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Abstract The various patterns of internal solitary
wave interactions are complex phenomena in the
ocean, susceptible to the influence of shear flow and
density distributions. Satellite imagery serves as an
effective tool for investigating these interactions, but
usually does not provide information on the struc-
ture of internal waves and their associated dynamics.
Considering a three-layer configuration that approx-
imates ocean stratification, we analytically investi-
gate two-dimensional internal solitary waves (ISW)
in a three-layer fluid with shear flow and contin-
uous density distribution by establishing a (2+1)-
dimensional Kadomtsev–Petviashvili (KP) model with
depth-dependent coefficients. Firstly, the KP equation
is derived from the basic governing equations which
includemass andmomentumconservations, alongwith
free surface boundary conditions. The coefficients of
the KP equation are determined by the vertical dis-
tribution of fluid density, shear flow, and layer depth.
Secondly, it is found that the interactions of ISW can be
carefully classified intofive types: ordinary interactions
includingO-type, asymmetric interactions including P-

J.-C. Sun · X.-Y. Tang (B) · Y. Chen
School of Mathematical Sciences, Key Laboratory of Mathe-
matics and Engineering Applications (Ministry of Education) &
Shanghai Key Laboratory of PMMP, East China Normal Uni-
versity, Shanghai 200241, China
e-mail: xytang@sist.ecnu.edu.cn

Y. Chen
College of Mathematics and Systems Science, Shandong Uni-
versity of Science and Technology, Qingdao 266590, China

type, TP-type and TO-type, and Miles resonance. The
genuine existence of these interaction types is observed
from satellite images in the Andaman Sea, theMalacca
Strait, and the coast of Washington state. Finally, the
“convex” and “concave” internal solitary interactions
are discovered in the three-layer fluid, which together
constitute the fluctuating forms of oceanic ISW. It is
revealed that shear flow is the primary factor to deter-
mine whether these types of interactions are “convex”
or “concave.” Besides, a detailed analysis is conducted
to show how the ratio of densities influences the prop-
erties of these interactions, such as amplitude, angle,
and wave width.

Keywords Internal solitary wave interactions · KP
equation · Three-layer fluid · Shear flow

1 Introduction

Internal waves commonly occur in stratified fluids
(oceans, lakes and fjords, etc) [1–3]. The first dis-
coverer of internal waves was Nansen, whose vessel
encountered the phenomenon of “dead water” [4] in
Arctic waters between 1893 and 1896, caused by the
drag increasing effect of internal waves. In the actual
ocean environment, the density of seawater is stable and
continuously stratified, and any disturbance may excite
internal waves, making them ubiquitous in the ocean.
Internal solitary waves (ISW) are the most common
and widely studied type of internal wave phenomena.
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Research has shown that in stratified seawater, ISWcan
begenerated through the interaction of shear flow, inter-
nal tides, and wave-flow interactions in frontal regions
[5,6]. ISWhave a significant impact on the safety of off-
shore structures, the distribution of nutrients in water,
and the propagation of acoustic waves, among other
aspects. Therefore, in-depth research on ISW holds
paramount theoretical and practical significance.

It is difficult to solve analytically the original equa-
tions for oceanic ISW, which may contain multiple
dynamical processes at different scales and may even
distort or obscure the features of our primary inter-
est, and thus the size-dependent effect must be care-
fully judged to establish various nonlinear models [7–
9]. Most early investigations on ISW depended on the
KdV equation [10,11] which is an important integrable
equation applied in many physical fields. Later, many
low-dimensional equations such as the higher-order
KdV equation, the Gardner equation, and the variable-
coefficient KdV equation have been used to describe
ISW [12–15]. However, interactions of ISW typically
involve multiple dimensions. In the aforementioned
low-dimensionalmodels, it is challenging to accurately
capture these interactions, as they fail to provide suf-
ficient dimensions to describe the details of interac-
tions. Therefore, when considering the actual situa-
tion, it becomes imperative to conduct a more com-
prehensive study of ISW based on high-dimensional
models. Kadomtsev and Petviashvili derived a two-
dimensional version of the KdV equation, known as
the KP equation [16]. Kataoka et al. earlier used the
KP equation as a model for ISW [17], and thereafter
much work on ISW has focused on the KP equation
and some other high-dimensional equations [18–20].
Nevertheless, these high-dimensionalmodels have pre-
dominantly employed a two-layer structure, wherein
the density within each layer is assumed constant, and
the influence of shear flow has not been considered. As
we mentioned above, in the actual ocean environment,
the continuous distribution of density and the presence
of shear flow both play significant roles. Consequently,
these critical factors have to be considered in ourmodel
development. To our knowledge, the KP equation has
not been applied to ISW in a three-layer fluid. It is found
that the vertical stratification has a clearly pronounced
three-layer structure in the ocean [21–23]. Therefore,
it is also necessary to introduce a three-layer model to
explain the basic features of the internal wave field in
such environments.

ISWoften interact with each other during their prop-
agations [24–26], and these interactions can threaten
the safety of offshore structures, ships, and submarines.
Many theoretical analysis on the interactions of ISW
have been carried out to help people understand them
further. For instance,Yu et al. studied the ordinary inter-
actions based on the KP type equation [27]. Wang et al.
described the Mach interactions observed in the Strait
of Georgia [28]. Yuan et al. simulated diffraction and
oblique interactions [29]. However, these investigation
focused exclusively on a specific type of interaction. As
iswell-known, various types of interactions occur in the
ocean, and thus, we aim to conduct a more comprehen-
sive classification of these interactions. A noteworthy
study is the one conducted by Xue et al., who analyzed
the interactions among three different types of inter-
nal waves in the Mid-Atlantic Bight based on satellite
imagery [30]. The theoretical foundation ofXue’swork
is established upon the “convex” interaction solutions
of the KP-type equation with constant coefficients,

(ηt + c0ηx + c1ηηx + c2ηxxx )x + c0
2

ηyy = 0. (1)

It is worth noting that the discovery and analysis
of the “concave” interaction solutions have not been
addressed in previous studies. We speculate that this
may be related to the absence of physical quantities
such as density and shear flow in the equations, and thus
theywill be added in our derivation of the internal wave
equation. Actually, the internal wave interactions are
not only common in the mid-Atlantic but also in other
marine regions. These internal wave interactions, even
though they occur within the ocean, exhibit a surface
feature on the sea surface (manifesting as a small mod-
ulation on the surface roughness) that can be captured
by satellite imagery. For instance, the ERS-2 satellite
has collected a significant amount of internal wave data
in the Andaman Sea, including interactions between
ISW [31]. Furthermore, photographs taken by astro-
nauts (STS036-082-76) showcase the intricate patterns
formed when ISW collide in the southern African mar-
itime region [31]. Nowadays, satellite images have
become an efficient tool to study internal wave interac-
tions, however, satellite images by themselves usually
do not provide detailed information on the structure and
dynamics of internal waves, which motivates us to rely
on theoretical analysis to supplement the limitations of
satellite images.

It is worth mentioning that Kodama and Biondini
have theoretically studied three fundamental types of
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2-soliton interaction structures for the KP-II equa-
tion [32–34]. On the other hand, Ablowitz and Bald-
win observed two types of interactions for shallow-
water waves on flat beaches [35], and mathematically
described them using the KP-type equation

∂

∂x

(
1√
gh

ηt + ηx + 3

2h
ηηx + h2γ

2
ηxxx

)

+1

2
ηyy = 0. (2)

The aforementioned research provides an important
reference for the study of surface waves. Due to the
typically challenging nature of observing fluctuations
occurring within the internal environment of fluids,
research on systems involving internal interaction types
remains relatively limited. Our work aims to describe
ISW in the ocean by establishing a reasonable model
and to explore their internal interaction patterns by
drawing on surface wave theory, as well as to validate
the feasibility of the theoretical study through satellite
images. It is mentioned that this work has been pre-
sented in [36].

The rest of the paper is organized as follows. In
Sect. 2, a (2+1) dimensional KP model is derived for
describing oceanic ISW. In Sect. 3, the coefficients of
the KP equation, as defined by the particular vertical
distribution of fluid density, layer depth and properties
of shear flow, are explicitly calculated and analyzed in
detail in a three-layer fluid. In Sect. 4, the “convex” and
“concave” ISW are diagnosed, and the internal solitary
wave interactions are carefully categorized into five
types, which can reflect interaction patterns in the real
ocean. It is revealed that shear flow is the primary fac-
tor determining the generation of “convex” and “con-
cave” interactions, while the density ratio also influ-
ences properties such as amplitude, angle, and wave
width in these interactions. The last section is devoted
to the conclusion and discussion.

2 Derivation of the KP model for internal waves

2.1 Governing equations

In order to derive the KP equation modeling oceanic
internal waves, we start from the inviscid, incompress-
ible, and layered fluid. The basic governing equations,
consisting of the mass and momentum conservation

equations in three-dimensions, are

ρ
du

dt
+ ∂p

∂x
= 0, (3)

ρ
dv

dt
+ ∂p

∂y
= 0, (4)

ρ
dw

dt
+ ∂p

∂z
+ ρg = 0, (5)

dρ

dt
= 0, (6)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (7)

where x , y and z are the spatial coordinates, andu, v and
w are the fluid velocities in the x , y and z directions,
respectively, ρ is the fluid density, p is the pressure,
and g is the gravitational acceleration. The material
derivative d/dt is expressed in the following form,

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (8)

Consider that the fluid takes the rigid boundary
z = −h as the lower boundary, the free surface z =
ψ(x, y, t) as the upper boundary, and the equilibrium
position of the upper boundary is z = 0. Therefore, the
boundary conditions of the governing equations are

w = 0 |z=−h, (9)

p = 0 |z=ψ(x,y,t), (10)

w = ∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂y
|z=ψ(x,y,t), (11)

whereψ(x, y, t) is the vertical displacement of the free
surface. Equation (11) ensures that the vertical velocity
at the free surface coincides with the vertical velocity
inside the fluid.

Introducing the characteristic length h0, the char-
acteristic density ρ, and the characteristic buoyancy
frequency N0 = gΔρ/h0ρ, we can define the dimen-
sionless variables as follows,

(x, y, z, t) = (h0 x̃, h0 ỹ, h0̃z,
1

N0
t̃), (12)

(u, v, w) = (h0N0ũ, h0N0ṽ, h0N0w̃), (13)

(h, ϕ, ρ, p, ) = (h0h̃, h0ϕ̃, ρρ̃, ρh0gρ̃), (14)

then by substituting Eqs. (12)–(14) into Eqs. (3)–(7)
and the boundary conditions (9)–(10), and ignoring the
superscripts of dimensionless variables, the governing
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equations and boundary conditions in the dimension-
less form can be obtained,

ρ
du

dt
+ 1

σ

∂p

∂x
= 0, (15)

ρ
dv

dt
+ 1

σ

∂p

∂y
= 0, (16)

ρ
dw

dt
+ 1

σ

(
∂p

∂z
+ ρ

)
= 0, (17)

dρ

dt
= 0, (18)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (19)

w = 0 |z=−h, (20)

p = 0 |z=ψ(x, y, t), (21)

w = ∂ψ

∂t
+ u

∂ψ

∂x

+ v
∂ψ

∂y
|z=ψ(x, y, t), (22)

where σ = h0N 2
0 /g is small in the ocean conditions.

2.2 Semi-Lagrangian form

In this subsection, we further transform the govern-
ing equations and boundary conditions into the semi-
Lagrangian form. A new variable ζ(x, y, z, t) is
introduced to represent the vertical displacement of a
fluid particle from its rest position, which is obviously
related to w as

w = dζ

dt
. (23)

According to Eq. (17), the pressure p is denoted by

p(x, y, z, t) = −
∫ z

0
ρ0(z

′)dz′ + σq(x, y, z, t), (24)

where the function q(x, y, z, t) is the complex integral
function.

Suppose the density of the fluid is ρ0(z) in the rest
state. Therefore, the density of the perturbed fluid reads
ρ(x, y, z, t) = ρ0(z − ζ(x, y, z, t)). Hence, the
Lagrangian coordinate is introduced as

k = z − ζ(x, y, z, t), (25)

and the density of the fluid in the perturbed state is
reformulated as

ρ(x, y, z, t) = ρ0(k). (26)

Based on Eqs. (25) and (26), we obtain

dρ

dt
= dρ0

dt
= ∂ρ0

∂t
+ u

∂ρ0

∂x
+ v

∂ρ0

∂y
+ w

∂ρ0

∂z

= ∂ρ0

∂k

(
w − ∂ζ

∂t
− u

∂ζ

∂x
− v

∂ζ

∂y
− w

∂ζ

∂z

)

= ∂ρ0

∂k

(
w − dζ

dt

)
= 0.

(27)

It is obvious that the introduction of Lagrangian
coordinates makes Eq. (18) identically satisfied. Now
let us derive the partial derivatives of an arbitrary func-
tion f (x, y, z, t) in Eulerian coordinates with respect
to time and space, as well as the form of its material
derivative. Denoting f (x, y, z, t) = f ′(x, y, k, t), we
have
∂ f

∂t
= ∂ f ′

∂t
− ∂ f ′

∂k

∂ζ

∂t
,

∂ f

∂x
= ∂ f ′

∂x
− ∂ f ′

∂k

∂ζ

∂x
,

∂ f

∂y
= ∂ f ′

∂y
− ∂ f ′

∂k

∂ζ

∂y
,

∂ f

∂z
= ∂ f ′

∂k
− ∂ f ′

∂k

∂ζ

∂z
,

(28)

which lead to the material derivative as
d f

dt
= ∂ f ′

∂t
+ u

∂ f ′

∂x
+ v

∂ f ′

∂y
. (29)

Letting ζ(x, y, z, t) = η(x, y, k, t), the partial
derivatives of ζ(x, y, z, t) inEq. (28) canbedetermined
as

ζz = ηk

1 + ηk
, ζx = ηx

1 + ηk
, ζy = ηy

1 + ηk
, ζt

= ηt

1 + ηk
.

(30)

Using Eqs. (28)–(30) and ignoring the superscripts
of the functions, we rewrite Eqs. (15)–(17) and (19) in
the new coordinates as

ρ0(k)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
+ ∂q

∂x

− 1

1 + ∂η
∂k

∂q

∂k

∂η

∂x
= 0, (31)

ρ0(k)

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ ∂q

∂y

− 1

1 + ∂η
∂k

∂q

∂k

∂η

∂y
= 0, (32)

ρ0(k)

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y

)
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+ 1

1 + ∂η
∂k

∂q

∂k
+ 1

σ
[ρ0(k) − ρ0(k + η)] = 0, (33)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂k

− 1

1 + ∂η
∂k

(
∂u

∂k

∂η

∂x
+ ∂v

∂k

∂η

∂y
+ ∂w

∂k

∂η

∂k

)
= 0. (34)

From Eqs. (23) and (30), we get

w = ∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
. (35)

It is important tomention that since Eq. (23) satisfies
the boundary condition ζ = ψ at z = ψ , Eq. (35) is still
satisfied on the boundary. Under the new coordinates,
the boundary conditions become

∫ η

0
ρ0
(
k′) dk′ = σq

∣∣∣∣
k=0

, (36)

η = 0
∣∣
k=−h . (37)

Finally, Eqs. (31)–(34) are reduced to the following
three equations by using Eq. (35) and eliminating the
function q(x, y, z, t),

∂

∂k

{
ρ0(k)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)}
− ρ0(k)N

2(k)
∂η

∂x

−
(
1 + ∂η

∂k

)
∂

∂x

{
ρ0(k)

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)2

η

}

+ ∂η

∂x

∂

∂k

{
ρ0(k)

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)2

η

}
= 0,

(38)

∂

∂k

{
ρ0(k)

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)}
− ρ0(k)N

2(k)
∂η

∂y

−
(
1 + ∂η

∂k

)
∂

∂y

{
ρ0(k)

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)2

η

}

+ ∂η

∂y

∂

∂k

{
ρ0(k)

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)2

η

}
= 0,

(39)

(
1 + ∂η

∂k

)(
∂u

∂x
+ ∂v

∂y

)
+ ∂2η

∂t∂k
+ u

∂2η

∂x∂k
+ v

∂2η

∂y∂k

= 0,

(40)

where

N 2(k) = − 1

σρ0(k)

dρ0(k)

dk
. (41)

The boundary conditions (36) and (37), after elimi-
nating the function q(x, y, z, t), are

∂η

∂x
= −σ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

− σ
∂η

∂x

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)2

η

∣∣∣∣
k=0

, (42)

η = 0
∣∣
k=−h . (43)

It is noted that in the semi-Lagrangian form, the orig-
inal governing equations are reformed as Eqs. (38)–
(40) with the boundary conditions (42) and (43). In
this way, the number of the equations and the bound-
ary conditions are both reduced. However, this semi-
Lagrangian method leads to an increase in the order of
nonlinearity to the fourth order, whereas the original
controlling model has only two orders of nonlinearity.

2.3 Derivation of the KP equation

It is remarkable that Eqs. (38)–(40) are still a compli-
cated set of nonlinear equations, so it is not easy to
obtain explicit general solutions. Here, we utilize the
multiple scale method[12] to derive the KP equation
modeling two-dimensional ISW.

For the discussion of nonlinear longwaves, the coor-
dinate extension method in the long wave approxima-
tion, namely, the Gardner-Morikawa transform, can be
used. Introduce a small parameter ε to have the slow
variables

X = εx, Y = εy, T = εt, (44)

which gives

∂

∂x
= ε

∂

∂X
,

∂

∂y
= ε

∂

∂Y
,

∂

∂t
= ε

∂

∂T
. (45)

Separate the velocity field in the x-direction into
an elementary component U (k) and a perturbation
u′(x, y, k, t), while the velocity field in the y-direction
only has a perturbation component v′(x, y, k, t), i.e.,

u(x, y, k, t) = U (k) + u′(x, y, k, t), (46)

v(x, y, k, t) = v′(x, y, k, t). (47)
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Based on Eqs. (45)–(47), Eqs. (38)–(40) can be
rewritten as

∂

∂k

{
ρ0(k)

[
∂u′

∂T
+ (

U (k) + u′) ∂u′

∂X
+ v′ ∂u′

∂Y

]}

− ρ0(k)N
2(k)

∂η

∂X
− ε2

(
1 + ∂η

∂k

)
∂

∂X{
ρ0(k)

[
∂

∂T
+ (

U (k) + u′) ∂

∂X
+ v′ ∂

∂Y

]2
η

}

+ ε2
∂η

∂X

∂

∂k{
ρ0(k)

[
∂

∂T
+ (

U (k) + u′) ∂

∂X
+ v′ ∂

∂Y

]2
η

}
=0,

(48)
∂

∂k

{
ρ0(k)

[
∂v′

∂T
+ (

U (k) + u′) ∂v′

∂X
+ v′ ∂v′

∂Y

]}

− ρ0(k)N
2(k)

∂η

∂Y
− ε2

(
1 + ∂η

∂k

)
∂

∂Y{
ρ0(k)

[
∂

∂T
+ (

U (k) + u′) ∂

∂X
+ v′ ∂

∂Y

]2
η

}

+ ε2
∂η

∂Y

∂

∂k{
ρ0(k)

[
∂

∂T
+ (

U (k) + u′) ∂

∂X
+ v′ ∂

∂Y

]2
η

}
= 0,

(49)(
1 + ∂η

∂k

)(
∂u′

∂X
+ ∂v′

∂Y

)
+ ∂2η

∂T ∂k

+ (
U (k) + u′) ∂2η

∂X∂k
+ v′ ∂2η

∂Y ∂k
= 0,

(50)

with the boundary conditions

∂η

∂X
= −σ

(
∂u′

∂T
+ (

U (k) + u′) ∂u′

∂X
+ v′ ∂u′

∂Y

)

−ε2σ
∂η

∂X

(
∂

∂T
+ (

U (k)+u′) ∂

∂X
+ v′ ∂

∂Y

)2

η

∣∣∣∣
k=0

,

(51)

η= 0|k=−h . (52)

Then, introduce new variables

ξ = X − cT, θ = εY, τ = μT, (53)

where c is the velocity of the long wave, and μ = ε2.
Consequently, we have

∂

∂T
= −c

∂

∂ξ
+ μ

∂

∂τ
,

∂

∂X
= ∂

∂ξ
,

∂

∂Y
= ε

∂

∂θ
.

(54)

Substituting Eq. (54) into Eqs. (48)–(51) arrives at

∂

∂k

{
ρ0(k)(U (k) − c)

∂u′

∂ξ

}
− ρ0(k)N

2(k)
∂η

∂ξ
=F,

(55)
∂

∂k

{
ρ0(k)(U (k) − c)

∂v′

∂ξ

}
−ερ0(k)N

2(k)
∂η

∂θ
=F ′,

(56)

∂u′

∂ξ
+ (U (k) − c)

∂2η

∂ξ∂k
= G, (57)

∂η

∂ξ
+ σ(U (k) − c)

∂u′

∂ξ
=

−σ

(
μ

∂u′

∂τ
+u′ ∂u′

∂ξ
+εv′ ∂v′

∂θ
+μ

∂η

∂ξ
H

) ∣∣∣
k=0

,

(58)

where

F = − ∂

∂k

[
ρ0(k)

(
μ

∂u′

∂τ
+ u′ ∂u′

∂ξ
+ εv′ ∂u′

∂θ

)]

+ μ

(
1 + ∂η

∂k

)
∂

∂ξ
(ρ0H) − μ

∂η

∂ξ

∂

∂k
(ρ0H) ,

F ′ = − ∂

∂k

[
ρ0(k)

(
μ

∂v′

∂τ
+ u′ ∂v′

∂ξ
+ εv′ ∂v′

∂θ

)]

+ εμ

(
1 + ∂η

∂k

)
∂

∂θ
(ρ0H) − εμ

∂η

∂θ

∂

∂k
(ρ0H) ,

G=−μ
∂2η

∂τ∂k
− ∂

∂ξ

(
u′ ∂η

∂k

)
− ε

∂v′

∂θ
− ε

∂

∂θ
(v′ ∂η

∂k
),

H =
[
(U (k) − c)

∂

∂ξ
+ μ

∂

∂τ
+u′ ∂

∂ξ
+ εv′ ∂

∂θ

]2
η.

(59)

By eliminating u′ on the left-hand side of the above
equations, Eqs. (55) and (57) can be further simplified
and degenerated to one equation,

∂

∂k

{
ρ0(k)(U (k) − c)2

∂2η

∂ξ∂k

}

+ ρ0(k)N (k)2
∂η

∂ξ
= M,

(60)

with the boundary condition

∂η

∂ξ
= σ(U (k) − c)2

∂2η

∂ξ∂k
− σ(U (k) − c)G

+ σH1|k=0 ,

(61)
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where

M = ∂

∂k
{ρ0(k)(U (k) − c)G} − F, (62)

H1 = −
(

μ
∂u′

∂τ
+ u′ ∂u′

∂ξ
+ εv′ ∂v′

∂θ
+ μ

∂η

∂ξ
H

)
.

(63)

Expandingη(ξ, θ, k, τ ),u′(ξ, θ, k, τ ) andv′(ξ, θ, k,
τ ) in the following asymptotic form,

η(ξ, θ, k, τ ) = μA(ξ, θ, τ )Φ(k) + μ2η1(ξ, θ, k, τ )

+ μ3η2(ξ, θ, k, τ ) + . . . ,

u′(ξ, θ, k, τ ) = μu0(ξ, θ, k, τ ) + μ2u1(ξ, θ, k, τ )

+ μ3u2(ξ, θ, k, τ ) + . . . ,

v′(ξ, θ, k, τ ) = ε3v1(ξ, θ, k, τ ) + ε5v2(ξ, θ, k, τ )

+ ε7u2(ξ, θ, k, τ ) + . . . ,

(64)

substituting them into Eqs. (56), (57), (60) and the
boundary conditions (52) and (61), and then collect-
ing the terms of the same order in ε, we obtain the
perturbation problems at each order.

At the order of μ and εμ, we have

μ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dk

[
ρ0(k)(U (k) − c)2

dΦ

dk

]
+ ρ0N

2Φ = 0,

Φ = 0|k=−h ,

Φ = σ(U (k) − c)2
dΦ

dk

∣∣∣∣
k=0

,

(65)

μ : ∂u0
∂ξ

+ (U (k) − c)
dΦ

dk

∂A

∂ξ
= 0. (66)

εμ :
∂

∂k

[
ρ0(k)(U (k) − c)

∂v1

∂ξ

]

− ρ0(k)N
2(k)Φ

∂A

∂θ
= 0.

(67)

Rewriting Eq. (60) as

MΦ = ∂

∂k

[
ρ0(k)(U (k) − c)2Φ

∂2η

∂ξ∂k

]

− ∂

∂k

[
ρ0(k)(U (k) − c)2

∂Φ

∂k

∂η

∂ξ

]
,

(68)

and the integrating it with the boundary conditions (52)
and (61) results in
∫ 0

−h
MΦdk= σ

{
ρ0(k)(U (k)−c)2

dΦ

dk
[(U (k)−c)

G − H1]

}
k=0

,

(69)

which can be reformulated via Eq. (62) as

∫ 0

−h

∂

∂k
{ρ0(k)(U (k) − c)GΦ} dk −

∫ 0

−h
FΦdk

−
∫ 0

−h
ρ0(k)(U (k) − c)G

∂Φ

∂k
dk

= σ

[
ρ0(k)(U (k) − c)2

dΦ

dk
H1

]
k=0

+ σ

[
ρ0(k)(U (k) − c)2

dΦ

dk
(U (k) − c)G

]
k=0

.

(70)

According to Eq. (65), we obtain

∫ 0

−h
FΦdk +

∫ 0

−h
ρ0(k)(U (k) − c)G

∂Φ

∂k
dk

− σ

[
ρ0(k)(U (k) − c)2

dΦ

dk
H1

]
k=0

= 0.

(71)

Based on Eq. (59), we easily get

F = − ∂

∂k

[
ρ0(k)

(
μ

∂u′

∂τ
+ u′ ∂u′

∂ξ
+ εv′ ∂u′

∂θ
+ μ

∂η

∂ξ
H

)]

+ μ

(
1 + ∂η

∂k

)
∂

∂ξ
(ρ0H) + μρ0H

∂

∂k

(
∂η

∂ξ

)
,

(72)

which can be expressed as

F = ∂F1
∂k

+ ∂F2
∂ξ

, (73)

with

F1 = ρ0H1, F2 = μρ0H

(
1 + ∂η

∂k

)
. (74)

It is necessary to note that

∫ 0

−h

∂

∂k
(F1Φ)dk=

[
σρ0(k)(U (k)−c)2

dΦ

dk
H1

]
k=0

. (75)

Hereafter, the substitution of Eqs. (73) and (75) into
Eq. (71) leads to
∫ 0

−h

∂F2
∂ξ

Φdk −
∫ 0

−h
F1

dΦ

dk
dk

+
∫ 0

−h
ρ0(k)(U (k) − c)G

dΦ

dk
dk = 0,

(76)

where the boundary terms are removed naturally.
From the expansions of Eqs. (56) and (76), the order

of μ2 gives
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∫ 0

−h

∂

∂ξ

[
ρ0(k)(U (k) − c)2

∂2

∂ξ2
(AΦ)

]
Φdk

+
∫ 0

−h
ρ0(k)

(
∂u0
∂τ

+ u0
∂u0
∂ξ

)
dΦ

dk
dk

+
∫ 0

−h
ρ0(k)(U (k) − c)

[
−∂A

∂τ

dΦ

dk
− ∂

∂ξ

(
u0A

dΦ

dk

)

−∂v1

∂θ

]
dΦ

dk
dk = 0. (77)

Finally, substituting Eqs. (66) and (67) into Eq. (77),
we arrive at the KP equation

∂

∂ξ

(
∂A

∂τ
+ a1A

∂A

∂ξ
+ a2

∂3A

∂ξ3

)
+ a3

∂2A

∂θ2
= 0, (78)

where

a1 = 3
∫ 0
−h ρ0(k)(U (k) − c)2

( dΦ
dk

)3
dk

2
∫ 0
−h ρ0(k)(c −U (k))

( dΦ
dk

)2
dk

,

a2 =
∫ 0
−h ρ0(k)(U (k) − c)2Φ2dk

2
∫ 0
−h ρ0(k)(c −U (k))

( dΦ
dk

)2
dk

,

a3 = − ∫ 0
−h

∫ k
0 ρ0(k′)N (k′)2Φdk′ dΦ

dk

2
∫ 0
−h ρ0(k)(c −U (k))

( dΦ
dk

)2
dk

.

(79)

Here, the variable coefficients of Eq. (78) are closely
related to many physical quantities, giving them an
advantage compared to Eqs. (1) and (2). Besides, other
equations describing internal waves, such as the KdV
equation and Boussinesq equation, usually deal with
two layers of fluid with constant density of the upper
and lower layers.However,when such a two-layer strat-
ification is considered, the coefficient a3 in Eq. (78)
will be zero, and Eq. (78) will be reduced to the KdV
equation. In the next section, a three-layer fluid with
continuous density distribution is investigated in detail.

3 Coefficients of the KP equation for a three-layer
fluid

The three-layer structure of fluid is displayed in Fig. 1.
The depths of the upper, middle and lower layers are
H − d − D, d and D, respectively. Densities ρ3 and
ρ1 of the upper and lower layers are constant, while,
the density of the middle layer is a depth-dependent
function ρ2(k), and ρ1 > ρ2(k) > ρ3. Such a stratified
structure is also similar to the stratification found in the
ocean. Based on the density distribution, the buoyancy
frequencies of the upper and lower layers are zero, i.e.,

Fig. 1 (Color online) A schematic representation of the three-
layer system

N3=N1=0, and the middle layer has a constant buoy-
ancy frequency N2.

Each fluid layer is assumed to have a constant cur-
rent velocity Ui (i = 1, 2, 3), with U1 < U2 < U3,
In this situation, the shear flow in the three-layer fluid
is supposed to be a piecewise constant function, and
this shear flow is affected by the Kelvin-Helmholtz
instability, which can be neglected when considering
long waves, and the fluid we are investigating can be
regarded as an effective approximation to a systemwith
a continuous shear flow.

3.1 Calculation of the coefficients

As mentioned above, the specific formulas for the den-
sity become

ρ0(k) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ1, 0 ≤ k < D,

ρ2(k) = ρ3e
1
d ln ρ1

ρ3
(D+d)

e
− 1

d ln ρ1
ρ3

k
, D ≤

k ≤ D + d,

ρ3, D + d < k ≤ H.

(80)

The corresponding buoyancy frequencies are

N (k) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N1 = 0, 0 ≤ k < D,

N2 =
√

1

σd
ln

ρ1

ρ3
, D ≤ k ≤ D + d,

N3 = 0, D + d < k ≤ H.

(81)

The modal function Φ is obtained from Eqs. (55),
(81) and the eigenvalue problem (65),
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Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

D
k, 0 ≤ k < D,

−e
(k−D−b)p1+q1
2dσ(−U2+c) + e

(−k+D+b)p1+q1
2dσ(−U2+c) − e

(−k+D)p1+q2
2dσ(−U2+c) + e

(k−D)p1+q2
2dσ(−U2+c)

e
dp1+q3

2dσ(−U2+c) − e
− dp1+q3

2dσ(−U2+c)

, D ≤ k ≤ D + d,

k + σ(U3 − C)2 − H

σ(U3 − C)2 − H + D + d
, D + d < k ≤ H,

(82)

where the maximum values of the modal functions
of the upper and lower layers have been set one. The
expressions for p1, q1, q2 and q3 are determined as
follows

p1 =
√

σ

(
σ(−U2 + c)2 ln

(
ρ1

ρ3

)
− 4d

)
ln

(
ρ1

ρ3

)
,

q1 = σ ln

(
ρ1

ρ3

)
(d + D + k)(−U2 + c),

q2 = σ ln

(
ρ1

ρ3

)
(D + k)(−U2 + c),

q3 = σ ln

(
ρ1

ρ3

)
(d + 2D)(−U2 + c).

(83)

Finally, Eqs. (80)–(83) are substituted into Eq. (79)
to obtain the coefficients of the KP equation, which are
presented in Appendix A.

3.2 Analysis of the coefficients

We show graphics of the coefficients a1, a2 and a3 as
functions of the shear flows, ratio of density and depth
of the lower and middle layers in Figs. 2, 3, 4, 5, 6,7.
It should be noted that though ρ1/ρ3 > 1, we also
show the related figures with ρ1/ρ3 = 1 for a better
comparison.

The value of a1 can be positive or negative, and has
an infinite value at D = 0, that is, the depth of the lower
layer is zero, see Fig. 2. Besides, a1 has singular and
zero points about D, and their locations can be under-
stood as where the nonlinear effects are very strong and
very weak, respectively. It is found that increasing the
value of ρ1/ρ3 would make the zero points move in
the increasing direction of D, but has no impact on the
singular points. However, as the shear flow increases,
the zero and singular positions move in the positive
direction along the D-axis.

Fig. 2 (Color online) Coefficient a1 with H = 8, c = 4 and d = 0.3
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Fig. 3 (Color online) Coefficient a1 with H = 8, c = 4 and D = 3

Fig. 4 (Color online) Coefficient a2 with H = 8, c = 4 and d = 0.3

It is revealed from Fig. 3 that the variation of ρ1/ρ3
can affect the range of d except the case of ρ1/ρ3 = 1.
As a matter of fact, in the case of ρ1/ρ3 > 1, the
minimum value of d cannot be 0. The maximum value
of d can only reach the position where the curve starts
to appear as a gap, and it is clear from the expression
d < 1

4σ(−U2 + c)2 ln( ρ1
ρ3

). Obviously, d is a small
value with respect to H and D, which explains well

why we usually consider the middle layer as a thin
layer. Specifically, increasing the ratio of the densities
ρ1 and ρ3 increases the range of d. The presence of
shear flows also affects the value of d, but the effect is
very weak compared to the change caused by densities.
Likewise, these results are not found when ρ1/ρ3 = 1.

The dispersion coefficient a2 can not be negative,
and goes to zero at D = 0. The ratio of the densities
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Fig. 5 (Color online) Coefficient a2 with H = 8, c = 4 and D = 3

Fig. 6 (Color online) Coefficient a3 with H = 8, c = 4 and d = 0.3

ρ1 and ρ3 has no significant effect on the basic trend of
the curves about a2. However, the presence of the shear
flows greatly changes the trend of the curves, and this
change is more pronounced as the value of the shear
flows increase, as shown in Fig. 4.

The reason for this phenomenon can be manifested
by comparing Figs. 2 and 4, where one can clearly

observe that with the increase of the shear flows, the
dispersion term a2 has local maximum and minimum
values, corresponding to the positions of zero and sin-
gular points in the nonlinear term a1, respectively. It
is indicated that the dispersion effect becomes weaker
at the locations where the nonlinear effect is suddenly
enhanced (i.e., singularity locations) and vice versa.
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Fig. 7 (Color online) Coefficient a3 with H = 8, c = 4 and D = 3

Similar to the nonlinear coefficient a1, Fig. 5 shows
the variation of the densities and shear flows can affect
the range of d, and this effect considerably narrows the
area of d, which makes the middle layer thicker. It is
also the density that has a greater effect on the range of
d, than the shear flows. The value of the middle layer
must be within a reasonable range.

The value of the coefficient a3 is a tiny number (see
Fig. 6) compared to a1 and a2,mainly because the depth
of the middle layer d is small compared to H and D,
and the upper and lower layers do not contribute to
the value of a3. The coefficient a3 is zero at D = 0. In
addition, there is a zero point in the positive direction of
the D-axis. Moreover, the position of this zero point is
consistent with that of the singularity in Fig. 2. There-
fore, the change of the density ratio does not affect
the position of the zero point, while the existence of
the shear flows does. Specifically, increasing the shear
flows makes the position of the zero point move along
the positive direction of the D-axis. This is also con-
sistent with our previous analysis that the dispersion
effect becomes weak at the position where the nonlin-
ear effect is suddenly enhanced.

The range of d is affected by the densities and shear
flows, as depicted in Fig. 7. The details are similar to
the analysis of the nonlinear and dispersion terms and
will not be stated again. Moreover, we note that a3

approaches zero in the ρ1/ρ3 = 1 case, which reduces
the KP equation to a KdV model.

Whenchoosing the stratification location, one should
keep the middle layer thin and try to avoid those strat-
ification locations that make the coefficients tend to
infinity or zero. It is discovered that fixing H and c to
be different values will lead to similar conclusions.

4 Internal solitary wave interactions

By rescaling the function and its variables as

A(ξ, θ, τ ) = 6

a1
u(ξ, θ, τ ), τ = −

√
a2τ̂

4
,

ξ = √
a2ξ̂ , θ =

√
a2a3
3

θ̂ ,

(84)

and then dropping the hats for convenience, Eq. (78)
becomes(−4uτ + 6uuξ + uξξξ

)
ξ

+ 3uθθ = 0. (85)

Due to the physical constraints, the coefficients a2
and a3 cannot be negative, thus, Eq. (78) can only be
transformed to the KP-II equation. This indicates the
absence of the (2+1)-dimensional internal rogue waves
described by Eq. (78), and actually, the current research
on internal rogue waves mainly relies on the (1+1)-
dimensional Gardner equation[12]. In the following,
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solutions of Eq. (78) are obtained from those of Eq.
(85), and then are used to investigate the internal soli-
tary wave interactions.

4.1 Review of solutions of the KP equation (4.2)

Solutions of Eq. (85) can be given as

u(ξ, θ, τ ) = 2
∂2

∂x2
ln λ(ξ, θ, τ ), (86)

whereλ(ξ, θ, τ ) can be expressed in terms of theWron-
skian determinant

λ = Wr ( f1, . . . , fN ) =

∣∣∣∣∣∣∣∣

f (0)
1 · · · f (0)

N
...

. . .
...

f (N−1)
1 · · · f (N−1)

N

∣∣∣∣∣∣∣∣
, (87)

with f (n)
i = ∂n fi/∂ξn , fi being the set of linearly

independent solutions of ∂ fi
∂θ

= ∂2 fi
∂ξ2

and ∂ fi
∂τ

= ∂3 fi
∂ξ3

.
The N -soliton solution is obtained by taking

fi =
M∑
j=1

ai je
ω j , for i = 1, . . . , N , and

M > N , (88)

where the constants ai j define the N × M coefficient
matrix C(N ,M) = (

ai j
)
. The phase functions ω j can be

written in the form of

ω j (ξ, θ, τ ) = −k jξ + k2j θ − k3j τ + ω0
j , for j

= 1, . . . , M, (89)

where k j and ω0
j are arbitrary constants, and note that

k1 < k2 < · · · < kM .
By choosing the appropriate forms of C(N ,M), some

exact solutions of Eq. (85) can be obtained. For the
simplest example with N = 1 and M = 2, i.e., τ =
f1 = a11eω1 + a12eω2 with a11a12 > 0, we obtain the
1-soliton solution

u = 2e−k31τ−k32τ+k21θ+k22θ−k1ξ−k2ξ (k1 − k2)2(
e−k31τ+k21θ−k1ξ + e−k32τ+k22θ−k2ξ

)2 . (90)

Similarly, let N = 1 and M = 3, the Y-shaped solu-
tion with three line solitons interacting at a vertex is
obtained.

It is well known that elastic 2-soliton solutions[34]
of Eq. (85) have been classified into three types: ordi-
nary (O-type), asymmetric (P-type) and resonant (T-
type). These types are generated by choosing N = 2

and M = 4, and their corresponding coefficient matri-
ces have the following forms, respectively,

CO =
(
1 1 0 0
0 0 1 1

)
, CP =

(
1 0 0 −1
0 1 1 0

)
, CT

=
(
1 0 − −
0 1 + +

)
, (91)

where ′+,−′ indicates the sign of the non-zero entry.

4.2 The internal solitary wave interactions

According to Eq. (84), the 1-soliton, Y-shaped, ordi-
nary 2-soliton, asymmetric 2-soliton, and resonant 2-
soliton solutions for Eq. (85) can be used to build
solutions of Eq. (78). For instance, taking the simplest
example, from Eq. (90), we obtain

A =

12e
4k31τ√
a2

+ 4k32τ√
a2

+k21

√
3

a2a3
θ+k22

√
3

a2a3
θ− k1ξ√

a2
− k2ξ√

a2 (k1 − k2)2

a1

(
e
4k31τ√
a2

+k21

√
3

a2a3
θ− k1ξ√

a2 + e
4k32τ√
a2

+k22

√
3

a2a3 θ − k2ξ√
a2

)2 .

(92)

In order to determine the specific values of the coef-
ficients a1, a2 and a3, we set D = 5, H = 8 and
d = 0.3 so that the lower layer is deep and the middle
is thin. Under different densities and shear flows, we
can determine the values of the coefficients from Figs.
2, 3, 4, 5, 6, 7.

An oceanic internal solitary wave can be well
described by the “concave” 1-soliton solution, as
depicted in Fig. 8. The “concave” Y-shaped solution
(see Fig. 9) is formed by the resonant interaction of
three oceanic ISW at a vertex, which demonstrates that
the interaction of ISW can produces aMiles resonance.
Miles resonance can be regarded as one of the basic
structures of the resonance interaction of elastic two
solitons.

Remark 1 The Miles resonance corresponds to an
internal solitary wave pattern captured along the coast
of Washington State in 1990 by the RADARSAT-1
satellite, as shown in Fig. 9 (c). Unlike the eastern coast
of the United States, the western coast lacks an exten-
sive continental shelf, leading to the occurrence of these
internal solitary waves closer to the shore.
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Fig. 8 (Color online) a The “concave” 1-soliton solution of Eq.
(78), with H = 8, D = 5, d = 0.3,U1 = 0,U2 = 0.4,U3 = 1.8,
ρ1
ρ3

= 1.5, (k1, k2) = (−0.15, 0.1) and ω0
j = 0 for j = 1, 2 at

τ = 0. b The density plot of the “concave” 1-soliton solution. c

The oceanic ISW (ASTER false-color VNIR image over the area
between the Andaman Sea and the Strait of Malacca acquired on
31 January 2002 at 0406 UTC), from [31]

Now, we focus on the types of interactions of two
oceanic ISW. Firstly, the “concave” O-type solution of
Eq. (78) is obtained from the ordinary 2-soliton solu-
tion of Eq. (85) through Eq. (84). As can be seen from
Fig. 10, the ordinary interactions of the ISW produce a
region where a wave with a relatively large amplitude
exists. In this specific case, the amplitude of the wave
in this region is more than twice that of a single inter-
nal solitary wave. The ISW produce a phase shift in
this region. In real physical situations, the phase shift
is not very large, usually twice the wavelength of the
soliton at most[33]. It is important to note that although
we only show the figures of the O-type interactions at
a certain moment, in fact, the size of the region neither

expands nor contracts with time, and the amplitude of
the wave in the region is also stable. It follows that the
interactions of the ISWproduce awavewith a relatively
large amplitude, which propagates without taking into
account the frictional dissipation.

Remark 2 The ordinary interactions (O-type) align
with Fig. 10c were captured by the RADARSAT-1
satellite in the South African maritime region in 1990.
Zheng et al. analyzed the image and found that both
sets of waves propagate toward the shore, complex
wave-wave interactions occur when the two sets of
waves meet, and that the water depths of ISW at this
site are all less than 500 m, with intervals ranging
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Fig. 9 (Color online) a The “concave” Y-shaped solution of
Eq. (78), with H = 8, D = 5, d = 0.3, U1 = 0, U2 = 0.4,
U3 = 1.8, ρ1

ρ3
= 1.5, (k1, k2, k3) = (−0.15, 0, 0.1) and ω0

j = 0
for j = 1, 2, 3 at τ = 0. b The density plot of the “concave” Y-

shaped solution. c The interaction of oceanic ISW (RADARSAT-
1 image showing internal waves off the coast of Washington
State, acquired 9 August 1999 at 0155 UTC), from [31]

from 1.08 ∼ 2.27 km, and peak lengths ranging from
50 ∼ 100 km [37].

Secondly, we display the P-type interactions for the
internal waves in Fig. 11. The difference from the ordi-
nary interactions is that the amplitudes of the two soli-
tary waves are different, and the amplitude of the asym-
metric interaction region is always smaller than that
of the highest soliton. Also we note that the solitons
with the largest amplitude are almost parallel to the
θ -direction.

Thirdly,making advantages of the resonant 2-soliton
solution of Eq. (85) and the scaling of the variables
(84), we can obtain the solution of Eq. (78) to dis-

cusswhether there are resonant interactions, i.e., T-type
interactions (web-soliton) in the interior of the fluid. As
displayed in Fig. 12, though we do not find resonant
interactions of two ISW, we obtain another asymmet-
ric interaction (TO-type). While this interaction shares
some similarities with the O-type interaction, the TO-
type interaction is distinct in that it is generated by two
internal waves with varying amplitudes. It is evident
that the amplitude of the interaction region does not
exceed several times that of the higher soliton’s ampli-
tude, and the phase shift is not significant

When varying the values of k1, k2, k3 and k4 (note
that k1 < k2 < k3 < k4), a third asymmetric interac-
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Fig. 10 (Color online) a The “concave” ordinary 2-soliton solu-
tion (O-type) of Eq. (78) with H = 8, D = 5, d = 0.3,
U1 = 0, U2 = 0.4, U3 = 1.8, ρ1

ρ3
= 1.5, (k1, . . . , k4) =

(−0.1,−0.001, 0, 0.1) and ω0
j = 0 for j = 1, . . . , 4 at τ = 1. b

The density plot of the “concave” O-type solution. c The inter-
action of oceanic ISW (Astronaut photograph (STS036-082-76)
acquired on 1 March 1990 at 1254 UTC), from [31]

tion, referred to as the TP-type interaction, is revealed.
It shares some similarities with the P-type interaction,
but in contrast to the P-type interaction, the ampli-
tude of this TP-type interaction region becomes lower
than that of any individual internal solitary wave. This
characteristic results in a less conspicuous interaction
region when observed in satellite imagery. Moreover,
the soliton with a higher amplitude is notably no longer
aligned parallel to the θ -direction.

Remark 3 The asymmetric interactions (P-type, TO-
type, and TP-type) exhibit features consistent with
Figs. 11c, 12, 13c observed in satellite imagery from
theAndaman Sea in 1997, acquired by the ERS-2 satel-

lite equipped with SAR. Alpers et al. identified several
sources of internal waves based on images of the region
(The shallow ridges between theNicobar andAndaman
islands, submarine banks, and the shallow reefs off the
northwest coast of Sumatra) [38].

The above results demonstrate that the resonance
2-soliton solution behaves as asymmetric interactions
(TO-type or TP-type) for the oceanic internal waves.
That is, the web-like internal solitary wave interactions
described by the KP-II equation are common in sur-
face waves, but nonexistent in internal waves. The pri-
mary types of the internal solitary wave interactions
include ordinary interactions and asymmetric interac-
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Fig. 11 (Color online) a The “concave” asymmetric 2-soliton
solution (P-type) of Eq. (78) with H = 8, D = 5, d = 0.3,
U1 = 0, U2 = 0.4, U3 = 1.8, ρ1

ρ3
= 1.5, (k1, . . . , k4) =

(−0.2,−0.15, 0.1, 0.2) and ω0
j = 0 for j = 1, . . . , 4 at τ = 0.

b The density plot of the “concave” P-type solution. c The inter-
action of oceanic ISW (ERS-2 SAR image of the Andaman
acquired on 11 February 1997 at 0359 UTC), from [31]

tions(encompassing the TO-type and TP-type), as well
as Miles resonance, and they can be described by Eq.
(78).

Finally, we study the influence of the densities and
shear flows on the interactions of the oceanic ISW.
As shown in Fig. 14, in the absence of shear flows or
the presence of relatively small shear flows, we obtain
the “convex” ordinary 2-soliton solutions, while when
there are relatively large shear flows, the “concave”
ordinary 2-soliton solution is produced. This “concave”
ordinary 2-soliton solution corresponds to the gener-
ation of internal wave interactions, underscoring the
crucial role of shear flows in the formation of inter-
nal waves. In fact, whether the “convex” or the “con-

cave” soliton solution is obtained depends on the sign
of the nonlinear coefficient a1, see Fig. 2 where the
shear flows affect the sign of a1 once the stratification
and the ratio of density are determined. In addition, the
shear flows affect the amplitude and size of the ordinary
interaction region, both do not vary with time. Compar-
ing Figs. 10 and 14, it can be seen that increasing the
ratio of the densities has little effect on the amplitude
of the interaction region, but changes the size of the
region.

In the case of asymmetric interactions (see Fig. 15),
no shear flows or relatively small shear flows generate
the “convex” asymmetric 2-soliton solutions, and rel-
atively large shear flows excite a “concave” asymmet-
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Fig. 12 (Color online) a The “concave” asymmetric 2-soliton
solution (TO-type) of Eq. (78), with H = 8, D = 5, d = 0.3,
U1 = 0, U2 = 0.4, U3 = 1.8, ρ1

ρ3
= 1.5, (k1, . . . , k4) =

(−0.1, 0, 0.05, 0.1) and ω0
j = 0 for j = 1, . . . , 4 at τ = 3.

b The density plot of the “concave” TO-type solution. c The
interaction of oceanic ISW (ERS-2 SAR image of the Andaman
acquired on 11 February 1997 at 0359 UTC), from [31]

ric 2-soliton solution (the emergence of internal wave
interactions). Similar to the case in Fig. 11, this is all
due to the action of the shear flows. It can be observed
from Fig. 15 with Fig. 11 that increasing the ratio of
the densities has almost no effect on the amplitude of
the asymmetric interaction region, but changes the size
of the region. The case of Miles resonance(see Fig. 16)
is similar and will not be repeated here.

The effect of shear flowson theordinary, asymmetric
and Miles resonance interactions of the internal waves
is similar. Herewe take only three types of typical inter-
action 3D images as examples. As a side note, the anal-
ysis of the TO-type and TP-type interactions also leads
to the same conclusion. In Figs. 14, 15, 16, we have
coarsely analyzed the effects of shear flows and den-

sity on the internal solitary wave interactions. In order
to find out the rules, we next study their effects more
pertinently.

In Table 1, we compared the maximum amplitudes
of the derived KP equation (78) and the KP-II equation
(85). In order to control the variables, it is ensured that
the values of k j are the same and that there is no shear
flow in Eq. (78). Since Eq. (85) usually yields inter-
actions above the zero background, we use the “con-
vex” interactions of Eq. (78) as comparison. The T-type
interaction of Eq. (85) is used as comparison between
the TO-type and TP-type interactions of Eq. (78). The
amplitudes of all types of interactions obtained in Eq.
(78) are much higher (about three times higher) than
the corresponding interactions in Eq. (85). This indi-
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Fig. 13 (Color online) a The “concave” asymmetric 2-soliton
solution (TP-type) of Eq. (78), with H = 8, D = 5, d = 0.3,
U1 = 0, U2 = 0.4, U3 = 1.8, ρ1

ρ3
= 1.5, (k1, . . . , k4) =

(−0.1,−0.08, 0.05, 0.1) and ω0
j = 0 for j = 1, . . . , 4 at τ = 3.

b The density plot of the “concave” TP-type solution. c The
interaction of oceanic ISW (ERS-2 SAR image of the Andaman
acquired on 11 February 1997 at 0359 UTC), from [31]

Table 1 Comparison of the maximum amplitude of the solitary wave-wave interactions for the derived KP equation and the KP-II
equation

Equation Type
1-soliton O-type P-type Y-shape TO-type TP-type

KP 0.094 0.052 0.24 0.094 0.043 0.05

KP-II 0.031 0.016 0.079 0.031 0.014(T) 0.017(T)
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Fig. 14 (Color online) Left: The “convex” ordinary 2-soliton
solution of Eq. (78) with U2 = 0 and U3 = 0. Center: The
“convex” ordinary 2-soliton solution of Eq. (78) with U2 = 0.2
and U3 = 0.9. Right: The “concave” ordinary 2-soliton solu-

tion of Eq. (78) with U2 = 0.4 and U3 = 1.8. In all cases
(k1, . . . , k4) = (−0.1,−0.001, 0, 0.1),U1 = 0, H = 8, D = 5,
d = 0.3, ρ1

ρ3
= 2 and ω0

j = 0 for j = 1, . . . , 4 at τ = 1

Fig. 15 (Color online) Left: The “convex” asymmetric 2-soliton
solution of Eq. (78) withU2 = 0 andU3 = 0. Center: The “con-
vex” asymmetric 2-soliton solution of Eq. (78) with U2 = 0.2
andU3 = 0.9. Right: The “concave” asymmetric 2-soliton solu-

tion of Eq. (78) with U2 = 0.4 and U3 = 1.8. In all cases
(k1, . . . , k4) = (−0.2,−0.15, 0.1, 0.2), U1 = 0, H = 8,
D = 5, d = 0.3, ρ1

ρ3
= 2 and ω0

j = 0 for j = 1, . . . , 4 at
τ = 0
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Fig. 16 (Color online) Left: The “convex” Y-shaped solution of
Eq. (78) with U2 = 0 and U3 = 0. Center: The “convex” Y-
shaped solution of Eq. (78) withU2 = 0.2 andU3 = 0.9. Right:
The “concave” Y-shaped solution of Eq. (78) withU2 = 0.4 and

U3 = 1.8. In all cases (k1, . . . , k4) = (−0.2,−0.15, 0.1, 0.2),
U1 = 0, H = 8, D = 5, d = 0.3, ρ1

ρ3
= 2 and ω0

j = 0 for
j = 1, . . . , 4 at τ = 0

Table 2 Comparison of the maximum amplitude of the internal solitary wave interactions under different shear flows, with the “-” sign
indicating the appearance of “dark” interactions

Shear flow Type
1-soliton O-type P-type Y-shape TO-type TP-type

U1 = 0, U2 = 0, U3 = 0 0.094 0.052 0.24 0.094 0.043 0.05

U1 = 0, U2 = 0.2, U3 = 0.9 0.037 0.021 0.096 0.037 0.017 0.02

U1 = 0, U2 = 0.4, U3 = 1.8 -0.064 -0.035 -0.16 -0.062 -0.029 -0.033

cates that Eq. (78) yields solitary wave-wave interac-
tions with larger amplitudes.

Table 2 shows that with the same density and strati-
fication, when the shear flow increases, the maximum
amplitude of all types of solitary wave-wave interac-
tions decreases, and the “convex” interactions will turn
to “concave” interactions. Therefore, the presence of
shear flows is the main determinant in exciting “con-
vex” or “concave” solitary wave-wave interactions.
It is noted that “concave” and “convex” phenomena
were also discussed in [12] for one-dimensional inter-
nal rogue waves governed by the Gardner equation,
whereas only “convex” internal solitary wave interac-

tions in the ocean were studied in [30] due to the theory
based on the constant coefficient.

The above results are obtained when amore realistic
stratification is chosen D = 5, i.e., the lower layer is
a deep layer. When other reasonable stratifications are
considered, one can judge the interactions are “con-
vex” or “concave” from Figs. 2 and 3. For example,
when the stratification is closer to the bottom of the
fluid (D = 1), the interactions are “concave” with-
out shear flows, and become “convex” when increasing
shear flows.When the stratification is near themiddle of
the fluid (D = 4), “convex” interactions appear with-
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Fig. 17 (Color online) Left: The O-type solution of Eq. (78)
with (k1, . . . , k4) = (−0.1,−0.001, 0, 0.1) at τ = 1. Cen-
ter: The P-type solution of Eq. (78) with (k1, . . . , k4) =
(−0.2,−0.15, 0.1, 0.2) at τ = 0. Right: The Y-shaped solu-

tion of Eq. (78) with (k1, k2, k3) = (−0.15, 0, 0.1) at τ = 0. In
all cases, H = 8, D = 5, d = 0.3, U1 = 0, U2 = 0.4, U3 = 1.8
and ω0

j = 0 for j = 1, . . . , 4

out shear flows, and as shear flows increase “concave”
interactions come in being.

The ratio of densities has no significant effect on the
amplitudes of the internal solitary wave interactions,
but has a fundamental impact on the angle between
the ISW, the width of the waves, and the region of the
interactions.As shown inFig. 17,when the density ratio
decreases from ρ1/ρ3 = 2 to ρ1/ρ3 = 1.5, the angle
γ of two ISW becomes smaller and the width β also
becomes narrower. In particular, the same phenomenon
occurs in two special types of interactions as displayed
in Fig. 18. At the same time, as the ratio of densities
decreases, the size of the area of interactions changes.
In general, the change in angle γ and width β is the
indirect cause of the size of the interacting area, but
the fundamental factor is the change in the ratio of
densities.

Remark 4 It is remarkable that one can transform the
results into the laboratory coordinate system (x, y, t),
however, it will simply changes the scales of the spatial
and temporal coordinates, and will not alter the main
characteristics and properties of the internal solitary

wave interactions that could be captured by the satellite
images.

5 Conclusion and discussion

We have established a (2+1)-dimensional KP model
whose coefficients are functions of shear flow and den-
sity, considering a three-layer fluid with a continuous
density distribution, to investigate the oceanic inter-
nal solitary wave interactions. In previous studies, the
determination of the depth of the middle layer d was
somewhat arbitrary. We emphasize the significance of
carefully selecting the value of d. In our specific case, it
is crucial to ensure a thin intermediate layer. Addition-
ally, shear flow and density ratio can affect the range
of d. It is noteworthy that when the delamination is
located at a position where the nonlinear effect is sud-
denly enhanced, the dispersion effect is weakened and
vice versa.

The oceanic internal solitary wave interactions are
categorized in detail into five types ( O-type, P-type,
TO-type, TP-type and Y-shaped), which is more com-
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Fig. 18 (Color online) Left:
The TO-type solution of Eq.
(78) with (k1, . . . , k4) =
(−0.1, 0, 0.05, 0.1). Right:
The TP-type solution of Eq.
(78) with (k1, . . . , k4) =
(−0.1,−0.08, 0.05, 0.1). In
all cases, H = 8, D = 5,
d = 0.3, U1 = 0, U2 = 0.4,
U3 = 1.8, ρ1

ρ3
= 1.5 and

ω0
j = 0 for j = 1, . . . , 4 at

τ = 3

prehensive than previous results and highlights the
superiority of Eq. (78). Especially, it is found that the
web-like internal solitary wave interactions (T-type)
commonly observed in surface waves are not found in
internal waves, and in fact, the TP-type interactions can
evolve into TO-type or TP-type interactions in inter-
nal waves. It is important to emphasize that we have
found distinct correspondences between different types
of interactions and internal wave satellite imagery. For
instance, O-type interactions align with images from
the southern African sea while asymmetric interac-
tions like P-type, TO-type, and TP-type correspond
with Andaman Sea satellite data. Moreover, Y-shaped
interactions match those captured along the Washing-
ton State coast. This not only addresses the limita-
tion of satellite imagery in capturing detailed structures
and dynamics of interactions but also demonstrates the
authenticity and effectiveness of our results.

These interactions are of various types in the ocean
and take “convex” and “concave” forms under the influ-
ence of shear flow. To the best of our knowledge, the

“convex” and “concave” forms of oceanic internal soli-
tary wave interactions have been obtained for the first
time, and this result reflects more realistically the fluc-
tuating state of oceanic ISW. Theoretical analysis indi-
cates that shear flowdetermines the occurrence of “con-
vex” or “concave” interactions, emphasizing the impor-
tance of introducing shear flow in the study of oceanic
ISW. In addition, the density ratio has a significant
effect on the angle, width and interaction area of ISW.
The specific patterns of their influence are presented.

Furthermore, exploring new types of internal soli-
tary wave interactions and different categories of inter-
nal waves, such as internal rogue waves and internal
breathers, combined with the powerful tool of satellite
imagery will be our primary focus in the future.
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Appendix A

According to Eqs. (79)–(83), exact expressions of the
coefficients can be obtained as below.

I = ρ1 (−U1 + c)
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