Λ3 =


ζ1 0 0
0 ζ ∗

1 0
0 0 ζ ∗

1


.

(4) The N-step generalized DT.
Continuing the above process, the N-step generalized DT can be presented as follows:

Φ1[N − 1] = Φ
[0]
1 +

N−1
l=1

T1[l]Φ
[1]
1 +

N−1
l=1

l−1
k=1

T1[l]T1[k]Φ
[2]
1 + · · · + T1[N − 1]T1[N − 2] · · · T1[1]Φ

[N−1]
1 ,

Φ[N] = T [N]T [N − 1] · · · T [1]Φ, T [l] = (ζ I − H[l − 1]ΛlH[l − 1]−1), (23)

u[N] = u[N − 1] + i(ζ1 − ζ ∗

1 )
ψ1[N − 1]φ1[N − 1]∗

4ϵ(|ψ1[N − 1]|2 + |φ1[N − 1]|2 + |χ1[N − 1]|2)
, (24)

v[N] = v[N − 1] + i(ζ1 − ζ ∗

1 )
ψ1[N − 1]χ1[N − 1]∗

4ϵ(|ψ1[N − 1]|2 + |φ1[N − 1]|2 + |χ1[N − 1]|2)
, (25)



X. Wang et al. / Wave Motion 51 (2014) 1149–1160 1153

where (ψ1[N − 1], φ1[N − 1], χ1[N − 1])T = Φ1[N − 1],

H[l − 1] =


ψ1[l − 1] φ1[l − 1]∗ χ1[l − 1]∗

φ1[l − 1] −ψ1[l − 1]∗ 0
χ1[l − 1] 0 −ψ1[l − 1]∗


, Λl =


ζ1 0 0
0 ζ ∗

1 0
0 0 ζ ∗

1


, 1 ≤ l ≤ N.

What we should mention is that (24)–(25) give rise to a unified formula of Nth-order localized wave solution to Eqs. (1)
and (2) on the plane backgroundswith the same spectral parameter, and they can be converted into the 3N×3N determinant
representation by using the so-called Crum theorem [37]. However, we prefer to use the iterative form of the Darboux
transformation of degree one rather than the high-order determinant representation, for it can be more conveniently
calculated by the computer. In the next section, we shall present some explicit localized wave solutions of Eqs. (1) and
(2) to illustrate how to use these formulas, some interesting figures are shown.

3. Localized wave solutions

In this section, we start from a periodic seed solution of Eqs. (1) and (2),

u[0] = d1eiθ , v[0] = d2eiθ . (26)

Here θ = (d21 + d22)t, d1 and d2 are real constants. Then the basic solution of the Lax pair (3) and (4) with u[0], v[0] and ζ
holds

Φ1 =

 (C1eM1+M2 − C2eM1−M2)e
i
2 θ

ρ1(C2eM1+M2 − C1eM1−M2)e−
i
2 θ + d2αeM3

ρ2(C2eM1+M2 − C1eM1−M2)e−
i
2 θ − d1αeM3

 , (27)

where

C1 =


ζ −


ζ 2 + 64ϵ2(d21 + d22)

 1
2


ζ 2 + 64ϵ2(d21 + d22)

, C2 =


ζ +


ζ 2 + 64ϵ2(d21 + d22)

 1
2


ζ 2 + 64ϵ2(d21 + d22)

,

ρ1 =
d1

d21 + d22
, ρ2 =

d2
d21 + d22

, M1 = −
iζ

384ϵ2
(16ϵx + ζ (ζ + 2)t),

M3 =
iζ

192ϵ2
(16ϵx + ζ (ζ + 2)t),

M2 =
i

128ϵ2


ζ 2 + 64ϵ2(d21 + d22)


16ϵx + (ζ (ζ + 2)− 32ϵ2(d21 + d22))t +

N
k=1

skf 2k

.

Here f is a small parameter, sk = mk + ink. α,mk, nk (1 ≤ k ≤ N) are real constants. Let ζ = 8iϵ

d21 + d22(1 + f 2), and

expanding the vector functionΦ1(f ) at f = 0, we have

Φ1(f ) = Φ
[0]
1 + Φ

[1]
1 f 2 + Φ

[2]
1 f 4 + · · · , (28)

where

ψ
[0]
1 =

(i − 1)
4
√
ϵ(d21 + d22)1/4


2

d21 + d22(x − 6ϵd21t − 6ϵd22t)+ 2id21t + 2id22t + 1


eξ1 ,

φ
[0]
1 =

(i − 1)d1
4
√
ϵ(d21 + d22)3/4


2

d21 + d22(x − 6ϵd21t − 6ϵd22t)+ 2id21t + 2id22t − 1


eξ2 + d2αeξ3 ,

χ
[0]
1 =

(i − 1)d2
4
√
ϵ(d21 + d22)3/4


2

d21 + d22(x − 6ϵd21t − 6ϵd22t)+ 2id21t + 2id22t − 1


eξ2 − d1αeξ3 , . . .

with

ξ1 =
1
3


d21 + d22x + (d21 + d22)


5
6
i −

4
3
ϵ


d21 + d22


t,

ξ2 =
1
3


d21 + d22x − (d21 + d22)


1
6
i +

4
3
ϵ


d21 + d22


t,

ξ3 = −
2
3


d21 + d22x − (d21 + d22)


2
3
i −

8
3
ϵ


d21 + d22


t.
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Fig. 1. Evolution plot of the dark–bright–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α = 10, d1 = 1, d2 = 0.
(a) A dark soliton merges with a rogue wave in u component; (b) a bright soliton merges with a rogue wave in v component.

Fig. 2. Plane evolution plot of the interactional process between a right-going dark soliton and a rogue wave in Fig. 1(a) at: (a) t = −20; (b) t = 0;
(c) t = 20. The collision process is elastic, the amplitude and velocity of the dark soliton are unchanged after the collision.

It is direct to verify thatΦ[0]
1 = (ψ

[0]
1 , φ

[0]
1 , χ

[0]
1 )T is a special solution of the Lax pair (3) and (4) with u = u[0], v = v[0],

and ζ = ζ1 = 8iϵ

d21 + d22. Hence, by using the formulas (15) and (16), we arrive at

u[1] = d1eiθ +
d1eiθ (F1 + iH1)+ d2G1eη1

D1 + K1eη2
, v[1] = d2eiθ +

d2eiθ (F1 + iH1)− d1G1eη1

D1 + K1eη2
, (29)

where

F1 = −8(d21 + d22)x
2
+ 96ϵ(d21 + d22)

2xt − 8(d21 + d22)
2(36ϵ2(d21 + d22)+ 1)t2 + 2,

H1 = 8(d21 + d22)t, D1 = 4(d21 + d22)x
2
− 48ϵ(d21 + d22)

2xt + 4(d21 + d22)
2(36ϵ2(d21 + d22)+ 1)t2 + 1,

G1 = 4(1 − i)
√
ϵα(d21 + d22)

3/4

2

d21 + d22(x − 6ϵd21t − 6ϵd22t)+ 2id21t + 2id22t + 1


,

K1 = 4ϵα2(d21 + d22)
3/2, η1 = −


d21 + d22x + (d21 + d22)


3
2
i + 4ϵ


d21 + d22


t,

η2 = −2

d21 + d22x + 8ϵ(d21 + d22)

3/2t.

It is straightforward to check that the above solution satisfies Eqs. (1) and (2) with the aid of Maple, and in what follows, we
discuss the dynamics of this solution through three different cases.

(i) α = 0. Then the vector localized wave solution (29) is reduced to

u[1]rw = d1eiθ

1 +

F1 + iH1

D1


, v[1]rw = d2eiθ


1 +

F1 + iH1

D1


, (30)

which is nothing but the vector generalization of the first-order rogue wave solution to the decoupled Hirota equation.
Here, u[1]rw is merely proportional to v[1]rw , and from the concrete expressions of them, we calculate that the maximum
amplitudes of u[1]rw and v[1]rw are three times more than their each average crest.

(ii) α ≠ 0, d1 ≠ 0 and d2 = 0. In this case, the dark–bright–rogue wave solution can be generated. Fig. 1 shows a
dark–bright soliton together with a rogue wave, and Figs. 2 and 3 describe the explicit collision processes between a dark
soliton and a rogue wave, a bright soliton and a rogue wave, respectively. We see that in Figs. 2 and 3, a dark soliton and
a bright soliton are propagating in the positive direction of x-axis, while at the time of t = 0, a rogue wave suddenly
appears from nowhere, and these two different types of waves impact together with each other. Next, the rogue wave soon
disappears in the same abrupt way, and the solitons continue going ahead without any changing of their amplitudes and
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Fig. 3. Plane evolution plot of the interactional process between a right-going bright soliton and a rogue wave in Fig. 1(b) at: (a) t = −20; (b) t = 0;
(c) t = 20. The collision process is elastic, the amplitude and velocity of the bright soliton are unchanged after the collision.

Fig. 4. Evolution plot of the dark–bright–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α = 1/10, d1 = 1, d2 = 0.
(a) The dark soliton and the rogue wave separate in u component; (b) the bright soliton and the rogue wave separate in v component. The rogue wave in
v component is difficult to be seen for its zero-amplitude background wave.

Fig. 5. Evolution plot of the breather–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α = 1, d1 = 1, d2 = 1. (a) A
breather merges with a rogue wave in u component; (b) a breather merges with a rogue wave in v component.

velocities after the collision. The whole interactional process can be seen as elastic. Moreover, by decreasing the value of α,
the dark–bright soliton and the rogue wave separate. We notice that in Fig. 4(a), a dark soliton and a rogue wave emerge on
the distribution of the spacial–temporal structure, and the maximum amplitude of the rogue wave is 3. Nevertheless, when
the bright soliton and the rogue wave divide, it is shown that the rogue wave cannot be easily identified, see Fig. 4(b). The
phenomenon can be easily explained, for the amplitude of a rogue wave depends on that of its backgroundwave, and at this
time the amplitude of the background wave in v component is zero.

(iii) α ≠ 0, d1 ≠ 0 and d2 ≠ 0. At this point, the interactional solution between a breather and a rogue wave can be
given, see Figs. 5 and 6. We observe that by increasing the value of α, the breather and the rogue wave merge, see Fig. 5.
While by decreasing the value of α, the breather and the rogue wave separate, see Fig. 6.

Next, considering the following limit

lim
f→0

T [1]|
ζ=8iϵ

√
d21+d22(1+f 2)

Φ1

f 2
= lim

f→0


8iϵ

d21 + d22f

2
+ T1[1]


Φ1

f 2

= 8iϵ

d21 + d22Φ

[0]
1 + T1[1]Φ1 ≡ Φ1[1], (31)
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Fig. 6. Evolution plot of the breather–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α = 1/100, d1 = 1, d2 = 1.
(a) The breather and the rogue wave separate in u component; (b) the breather and the rogue wave separate in v component.

where Φ[1]
1 =

1
2
∂2

∂ f 2
|f=0Φ1, we get a special solution of the Lax pair (3) and (4) with u[1], v[1] and ζ = ζ1 = 8iϵ


d21 + d22.

By making use of (18) and (19), the explicit second-order localized wave solution can be obtained. Here, we only give the
explicit expressions of u[2] and v[2] in the simplest case of α = 0. For the case of α ≠ 0, we omit presenting since the
expressions are rather cumbersome to write them down here, although it is not difficult to verify the validity of the solution
by putting them back into Eqs. (1) and (2) using Maple.

(i) α = 0. By taking d1 = 1, d2 = 3/2, we calculate that

u[2]rw = exp

13
4

it


1 +
F2 + iH2

D2


, v[2]rw =

3
2
exp


13
4

it


1 +
F2 + iH2

D2


, (32)

where

F2 = −129792ϵ2x4 + 10123776ϵ3tx3 − (296120448ϵ4t2 + 2530944ϵ2t2 + 59904ϵ2)x2

+ (3849565824ϵ5t3 + 98706816ϵ3t3 + 5451264ϵ3t + 7488ϵm1)x
− 24ϵ(781943058ϵ5 + 285610ϵ + 40099644ϵ3)t4 − 24ϵ(3480048ϵ3 + 24336ϵ)t2

+ 24ϵ(156
√
13n1 − 6084ϵm1)t + 2304ϵ2,

G2 = −843648tϵ2x4 + 65804544ϵ3t2x3 − (1924782912ϵ4t3 − 389376ϵ2t + 3744n1ϵ
√
13 + 5483712ϵ2t3)x2

+ (25022177856ϵ5t4 + 213864768ϵ3t4 + 5061888ϵ3t2 + 48672ϵm1t + 146016
√
13ϵ2n1t)x

− 24ϵ(371293ϵ + 5082629877ϵ5 + 86882562ϵ3)t5 − 24ϵ(17576ϵ + 10281960ϵ3)t3

+ 24ϵ(507
√
13n1 − 59319

√
13ϵ2n1 − 39546ϵm1)t2 + 74880ϵ2t − 288

√
13ϵn1,

D2 = 140608ϵ2x6 − 16451136ϵ3tx5 + ((801992880ϵ4 + 1370928ϵ2)t2 + 32448ϵ2)x4

− ((106932384ϵ3 + 20851814880ϵ5)t3 − 843648ϵ3t − 8112ϵm1)x3

+ ((304957792620ϵ6 + 4455516ϵ2 + 3127772232ϵ4)t4 − (123383520ϵ4 + 632736ϵ2)t2

+ (12168
√
13ϵn1 − 474552ϵ2m1)t + 22464ϵ2)x2 − ((173765124ϵ3 + 40661039016ϵ5

+ 2378670782436ϵ7)t5 − (2887174368ϵ5 − 8225568ϵ3)t3 − (9253764ϵ3m1 − 79092ϵm1

− 474552
√
13ϵ2n1)t2 + 1654848ϵ3t + 1872ϵm1)x + (4826809ϵ2 + 7730680042917ϵ8

+ 198222565203ϵ6 + 1694209959ϵ4)t6 + (400996440ϵ4 + 3084588ϵ2 − 20330519508ϵ6)t4

+ (4626882
√
13ϵ3n1 − 13182

√
13ϵn1 + 1542294ϵ2m1 − 60149466ϵ4m1)t3

+ (43975152ϵ4 + 267696ϵ2)t2 + (133848ϵ2m1 − 2808
√
13ϵn1)t + 117m2

1 + 117n2
1 + 576ϵ2.

Then u[2]rw is merely proportional to v[2]rw with the radio of 2/3, the maximum value of them with m1 = 0 and n1 = 0
are five times more than their each average crest. Thus, the above solution is the vector generalization of the second-order
rogue wave solution to the decoupled Hirota equation.

(ii) α ≠ 0, d1 ≠ 0 and d2 = 0. Hence we arrive at the interactional solution between two dark–bright solitons and
a second-order rogue wave. Fig. 7(a) displays two dark solitons together with a fundamental second-order rogue wave,
Fig. 7(b) shows two bright solitons coexist with a fundamental second-order rogue wave. The explicit collision processes
are exhibited in Figs. 8 and 9. It is shown that the interactional process is also elastic, the amplitudes and velocities of the
two dark and bright solitons remain unchanged after the collision. When by decreasing the value of α, the two dark–bright
solitons and the fundamental second-order rogue wave separate, see Fig. 10. At this moment, when the two bright solitons
and the second-order rogue wave divide, the second-order rogue wave in v component are also unobservable for the same
reason as the first-order case.When setting s1 ≠ 0, the fundamental second-order roguewave can split into three first-order
rogue waves, see Fig. 11.
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Fig. 7. Evolution plot of the second-order dark–bright–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α = 1, d1 =

1, d2 = 0,m1 = 0, n1 = 0. (a) two dark solitons merge with a fundamental second-order rogue wave in u component; (b) two bright solitons merge with
a fundamental second-order rogue wave in v component.

Fig. 8. Plane evolution plot of the interactional process between two dark solitons and a fundamental second-order roguewave in Fig. 7(a) at: (a) t = −20;
(b) t = 1; (c) t = 20. The collision process is elastic, the amplitude and velocity of the dark solitons are unchanged after the collision.

Fig. 9. Plane evolution plot of the interactional process between two bright solitons and a fundamental second-order rogue wave in Fig. 7(b) at:
(a) t = −20; (b) t = 0; (c) t = 20. The collision process is elastic, the amplitude and velocity of the bright solitons are unchanged after the collision.

Fig. 10. Evolution plot of the second-order dark–bright–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α =

1/10 000, d1 = 1, d2 = 0,m1 = 0, n1 = 0. (a) Two dark solitons and a fundamental second-order rogue wave separate in u component; (b) two bright
solitons and a fundamental second-order roguewave separate in v component. The roguewave in v component is difficult to be seen for its zero-amplitude
background wave.

(iii) α ≠ 0, d1 ≠ 0 and d2 ≠ 0. Here, the interactional solutions between two breathers and a second-order rogue wave
can be presented, see Figs. 12–14. We see that by increasing the value of α, the two breathers and the second-order rogue
wavemerge, see Fig. 12.While by decreasing the value of α, the two parallel breathers and the second-order rogue separate,
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Fig. 11. Evolution plot of the second-order dark–bright–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α =

1/10 000, d1 = 1, d2 = 0,m1 = 10, n1 = 0. (a) Two dark solitons together with a second-order rogue wave of triangular pattern in u component;
(b) two bright solitons together with a second-order rogue wave of triangular pattern in v component. The rogue waves in v component are difficult to be
seen for its zero-amplitude background wave.

Fig. 12. Evolution plot of the second-order breather–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α = 10, d1 =

1, d2 = 1,m1 = 0, n1 = 0. (a) two breathers merge with a fundamental second-order rogue wave in u component; (b) two breathers merge with a
fundamental second-order rogue wave in v component.

Fig. 13. Evolution plot of the second-order breather–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α = 1/
10 000, d1 = 1, d2 = 1,m1 = 0, n1 = 0. (a) two parallel breathers and a fundamental second-order rogue wave separate in u component; (b) two
parallel breathers and a fundamental second-order rogue wave separate in v component.

Fig. 14. Evolution plot of the second-order breather–rogue wave in coupled Hirota equations with the parameters chosen by ϵ = 1/100, α =

1/10 000, d1 = 1, d2 = 1,m1 = 10, n1 = 0. (a) two parallel breathers and a second-order rogue wave of triangular pattern separate in u component; (b)
two parallel breathers and a second-order rogue wave of triangular pattern separate in v component.

see Fig. 13. Meanwhile, when taking s1 ≠ 0, the fundamental second-order rogue wave can split into three first-order rogue
waves, see Fig. 14.
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4. Conclusion

In summary, we present some novel localized wave solutions of the coupled Hirota equations with high-order nonlinear
effects like the third dispersion, self-steepening and inelastic Raman scattering terms. By using the Taylor series expansion
coefficients of a special solution (27) to the Lax pair Eqs. (3) and (4) with a periodic seed solution and a fixed spectral
parameter, a generalized Darboux transformation of the coupled Hirota equations is constructed. As application, the
interesting interactions between rogue waves and the other nonlinear waves such as dark–bright solitons and breathers
in the coupled Hirota equations are illustrated through some figures. Several free parameters such as α, di (i = 1, 2) and s1
play an important part to affect the dynamic structures of the localized waves. (1) When α = 0, the first- and the second-
order localized wave solutions are the vector generalization of the corresponding rogue wave solutions to the decoupled
Hirota equation. (2) When α ≠ 0, d1 ≠ 0 and d2 = 0, the first- and the second-order dark–bright–rogue wave solutions are
reached. (3) When α ≠ 0, d1 ≠ 0 and d2 ≠ 0, the first- and the second-order breather–rogue wave solutions are derived.
Moreover, by increasing the value of α, the rogue waves and the dark–bright solitons or breathers merge, by decreasing the
value of α they separate, and by taking s1 ≠ 0, the fundamental second-order rogue wave can split into three first-order
rogue waves. Our results can be seen as the generalization of the work done by Baronio et al. [29] to the complex coupled
system with high-order nonlinear terms.

Besides, on the one hand, continuing the generalized DT process, the more complicated localized wave solutions can be
generated, which may possess more abundant striking dynamics. On the other hand, the interactions between rogue waves
and cnoidal waves have recently been reported in the NLS equation [49], there are many possibilities to be observed in the
coupled Hirota equations. Both of them are interesting andwewill investigate in the future paper. The results in the present
paper further reveal the intriguing dynamic distributions of localizedwaves in the coupledHirota equationswith high-order
nonlinear terms, and we hope our results can be verified in real experiments in the future.
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