About
EducationWorkExperienceResumeOther AppointmentsResearch Fields
My research has been focused on the theoretical investigation on catalytic growth of carbon nanomaterials. I have made significant contributions to understanding the CVD growth mechanisms of graphene and carbon nanotubes. I have investigated the threshold step of carbon nanotube CVD growth for the first time and made theoretical predictions which are confirmed by experiments. (Phys. Rev. Lett., 107, 156101, (2011), Angew. Chem. Int. Edit, 54, 6068, (2015)). I proposed that the topological defects formed during CNTs CVD growth can be efficiently healed and thus super-long single-walled carbon nanotube without defects can be grown in the CVD process. (Phys. Rev. Lett., 108, 245505, (2012)). This research result was confirmed by an experimental group in Tsinghua University, China and attracted great attention from the academic press including the National Science Foundation. I am one of the first scientists to carry out theoretical investigations on graphene growth mechanism and I have published pioneering work, such as growth of graphene standing upright on a diamond surface, (J. Am. Chem. Soc., 133, 16072, (2011)) the formation of topologic defect in stable nano-carbon clusters, (J. Am. Chem. Soc., 134, 2970, (2012); J. Phys. Chem. C, 115, 17695, (2011)) the growth mode of graphene on different metal substrates. (J. Phys. Chem. Lett. 5, 3093, (2014)). In addition, I have built strong collaborative relationships with many leading experimental groups which has resulted in several publications in leading journals [Nat. Mater., 15, 43, (2016) (co-first author); Nat. Commun., 6, 6160, (2015); Adv. Mater. 27, 1376, (2014); ACS NANO, 7, 6310, (2013); Adv. Mater., 22, 4872, (2010)]. Due to my groundbreaking work on graphene and carbon nanotubes, I was invited to give presentations at national and international conferences including the Chinese Physical Society (CPS) 2012 (I was one of three young scientists to receive an award for the best oral report at the conference), CPS 2013 and the 29th Chinese Chemical Society (CCS) etc. Enrollment and TrainingCourseScientific ResearchAcademic Achievements
29. Tianru Wu,+ Xuefu Zhang,+ Qinghong Yuan,+ Jiachen Xue, Guangyuan Lu, Zhihong Liu, Huishan Wang, Haomin Wang, Feng Ding, Qingkai Yu, Xiaoming Xie* & Mianheng Jiang, “Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys”, Nat. Mater., 15, 43–47, 2016. (co-first author) 28. Xiuyun Zhang, Ziwei Xu, Qinghong Yuan, John Xin, Feng, Ding, “The favourable large misorientation angle grain boundaries in graphene”, Nanoscale, 7, 20082-20088, 2015. 27. Guang-Yao Song, Qing-Hong Yuan, Wen-Xin Hu, De-Yan Sun, “Production of Spin-Semiconducting Zigzag Graphene Nanoribbons by Constructing Asymmetric Notch on Graphene Edges” Mat. Res. Express, 2, 125006, 2015. 26. Wenwei Fu, Man Wu, Lunlun Zhu, Yuanzhi Lao, Liping Wang, Hongsheng Tan, Qinghong Yuan, Hongxi Xu, “Enylated benzoylphloroglucinols and biphenyl derivatives from the leaves of Garcinia multiflora Champ” RSC Advances, 5, 78259-78267, 2015. 25. Gang Wang, Miao Zhang, Su Liu, Xiaoming Xie, Guqiao Ding, Yongqiang Wang, Paul K. Chu, Heng Gao, Wei Ren, Qinghong Yuan, Peihong Zhang, Xi Wang and Zengfeng Di, “Synthesis of Layer-Tunable Graphene: A Combined Kinetic Implantation and Thermal Ejection Approach”, Adv. Funct. Mater., 25, 3666-3675, 2015. (co-corresponding author) 23.Guangyuan Lu, Tianru Wu, Qinghong Yuan, Huishan Wang , Haomin Wang, Feng Ding, Xiaoming Xie,* Mianheng Jiang, “Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy” Nat. Commun., doi: 10.1038/ncomms7160, 2015. 22.Van Luan Nguyen , Bong Gyu Shin , Dinh Loc Duong , Sung Tae Kim , David Perello ,Young Jin Lim , Qing-Hong Yuan , Feng Ding , Hu Young Jeong , Hyeon Suk Shin, Seung Mi Lee , Sang Hoon Chae , Quoc An Vu , Seung Hee Lee , and Young Hee Lee,* “Seamless Stitching of Graphene Domains on Polished Copper (111) Foil” Adv. Mater. 27(8), 1376-1382, 2014. 21.Qinghong Yuan, Feng Ding,* “Formation of Carbyne and Graphyne on Transition Metal Surfaces” Nanoscale, 6(21), 12727-12731, 2014. 20.Qinghong Yuan, Boris I. Yakobson,* and Feng Ding,* “Edge-Catalyst Wetting and Orientation Control of Graphene Growth by Chemical Vapor Deposition Growth”, J. Phys. Chem. Lett. 5(18), 3093−3099, 2014. 19.Qinghong Yuan,* Guangyao Song, Deyan Sun, Feng Ding,* "Formation of Graphene Grain Boundaries on Cu(100) Surface and a Route Towards Their Elimination in Chemical Vapor Deposition Growth", Sci. Rep., 4, 6541, 2014. 18.Xian-Zhi Yao, Zheng Guo, Qing-Hong Yuan, Zhong-Gang Liu, Jin-Huai Liu, and Xing-Jiu Huang,* “Exploiting Differential Electrochemical Stripping Behaviors of Fe3O4 Nanocrystals toward Heavy Metal Ions by Crystal Cutting”, ACS Appl. Mater. Interfaces, 6(15), 12203–12213, 2014. 17.WenqianWu, YangYang, Qinghong Yuan, Deyan Sun,* “The collapse of an elastic tube induced by encapsulated liquid droplets”, SOFT MATTER, 9(41), 9774-9779, 2013. 16.Haixin Chang, Zhenhua Sun, Mitsuhiro Saito, Qinghong Yuan, Han Zhang, et. al. “Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control”, ACS NANO, 7(7), 6310-6320, 2013. 15.Qinghong Yuan, Li Li, Qianshu Li, Feng Ding,* “The Effect of Metal Impurities on the Tensile Strength of Carbon Nanotubes: A Theoretical Study”, J. Phys. Chem. C, 117(10), 5470–5474, 2013. 14.Qinghong Yuan, ZhipingXu, Boris Yakobson, Feng Ding,* “Efficient Defect Healing in Catalytic Carbon Nanotube Growth”,Phys. Rev. Lett., 108 (24), 245505, 2012. 13.Qinghong Yuan, Zhifeng Liu,* “Reply to the ‘Comment on “Dynamic factors in the reactions between the magic cluster Al13- and HCl/HI”: A wavefunction instability problem.”, Phys. Chem. Chem. Phys., 14 (18), 6641-6642, 2012. 12.Qinghong Yuan, Junfeng Gao, Haibo Shu, Jijun Zhao,* Xiaoshuang Chen,* Feng Ding,* “Magic Carbon Clusters in the Chemical Vapor Deposition (CVD) Growth of Graphene”, J. Am. Chem. Soc., 134 (6), 2970-2975, 2012. 11.Qinghong Yuan, Hong Hu, Feng Ding,* “Threshold Barrier of Carbon Nanotube Growth”, Phys. Rev. Lett., 107(15), 156101, 2011. 10.Qinghong Yuan, Hong Hu, Junfeng Gao, Feng Ding,* Zhifeng Liu, Boris Yakobson,* “Upright Standing Graphene Formation on Substrates ”, J. Am. Chem. Soc., 133 (40), 16072-16079, 2011. 9.Junfeng Gao, Qinghong Yuan, Hung Hu, Jijun Zhao, Feng Ding,* “Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni(111) Surface”, J. Phys. Chem. C, 115(36), 17695-17703, 2011. (co-first author) 8.Qinghong Yuan, Jiabo. Li, and Zhi-feng Liu,* “Dynamic factors in the reaction between the magic cluster Al13- and HCl/HI” Phys. Chem. Chem. Phys., 13(20), 9871-9879, 2011. 7.Jinlan Wang, Liang Ma, Qinghong Yuan, Liyan Zhu, and Feng Ding,* “Transition Metal Catalyzed Unzipping Single-Walled Carbon Nanotubes into Narrow Graphene Ribbons at Low Temperature”, 2011, Angew. Chem. Int. Edit, 50(35), 8041, 2011. 6.Q.J. Zhang, B. Li, Q.H. Yuan, BH Li, Z.F. Liu, L.A. Chen, “The isomeric effect on the adjacent Si dimer didechlorination of trans and iso-dichloroethylene on Si(100)-2 x 1”, Phys. Chem. Chem. Phys., 13(15), 7090, 2011. 5.Q.H Yuan, J.B. Li, X.L. Fan, W.M. Lau and Zhi-Feng Liu.,* “A barrier for the Al13-+O2 reaction and its implication for the chemisorption of O2 on Al(111)” Chem. Phys. Lett., 489(1-3), 16-19, 2010. 4.Q.H. Yuan, Q.S. Li, K.D. Wang, Zhi-feng Liu, “An intermediate in the STM tip-induced atomic process on H/Si(100) surfaces: theoretical investigation” Phys. Rev. B, 81(20), 205301, 2010. 3.H.X. Chang, Z.H. Sun, Q.H. Yuan, F. Ding, X.M. Tao, F. Yan, Z.J. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films”, Adv. Mater., 22(43), 4872-4876, 2010. 2.X. Lu, Q.H. Yuan, Q. Zhang, “Sidewall-Epoxidation of Single-Walled Carbon Nanotubes: A Theoretical Prediction.” Org. Lett., 5(19), 3527-3530, 2003. 1.X. Lu,* X.L. Wang, Q.H. Yuan, “Diradical mechanisms for the cycloaddition reactions of 1,3-butadiene, benzene, thiophene, ethylene, and acetylene on a Si(111)-7x7 surface.” J AM. CHEM. SOC., 125(26), 7923-7929, 2003.
Honor |