头像

李晓涛

教授

生命科学学院      

个人资料

  • 部门: 生命科学学院
  • 毕业院校: 德克萨斯大学安德森癌症中心
  • 学位: 博士研究生
  • 学历: 博士
  • 邮编: 200241
  • 联系电话: 021-54345018
  • 传真: 021-54344922
  • 电子邮箱: xiaotaol@gmail.com
  • 办公地址: 闵行校区生科大楼435室
  • 通讯地址: 上海市闵行区东川路500号生科大楼435室

教育经历

2001     德克萨斯大学安德森癌症中心       生物医学博士 

1995     休斯顿德克萨斯大学健康科学中心  生物科学硕士

1989    重庆医科大学                MD


工作经历

2019 至今     华东师范大学附属长宁妇幼保健院            联合PI

2008 至今     华东师范大学特聘教授                  博导

2008 至今     贝勒医学院                      Adjunct Faculty

2005-2007     贝勒医学院                       讲师、助理教授

2001-2005     伯特莫利教授实验室                   博士后

1995-2001     安德森癌症中心威廉姆斯克莱因教授实验室      博士


个人简介

李晓涛,博士,2001年获得美国德克萨斯大学M.D.Anderson癌症中心博士学位,2001年到2005年在美国Baylor医学院做博士后研究,20052007年先后在美国Baylor医学院任讲师、助理教授;2007年受聘回国加入华东师范大学。回国后参与重大科学研究计划(9733项,主持国家自然科学基金重点项目1项,面上项目、国际合作项目4项,国家自然科学基金国家重大研究计划(培育项目)1项,上海市自然科学基金5项,获得上海市浦江人才计划。目前已在CellMolecular CellPNASCell MetabolismNature CommunicationsClinical Cancer Research等重要国际学术刊物上发表论文70余篇。Oxidative Medicine and Cellular Longevity杂志和Annals of Hematology & Oncology杂志编委。


社会兼职

中国生物化学协会上海分会副理事长

中国生物化学协会理事

中国衰老协会理事

自然科学基金委优青人才、项目会审评审








研究方向

     主要从事蛋白质代谢与肿瘤发生发展的机制、蛋白质降解的药物研究。


本课题组在REGγ(一种蛋白酶体激活因子)介导的非泛素依赖的蛋白酶体降解通路的研究中首次发现并证实了REGγ蛋白复合体的第一个生物学靶位点。该发现突破了REGγ仅具有降解短肽链模型底物的禁区,并提出了REGγ可以直接降解细胞内完整蛋白的新理论(Cell, 2006)。研究进一步发现REGγ蛋白复合体降解调控细胞周期的靶蛋白(Mol. Cell, 2007)。

近年来主要研究了REGγ在模式动物组织与细胞中的分布及潜在功能(Cell and Mol Life SCI, 2008; JMCB, 2010),完成REGγ对细胞周期调控分子p53的机制研究(JCS, 2010; J Virology, 2010; Sci China Life Sci, 2017),同时展开了REGγ的蛋白质修饰与功能研究(Cell Res, 2011; JBC, 2013)以及REGγ与多种信号通路的相关研究(BMC Cancer, 2012; Nature Communications, 2013),接下来又阐明REGγ在寿命/衰老(PNAS, 2013)、代谢(Cell Metabolism, 2013; Nature Communications, 2016)、氧化应激(Free Radic Biol Med, 2015; Oxid Med Cell Longev, 2017)、脑功能(Neuropsychopharmacology, 2015)方面的作用机制。课题组首次利用体内皮肤肿瘤模型证明REGγWNT/β-catenin中的分子调控作用(Nature Communications, 2015)。同时发现REGγ介导的对IκBε的调控作为一种分子机制促成了NFκB激活,并促进了响应慢性损伤的肠道炎症及相关的肿瘤形成(Nature Communications, 2016Cell Reports, 2016)。最近课题组发现REGγ在结肠癌中的作用机制(2018Clinical Cancer Research)。

我们今后的研究重点包括:REGγ与蛋白质降解原理及调整的基础理论研究:REGγ与恶性肿瘤发生发展机制的研究;REGγ的病理生理学;REGγ相关的抗癌药物探索;脊椎动物中REGγ的生物学作用。

招生与培养

开授课程

蛋白质降解与修饰

细胞信号转导

生化与分子生物学技术与原理

生物化学 (全英文授课)

生命科学进展


科研项目

1. 上海市长宁区妇幼保健院,PI 团队建设项目,311-20031,免疫蛋白酶体在子痫前期发病机制和临床检测中的作用,2019-112022-1090万,在研,主持

2.上海市科委,“科技创新行动计划”基础研究领域项目,19JC1411900,采用新型邻近标记技术研究REGγ蛋白酶体的底物识别机制,2019-112022-10100万,在研,主持

3.国家自然科学基金委员会,重点项目,31730017REGgamma蛋白酶体功能的调控机制,2018-012022-12289万,在研,主持

4.国家自然科学基金委员会,重大研究计划培育项目,91629103REGgamma蛋白酶体系统介导 肠道炎症与恶性结肠肿瘤的机制研究,2017-012018-12100万,已结题,主持

5.国家重点研发计划“精准医学研究”,2016YFC0902100基于组学特征谱的未知原发灶骨转移癌的分子分型研究2016-012018-12320万,已结题,项目骨干

6.科技部,重大研究计划,2015CB901402,代谢应激过程中蛋白质修饰的调控机制及其生理病理效应,2015-012019-12500万,已结题,主持

7.国家自然科学基金面上项目,81471066REGγ影响脂肪肝形成的模式动物研究,2015-012018-1262万元,已结题,主持

8.上海市科委,国际合作项目,1443071210011S-蛋白酶体缺陷导致自身免疫性骨关节炎的发病机制,2014-072017-0650万,已结题,主持

9.国家自然科学基金委员会,国际合作项目,81261120555,蛋白酶体激活物REGgamma在病毒性心肌炎发病机制中的作用,2013-012015-12100万元,已结题,主持

10.科技部,重大研究计划, 2011CB504200,恶性肿瘤发生、发展的细胞表观遗传机制,2011-012015-12180万元,已结题,参加

11.科技部,重大研究计划,2009CB918402,蛋白质翻译后修饰的发生与调控机制及其生理病理效应,2009-012013-12 692万元,已结题,子课题主持人

12.国家自然科学基金委员会,国际合作项目,30811120435,蛋白酶体激活物REGgamma在病毒性心肌炎发病机制中的作用,2009-012011-1245万元,已结题,主持

13.国家自然科学基金面上项目,30870503REGγ介导的p53蛋白降解机理及其病理生理意义,2009-012011-1230万元,已结题,主持

14.上海市浦江人才计划,08PJ14047REGγ介导的蛋白降解机理,2008-012010-1220万元,已结题,主持

 


学术成果

近年来对蛋白质研究领域的贡献:

   在REGγ(一种蛋白酶体激活因子)介导的非泛素依赖的蛋白酶体(proteasome)降解通路的研究中首次发现并证实了REGγ蛋白复合体的第一个生物学靶位点‚该发现突破了REGγ仅具有降解短肽链模型底物的禁区‚并提出了REGγ可以直接降解细胞内完整生物蛋白的新理论(Cell JAN.‚2006)。我们的最新研究(Mol.Cell June‚2007)进一步发现了REGγ-蛋白酶体的多种靶蛋白‚而这些蛋白质对细胞周期/肿瘤发生发展的调控起着重要的作用。这些研究结果都进一步揭示了REGγ介导的降解通路的生物学意义。

 

科研成果:

 

 

1.      Xie Y, Gao Y, Gao R, Yang W, Dong Z, Moses RE, Sun A, Li X*, Ge J*. The proteasome activator REGγ accelerates cardiac hypertrophy by declining PP2Acα-SOD2 pathway. Cell Death Differ.2020 Oct;27(10):2952-2972.

2.    Zhang B, Zhu X, Tian X, Yang M, Yu Y, Zhou Y, Gao Y, Zhang L, Li Z, Xiao Y, Moses RE, Li X. Procyanidin B2 promotes intestinal injury repair and attenuates colitis-associated tumorigenesis via suppression of oxidative stress in mouse.Antioxid Redox Signal. 2020 Sep 17.

3.      Gao X, Wang Q, Wang Y, Liu J, Liu S, Liu J, Zhou X, Zhou L, Chen H, Pan L, Chen J, Wang D, Zhang Q, Shen S, Xiao Y, Wu Z, Cheng Y, Chen G, Kubra S, Qin J, Huang L, Zhang P, Wang C, Moses RE, Lonard DM, O' Malley BW, Fares F, Zhang B, Li X*, Li L*, Xiao J* NIP30, a REGg inhibitor, accentuates anticancer sensitivity in p53-deficient tumor cells. 2020 Nature Communications. 2020 Aug 6;11(1):3904. 

4.      Xie Y, Li X, Ge J. STAT3-CyPA signaling pathway in endothelial cell apoptosis. Cell Signal. 2020 Jan; 65:109413.

5.      Tong L, Shen S, Huang Q, Fu J, Wang T, Pan L, Zhang P, Chen G, Huang T, Li K, Liu Q, Xie S, Yang X, Moses RE, Li X*, Li L*. Proteasome-dependent degradation of Smad7 is critical for lung cancer metastasis. Cell Death Differ. 2019 Nov 26.

6.      Wang J, Xing Y, Wang Y, He Y, Wang L, Peng S, Yang L, Xie J, Li X, Qiu W, Yi Z, Liu M. A novel BMI-1 inhibitor QW24 for the treatment of stem-like colorectal cancer. J Exp Clin Cancer Res. 2019 Oct 22;38(1):422.

7.      Zhou L, Yao L, Zhang Q, Xie W, Wang X, Zhang H, Xu J, Lin Q, Li Q, Xuan Y, Ji L, Wang L, Wang W, Wang W, Shi T, Fang L, Zheng B, Li L, Liu S, Zhang B, Li X. REGγ controls Th17 cell differentiation and autoimmune inflammation by regulating dendritic cells. Cell Mol Immunol. 2019 Sep 11.

8. Xie Y, Li X, Ge J. Expression of REGγ in atherosclerotic plaques and promotes endothelial cells apoptosis via the cyclophilin A pathway indicates functional implications in atherogenesis.Cell Cycle. 2019 Sep;18(17):2083-2098.

9.      Yao L, Zhou L, Xuan Y, Zhang P, Wang X, Wang T, Meng T, Xue Y, Ma X, Shah AS, Shang S, Ma X, Xie W, Wang H, Fu Q, Xia Y, Moses RE, Wang H, Li L, Xiao J, Zhang B, Li X. The proteasome activator REGγ counteracts immunoproteasome expression and autoimmunity. J Autoimmun. 2019 Sep;103:102282.

10.  Xie Y, Li X, Ge J. Cyclophilin A-FoxO1 signaling pathway in endothelial cell apoptosis. Cell Signal. 2019 Sep;61:57-65.

11.  Gao X, Chen H, Liu J, Shen S, Wang Q, Clement TM, Deskin BJ, Chen C, Zhao D, Wang L, Guo L, Ma X, Zhang B, Xu Y, Li X*, Li L*. The REGγ-Proteasome Regulates Spermatogenesis Partially by P53-PLZF Signaling. Stem Cell Reports. 2019 Jul 30. pii: S2213-6711(19)30262-0.

12.  Jiao C, Li L, Zhang P, Zhang L, Li K, Fang R, Yuan L, Shi K, Pan L, Guo Q, Gao X, Chen G, Xu S, Wang Q, Zuo D, Wu W, Qiao S, Wang X, Moses R, Xiao J, Li L, Dang Y, Li X. REGγ ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-β pathway. Cell Death Differ. 2019 Jun 26.

13.  Chen S, Wang Q, Wang L, Chen H, Gao X, Gong D, Ma J, Kubra S, Yao X, Li X, Li L, Zhai W, Zheng J. REGγ deficiency suppresses tumor progression via stabilizing CK1ε in renal cell carcinoma. Cell Death Dis. 2018 May 24;9(6):627

14.  Qingwei Wang, Xiao Gao, Lei Yuan, Tong Yu, etal., Lei Li, Yongyan Dang, Li X. REGγ controls the Hippo-YAP signaling and reciprocal NF-kB–Yap regulation to promote colon cancer. Clinical Cancer Research. 2018  Apr 15;24(8):2015-2025

15.  Zuo Q, Cheng S, Huang W, Bhatti MZ, Xue Y, Zhang Y, Zhang B, Li L, Wu L, Fu J, Chen J, Li X. REGγ Contributes to Regulation of Hemoglobin and Hemoglobin δ Subunit. Oxid Med Cell Longev 2017;2017:7295319.

16.  Xu J, Jiao J, Xu W, Ji L, Jiang D, Xie S, Kubra S, Li X, Fu J, Xiao J, Zhang B. Mutant p53 promotes cell spreading and migration via ARHGAP44. Sci China Life Sci 2017 Sep;60(9):1019-1029.

17.  Chen S, Wang L, Yao X, Chen H, Xu C, Tong L, Shah A, Huang T, Chen G, Chen J, Liu TL, Li X, Zheng JH, Li L. miR-195-5p is critical in REGγ-mediated regulation of wnt/β-catenin pathway in renal cell carcinoma. Oncotarget 2017 Jul 15;8(38):63986-64000.

18.  Dong HXu JLi WGan JLin WKe JJiang JDu LChen YZhong XZhang DYeung SJLi XZhang H, Reciprocal androgen receptor/interleukin-6 crosstalk drives oesophageal carcinoma progression and contributes to patient prognosisJ Pathol 2017Mar; 241(4): 448-46.

19.  Wan Z, Jiang D, Chen S, Jiao J, Ji L, Shah AS, Wei H, Yang X, Li X, Wang Y, Xiao J. T-box transcription factor brachyury promotes tumor cell invasion and metastasis in non-small cell lung cancer via upregulation of matrix metalloproteinase 12. Oncol Rep. 2016 Jul;36(1):306-14. 

20.  Xu J, Zhou L, Lei Li, Moses RE, O'Malley BW,Li X. The REGgamma-proteasome forms a regulatory circuit with IĸBepsilon and NFκB in experimental colitis. Nature Communications 2016 Feb. 227:10761.

21.  Sun J, Luan Y, Xiang D, Tan X, Chen H, Deng Q, Zhang J, Chen M, Huang H, Wang W, Niu T, Li W, Peng H, Li S, Li L, Tang W, Li X*, Wu D*, Wang P*. The 11S Proteasome Subunit PSME3 Is a Positive Feedforward Regulator of NF-κB and Important for Host Defense against Bacterial Pathogens. Cell Rep. 2016 Feb 2;14(4):737-49.

22.  Klionsky DJ et al (over 1000 authors). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016 Jan 2;12(1):1-222.

23.  Fan G, Sun L, Shan P, Zhang X, Huan J, Zhang X, Li D, Wang T, Wei T, Zhang X, Gu X, Yao L, Xuan Y, Hou Z, Cui Y, Cao L, Li X, Zhang S, Wang C. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nature Communications 2015 Oct 6;6:8450.

24.  Lv Y, Meng B, Dong H, Jing T, Wu N, Yang Y, Huang L, Moses RE, O'Malley BW, Mei B, Li X. Up-regulation of GSK3β Contributes to Brain Disorders in Elderly REGγ-knockout Mice. Neuropsychopharmacology. 2015 Sept 15.

25.  Shuangxi Li, Cong Jiang, Jingjing Pan, Xinbo Wang, Jiali Jin, Linlin Zhao, Weijuan Pan, Guanghong Liao, Xiaopan Cai, Li X, Jianru Xiao, and Ping Wang  Regulation of c-Myc protein stability by proteasome activator REGγ. Cell Death and Differentiation. 2015 Jun;22(6):1000-11.

26.  Ji L, Xu J, Liu J, Amjad A, Liu Q, Li X. Mutant p53 promotes tumor cell malignancy by both positive and negative regulation of TGF-β pathway. J Biol Chem. 2015 May 1;290(18):11729-40.

27.  Yuanyuan Zhang, Shuang Liu, Qiu Hong Zuo, Lin Wu, Lei Ji, Wanli Zhai, Jianru Xiao, Jiwu Chen, and Li X.Oxidative challenge enhances REGγ-proteasome dependent protein degradation. Free Radical Biology & Medicine 2015 May;82:42-9.

28.  Amjad Ali, Pei Zhang, Yao Liangfang, Sun Wenshe, Hao Wang, Xia Lin, Yan Dai, Xin-hua Feng, Robb Moses, Daxin Wang, Li X*,Jianru Xiao*.  KLF17 empowers TGF-β/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression Cell Death & Disease 2015 Mar 12; 6.

29.  Li L, Dang Y, Xiao J, Moses RE, & Li X. (2015). REGg is critical for skin carcinogenesis by modulating Wnt/β-catenin pathway. Nature Communications2015 Apr 24;6:6875.

30.  Li X*, Jianping Jin, Weiguo Cao, Carlos Caulin, Robb E. Moses Stresses, Aging, and Age-Related Disorders.Oxidative Medicine and Cellular Longevity2015 Special edition, Vol. 2014 (Article ID 320564).

31.  Liu S, Lai L, Zuo Q, Dai F, Wu L, Wang Y, Liu M, Yi Z, Xiao J, Li X. PKA turnover by the REGγ-proteasome modulates FoxO1 cellular activity and VEGF-induced angiogenesis.J Mol Cell Cardiol. 2014 Feb 20; 72C: 28-38.

32.  Shi J, Wong J, Piesik P, Fung G, Zhang J, Jagdeo J, Li X, Jan E, Luo H. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling.Autophagy. 2013 Aug 13;9 (10).

33.  Ali A,  Wang Z,  Ji L, Liu J, Li L, Yang Y, Wang Y, Zhou L,  Guo L, Wang H, Chen J, Caulin C, Myers JN, Fu J, Xiao J, Zhang B, Li X.WT-p53/TGF-β signaling and mutant-p53 differentially regulates REGγ to target ubiquitin/ATP-independent REGγ-proteasome pathway during cancer progression. Nature Communications 2013 4:2667.

34.  Dong S, Jia C, Zhang S, Fan G, Xiao W, Shan P, Sun L, Li L, Zheng Y, Liu J, Li Y, Wei H, Hu C, Zhang W, Li Q, Liu J, Jia F, Mo Q, Edwards DP, Huang S, Chan L, O'Malley BW, Li X* and Wang C* The REGγ Proteasome Regulates Hepatic Lipid Metabolism through Inhibition of Autophagy. Cell Metabolism2013 Sep 3;18(3):380-91. 

35.  Li L, Zhao D, Wei H, Yao L, Dang Y, Amjad A, Xu J, Liu J, Guo L, Li D, Li Z, Zuo D, Zhang Y, Liu J, Huang S, Jia C, Wang L, Wang Y, Xie Y, Luo J, Zhang B, Luo H, Donehower LA, Moses RE, Xiao J, O'Malley BW, Li X. REGγ deficiency promotes premature aging via the casein kinase 1 pathway.ProcNatl Acad Sci U S A. 2013 Jul 2;110(27):11005-10.

36.  Liu J, Wang Y, Li L, Zhou L, Wei H, Zhou Q, Liu J, Wang W, Ji L, Shan P, Wang Y, Yang Y, Jung SY, Zhang P, Wang C, Long W, Zhang B, Li X. Site-specific acetylation of the proteasome activator REGγ directs its heptameric structure and functions. J Biol Chem. 2013 Jun 7;288(23):16567-78

37.  Redfern AD, Colley SM, Beveridge DJ, Ikeda N, Epis MR, Li X, Foulds CE, Stuart LM, Barker A, Russell VJ, Ramsay K, Kobelke SJ, Li X, Hatchell EC, Payne C, Giles KM, Messineo A, Gatignol A, Lanz RB, O'Malley BW, Leedman PJ. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6536-41. 

38.  Jing He, Long Cui, Yu Zeng, Guangqiang Wang, Li X. (2012).  REGγ is associated with multiple oncogenic pathways in human cancers. BMC Cancer. Feb 23; 12(1):75.

39.  Qiao S, Murakami K, Zhao Q, Wang B, Seo H, Yamashita H, Li X, Iwamoto T, Ichihara M, Yoshino M. (2012). Mimosine-Induced Apoptosis in C6 Glioma Cells Requires the Release of Mitochondria-Derived Reactive Oxygen Species and p38, JNK Activation. Neurochem Res. Feb;37(2):417-27.

40.  Shen J, Zhang S, Li Y, Zhang W, Chen J, Zhang M, Wang T, Jiang L, Zou X, Wong J, Li X, Cui Y, Wang C. (2011). p14(ARF) inhibits the functions of adenovirus E1A oncoprotein. Biochem J. Mar 1;434(2):275-85.

41.  Wu Y, Wang L, Zhou P, Wang G, Li X. (2011).  Regulation of REGg cellular distribution and function by SUMO modification.Cell Research.  2011 May; 21(5):807-16.

42.  Gao G, Wong J, Zhang J, Mao I, Shravah J, Wu Y, Xiao A, Li X*, Luo H*. (2010). Proteasome Activator REGg Enhances Coxsackieviral Infection via Facilitating p53 Degradation. J. Virol.84 (21): 11056-11066. 

43.  Liu J, Yu G., Zhao P., Wang C., Luo H., Long W., Wang Y., Zhao Y., Tsai M., O'Malley B.W. and Li X. (2010).  REGγ modulates p53 activity by regulating its cellular localization. J. Cell Science.123 (pt23): 4076-84.

44.  Tian M, Xiaoyi W, Li X, Guosheng R. (2009). Proteasomes reactivator REGγ enchances oncogenicity of MDA-MB-231 cell line via promoting cell proliferation and inhibiting apoptosis.Cell Mol Biol(Noisy-le-grand). 55 Suppl:OL1121-31.

45.  Yu G, Zhao Y, He J, Mukherjee A, Mao CA, Li M, and Li X. (2008). Comparative analysis of REGγ expression augurs functional implication. J. Mol. Cell. Biol.Aug; 2(4):192-8.

46.  Ivy Mao, Jian Liu, Li X*, Honglin Luo*. (2008). REGg, A Proteasome Activator and Beyond? Cell and Mol Life Sci. Dec;65(24):3971-80.

47.  Li X, Larbi Amazit, Weiweng Long, David M. Lonard, John J. Monaco and O’Malley B.W. (2007). Proteolytic turnover of p21 by the REGγ-proteasome pathway. Mol. Cell,26,  831-842

48.  Li X., Lonard D., Jung S.Y., Malovannaya A., Feng Q., Qin J., Tsai S. Y., Tsai M-J., and O’Malley B.W. (2006).  The SRC-3/AIB1 coactivator is degraded in an ubiquitin- and ATP-independent manner by the REGgamm-proteasome  Cell. 124, 381-392.

49.  Verma S., Ismail A., Gao X., Fu G., Li X., O’MalleyB. W., Nawaz Z. (2004).  Ubiquitin-conjugating enzyme, UBCH7 act as a coactivator for steroid hormone receptors. Mol. Cell. Biol.24, 8716-26.

50.  Li X. Lonard D. M. and O’Malley B. W. (2004).  A Contemporary Understanding of Progesterone Receptor Function (Review). Mechanisms of Aging and Development. 125, 669-78.

51.  Auboeuf D., Dowhan D.H., Li X., Larkin K., Ko L., Berget S.M., O'Malley B.W.(2004). CoAA, a Nuclear Receptor Coactivator Protein at the Interface of Transcriptional Coactivation and RNA Splicing.Mol. Cell. Biol.24, 442-53.

52.  Li X. and O'Malley B.W. Unfolding the action of progesterone receptors (minireview). (2003). J. Biol.Chem.10, 39261-4.

53.  Li X., Wong J., Tsai S.Y., Tsai M.J., and O'Malley B.W. (2003). Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification. Mol. Cell. Biol.23, 3763-73.

54.  Li X., Bhattacharya C.,Maity S., Dayal S,and Klein W.H. (2002). Ectoderm Gene Activation in Sea Urchin Embryos Mediated by CCAAT Binding Factor CBF. Differentiation. 70, 109-19

55.  Angerer L.M., Oleksyn D. W.,Levine A.M., Li X., Klein W.H. and Angerer R. (2001). Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development. 128, 4393-404

56.  Yuh C., Li X., Davidson E.H., and Klein W.H. (2001). Correct Expression of Spec2a in the Sea Urchin Embryo Requires Both Otx and Other cis-Regulatory Elements. Dev. Biol.232, 424-438

57.  Huang L., Li X., El-Hodiri H.M., Dayal S., Athula H.W., and Klein W.H. (2000). Involvement of Tcf/Lef in Establishing Cell Types along the Animal-Vegetal Axis of Sea Urchins. Dev. Genes Evol.210, 73-81.

58.  Li X., Athula HW and Klein WH. (1999). Requirement of SpOtx in Cell Fate Decisions in the Sea Urchin Embryo and Possible Roles as a Mediator of beta-Catenin Signaling. Dev. Biol.212, 425-439

59.  Klein W.H. and Li X. (1998). Function and Evolution of Otx Proteins. Biochem. Biophys. Res. Commun.  258, 22-34

60.  Li X., Chuang C.K., Mao C.A., Angerer L.M., and Klein WH. (1997). Two Otx proteins generated from alternative splicing of multiple transcripts of a single gene in Strongylocentrotuspurppuratus.  Dev. Biol.187, 253-266

61.  Chuang C.K., Athula H.W., Mao C.A., Li X. and Klein W.H. (1996). Transient Appearance of S. purpuratus Otx in Micromere Nuclei: Cytoplasmic Retention of SpOtx Mediated Through an alpha-Actinin SH3 Domain.  Dev. Genetics19, 231-239

62.  LiX., Weinstock G.M. and Murray B.E. (1995).  Generation of Auxotrophic mutants of Enterococcus faecalis.  J. Bacteriol.177, 6866-6873

63.  LiX., Qinan Wang. Xingping zheng and Yufu Jiang. (1994). Therapy of refractory infections with the third generation of new antibiotics, Ceftizoxime.  Chinese J. Antibiotics. 04, 62-67


 

 

 

荣誉及奖励

2015-2018      华东师范大学生命科学学院突出贡献奖

2008              上海市浦江计划


10 访问

相关教师