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of the dual EL and DRM-based EL estimation methods from theory and numerical simulations. We
find that their point estimators for any parameter are exactly the same, while they may have different
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non or moderate skewed populations, and the DRM-based EL interval can be much superior for severely
skewed populations. A real data example is analyzed for illustration purpose.
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1 Introduction

Density ratio models (DRM) originated in logistic discriminant analysis (Anderson 1972,1974), and were
formally proposed by Anderson (1979) to link two or more closely-related populations, which have similar
characteristics. For example, the modulus of elasticity (MOE) of lumbers in Canada in 2007 may have
similar distributions to those in 2010 (Chen and Liu 2013). The DRM postulates a completely parametric
model on the density ratio of the two populations under study, and leaves the baseline distribution
unspecified. To be specific, suppose we have samples {xij : j = 1, . . . , ni} (i = 0, 1) from two populations
with cumulative distribution functions F0(x) and F1(x), respectively. The DRM assumes

dF1(x)/dF0(x) = exp{θ⊤q(x)}, (1)

where q(x) is a pre-specified d-dimensional basis function and θ a d-variate unknown parameter. We
require the first element of q(x) to be one so that the first element of θ is a normalization parameter.

The DRM is so flexible that it includes many commonly-used parametric distribution families as spe-
cial cases. For example, the binomial and exponential distribution families, and the normal distribution
family with a common variance parameter correspond to a DRM with q(x) = (1, x)⊤. The whole normal
and Gamma distribution families correspond to DRMs with q(x) = (1, x, x2)⊤ and (1, x, log(x))⊤, respec-
tively. See Kay and Little (1987) for more examples. The DRM can also be regarded as a semiparametric
extension of these parametric probability models. With less model assumptions, DRM-based inferences
can be less sensitive to model mis-specification than those based on parametric models.

As a semiparametric model, the DRM leaves the baseline distribution F0(x) completely unspecified.
Owen (1988, 1990)’s empirical likelihood (EL) is a very suitable tool to handle the non-parametric
baseline distribution. Since Owen’s seminal paper, the EL has become remarkably popular because it
has many nice properties paralleling to the parametric likelihood methods, e.g., it is range-preserving,
transform-respect and Bartlett correctable (Hall and La Scala 1990; DiCiccio, Hall and Romano 1991;
Owen 2001). It can be dated back to Vardi (1982, 1985) and Gill, Vardi and Wellner (1988) that the
EL approach was applied to nonparametric parameter estimation problems under DRM, although it had
not been refined into a universal method by then. Here and later on, the DRM was used to characterize
length bias or more general selection bias (Qin 1993, 1999).

The DRM-based EL has attracted much attention in the past decades. Qin and Zhang (1997) showed
that the logistic regression model commonly used in case-control studies can be described by the DRM.
They studied the EL approach for parameter estimation and for goodness-of-fit tests of the regres-
sion model. Qin (1998) linked the prospective likelihood for case-control data to the DRM-based EL.
Fokianos, Kedem, Qin and Short (2001) used the DRM-based EL approach for a classical one-way
analysis-of-variance. Zhang (2000, 2002) investigated the DRM-based EL approach for quantile estima-
tion and goodness-of-fit. Fokianos (2004) proposed to merge information from multiple samples by the
DRM-based EL approach to construct more efficient density estimators for the multiple unknown popula-
tions. Although the common statistical tool in these developments is the DRM-based EL, the parameter
estimation is often based on the so-called dual EL (Keziou and Leoin-Aubin 2008). Fortunately, Keziou
and Leoin-Aubin (2008) formally established the equivalence of the maximum DRM-based EL estimators
and the maximum dual EL estimators for both θ and F0 in (1). Since the dual EL has a closed form and
is easy to calculate, this makes the calculation and application of the DRM-based EL approach much
convenient. Under this formulation, Chen and Liu (2013) disclosed that the DRM-based EL quantile
estimator admits Bahadur representation, and Cai, Chen and Zidek (2017) studied hypothesis testing
problems with the dual EL ratio tests.

Although it shares many properties with the DRM-based EL, the dual EL is not a real likelihood,
let alone the real likelihood based on the data. Unlike the dual EL, the standard EL can not only use
the constraint

∫

exp{θ⊤q(x)}dF0(x) = 1 under DRM, but also easily incorporate auxiliary information
defined through additional estimating equations (Qin and Lawless 1994). After modelling the case and
control data with the logistic regression model or equivalently DRM, Qin et al. (2015) proposed using
EL to increase the power of case-control studies by incorporating covariate-specific disease prevalence
information. Under DRMs on the non-zero parts of multiple zero-inflated populations, Wang (2017)
constructed EL ratio tests for the means after transforming the testing problems into general estimating
equations.

Naturally we may wonder whether inferences based on dual EL are always the same as those based on
the standard EL under DRM. If yes, we shall recommend the former instead of the latter since the former
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is more convenient to use. Otherwise, when do they perform similarly and when does the former lose
remarkable efficiency? These concerns motivate us to make a careful comparison of the dual EL and the
standard EL estimations based on DRM. For simplicity, we consider the estimation problem of a general
parameter ψ, which can be written as ψ =

∫

u(x, θ)dF0(x) for a known function u(·, ·), and F0 and θ
the same as in (1). If only the mean of F0 is of interest, we can choose u(x) = x. If the mean difference
of the two populations is of interest, we can choose u(x, θ) = x − x exp{θ⊤q(x)}. For the parameter ψ,
our theoretical comparison indicates that their point estimators are still identical, however our numerical
comparison shows that the corresponding interval estimators may have different performances, especially
when the underlying populations are severely skewed.

The rest of the paper is organized as follows. In section 2, we briefly review the dual EL and present
the asymptotical normality of the maximum dual EL estimators of ψ. Section 3 is devoted to the standard
EL under DRM. We establish the limiting distributions of the maximum EL estimator and the likelihood
ratio. A simulation study is provided in Section 4 and a real data example is presented in Section 5. All
technical proofs are postponed to the Appendix.

2 Dual empirical likelihood

The dual EL is induced from the EL under DRM. Given the data {xij : j = 1, . . . , ni; i = 0, 1}, let
pij = dF0(xij) with dF0(x) = F0(x)−F0(x−). Under the DRM (1), dF1(xij) = exp{θ⊤q(xij)}dF0(xij) =
exp{θ⊤q(xij)}pij . The EL of (F0, F1) under the DRM (1) is

L(F0, F1) =

n0
∏

i=1

dF0(x0i)

n1
∏

j=1

dF1(x1j) = (

1
∏

i=0

ni
∏

j=1

pij) exp{
n1
∑

j=1

θ⊤q(x1j)}. (2)

The feasible pij ’s satisfy

pij ≥ 0,
∑

i,j

pij = 1,
∑

i,j

exp{θ⊤q(xij)}pij = 1, (3)

where
∑1
i=0

∑ni

j=1 is written as
∑

i,j for short.
Let n = n0+n1 be the total sample size. By the Lagrange multiplier method, maximizing log{L(F0, F1)}

with respect to pij ’s under the constraint (3) gives

pij =
1

n

1

1 + λ̂[exp{θ⊤q(xij)} − 1]
,

where λ̂ = λ̂(θ) is the solution to

1

n

∑

i,j

exp{θ⊤q(xij)}
1 + λ̂[exp{θ⊤q(xij)} − 1]

= 1.

Accordingly, the profile empirical log-likelihood of θ (up to a constant) is

ℓ∗1(θ) = −
∑

i,j

log{1 + λ̂[exp{θ⊤q(xij)} − 1]} +

n1
∑

j=1

{θ⊤q(x1j)}.

This profile log-likelihood has the same maximum value and maximum point as another function

ℓ1(θ) = −
∑

i,j

log{1 + ρ[exp{θ⊤q(xij)} − 1]}+
n1
∑

j=1

{θ⊤q(x1j)},

where ρ = n1/n takes the place of λ̂ in ℓ∗1(θ). See Keziou and Leoin-Aubin (2008) and Chen and Liu
(2013). We call ℓ1(θ) dual EL as Keziou and Leoin-Aubin (2008) pointed out that it is a dual likelihood
of the EL.
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Compared with ℓ∗1(θ), the dual EL ℓ1(θ) has a closed form and is easier to maximize. Denote the
maximum dual EL estimator of θ by θ̂ = argmaxθ ℓ1(θ). The maximum dual EL estimators of F0(x)
and F1(x) are respectively

F̂0(x) =
∑

i,j

p̂ijI(xij ≤ x) and F̂1(x) =
∑

i,j

p̂ij exp{θ̂⊤q(xij)}I(xij ≤ x),

where I(·) is the indicator function and p̂ij = n−1{1 + ρ[exp{θ̂⊤q(xij)} − 1]}−1. Since the parameter of
interest ψ =

∫

u(x, θ)dF0(x) is a function of θ and F0, its maximum dual EL estimator is

ψ̂ =
∑

i,j

p̂iju(xij , θ̂) =
∑

i,j

1

n

u(xij , θ̂)

1 + ρ[exp{θ̂⊤q(xij)} − 1]
. (4)

The asymptotical normalities of θ̂, F̂0(x) and F̂1(x) have been extensively studied in the literature. See
Qin and Zhang (1997), Qin (1998), Zhang (2000, 2002), Keziou and Leoin-Aubin (2008) for the two
sample case and Chen and Liu (2013) for the multiple sample case. We show that ψ̂ also follows an
asymptotically normal distribution.

For ease of presentation, we define some notations. Let θ0 and ψ0 be the true values of θ and ψ,
respectively. Define h(x, θ) = 1 − ρ + ρ exp{θ⊤q(x)}, h1(x, θ) = ρ exp{θ⊤q(x)}/h(x, θ) and h0(x, θ) =
1− h1(x, θ). We may drop θ0 for notional simplicity. Let uθ(x, θ) = ∂u(x, θ)/∂θ and e1 be the d-variate
vector (1, 0, · · · , 0)⊤. Define

σ2 =

∫

u2(x)

h(x)
dF0(x) +B⊤W−1B − ψ2

0 − ∆2

ρ(1− ρ)
, (5)

where W =
∫

q(x)q⊤(x)h0(x)h1(x)h(x)dF0(x), B =
∫

{h1(x)u(x)q(x) − uθ(x)}dF0(x), and ∆ = ρψ0 −
∫

e⊤1 uθ(x)dF0(x). We make the following assumptions on the populations and the DRM.

(C1) The population distributions F0 and F1 satisfy the DRM (1) with true parameter θ0 and
∫

h(x, θ)dF0(x) <
∞ in a neighborhood of θ0.

(C2) The components of q(x) are linearly independent and its first element is one.

(C3) n1/n = ρ+ o(1) for a constant ρ ∈ (0, 1).

Theorem 1 Suppose assumptions (C1)-(C3) are satisfied. As n → ∞,
√
n(ψ̂ − ψ0) is asymptotically

normal with mean 0 and variance σ2, which is defined in (5).

The assumption that
∫

h(x, θ)dF0(x) < ∞ in a neighborhood of θ0 implies the existence of the
moment generating function of q(x) and therefore all its finite moments. This together with the linearly
independence of the elements of q(x) guarantees that W is positive definite.

To construct interval estimators for ψ based on Theorem 1, we need a consistent estimator of σ2.
The analytical form of σ2 motivates us to estimate it by

σ̂2 =

∫

u2(x, θ̂)

h(x, θ̂)
dF̂0(x) + B̂⊤Ŵ−1B̂ − ψ̂2 − ∆̂2

ρ(1− ρ)
,

where ∆̂ = ρψ̂ −
∫

e⊤1 uθ(x, θ̂)dF̂0(x) and

B̂ =

∫

{h1(x, θ̂)u(x, θ̂)q(x)− uθ(x, θ̂)}dF̂0(x),

Ŵ =

∫

q(x)q⊤(x)h0(x, θ̂)h1(x, θ̂)h(x, θ̂)dF̂0(x).

The consistencies of θ̂ and F̂0(x) implies the consistency of σ̂2. Hence a Wald interval estimator for ψ at
level 1− α is

ψ̂ ± n−1/2z1−α/2σ̂, (6)

where z1−α/2 is the (1− α/2) quantile of the standard normal distribution.
We remark that in (5), only the last two terms are directly related with the parameter ψ. In other

words, for different ψ, the asymptotic variance σ2 is different only in the last two terms or equivalently
ψ and ∆. Let µi =

∫

xdFi(x) (i = 0, 1) be the population means. When the mean of F0 is of interest,
ψ = µ0 and u(x, θ) = x, which implies ∆ = ρµ0. When the mean difference is of interest, ψ = µ0 − µ1

and u(x, θ) = x− x exp{θ⊤q(x)}, leading to ∆ = ρµ0 + (1− ρ)µθ.
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3 Empirical likelihood under DRM

The EL inducing the dual EL incorporates only one non-trivial constraint
∑

i,j exp{θ⊤q(xij)}pij = 1,
which comes from the DRM itself. The definition of ψ produces an estimating equation

∫

{ψ − u(x, θ)}dF0(x) = 0. (7)

which can be taken as another constraint on F0. When profiling F0 out, we may maximize the logarithm
of the likelihood (2) under both constraints (3) and (7). This leads to the standard profile empirical
log-likelihood under DRM. Let ξ = (θ⊤, ψ)⊤ and m(x, ξ) = (u(x, θ) − ψ, exp{θ⊤q(x)} − 1)⊤. Similarly
to Qin and Lawless (1994), the supremum is attained at

pij =
1

n

1

1 + λ̃⊤m(xij , ξ)
,

where λ̃ = λ̃(ξ) satisfies

∑

i,j

m(xij , ξ)

1 + λ̃⊤m(xij, ξ)
= 0. (8)

The resultant profile empirical log-likelihood of ξ (up to a constant) is

ℓ2(ξ) ≡ ℓ2(θ, ψ) = −
∑

i,j

log{1 + λ̃⊤m(xij , ξ)}+
n1
∑

j=1

{θ⊤q(x1j)}.

Denote the resultant maximum EL estimator of ξ by ξ̃ ≡ (θ̃, ψ̃) = argmaxξ ℓ2(ξ).

Theorem 2 The maximum DRM-based EL estimators for all underlying parameters, such as θ, ψ, pij,
F0 and F1, are equal to the respective maximum dual EL estimators. In addition, supξ ℓ2(ξ) = supθ ℓ1(θ).

Theorem 2 indicates the standard DRM-based EL and the dual EL share their maximum likelihood
estimators of θ and ψ, and their maximum likelihoods. Hence Theorem 1 is also valid for ψ̃, and the
Wald-type interval estimator of ψ based on the standard DRM-based EL is exactly (6), which is based on
the dual EL. However unlike the latter, the former can be used to construct likelihood ratio confidence
intervals for ψ, which is free of variance estimation. Define the EL ratio function of ψ

R(ψ) = 2{ sup
(θ,ψ)

ℓ2(θ, ψ)− sup
θ
ℓ2(θ, ψ)}.

Theorem 3 Suppose assumptions (C1)-(C3) are satisfied. As n → ∞, R(ψ0) converges in distribution
to χ2

1 distribution.

A likelihood ratio interval estimator for ψ at level 1− α can be constructed as

{ψ : R(ψ) ≤ χ2
1,1−α}, (9)

where χ2
1,1−α is the (1−α) quantile of the χ2

1 distribution. By Theorems 1 and 3, both the Wald interval
in (6) and the likelihood ratio interval (9) have the asymptotically correct coverage probabilities in theory.
It seems that the dual EL has the same performance as the DRM-based EL in parameter estimation,
since we have shown that they have the same point estimators for all underlying parameters. This is not
always true since our simulation study indicates that their interval estimators may perform differently
in some situations.

4 A simulation study

In this section, we carry out simulations to compare the finite-sample performances of the dual EL and the
DRM-based EL. As they have the same point estimators for all underlying parameters, our comparison
focuses on their interval estimators, namely, (6) and (9). We consider two parameters: the mean µ0 of
F0, and the mean difference µ0 − µ1 of F0 and F1.
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We generated data from three scenarios of population pair: (I) F0=N(2, 1) and F1=N(1, 1.5), (II) F0

= Gamma(4, 1) and F1 = Gamma(6, 1.1), (III) F0 = LN(1, 1) and F1 = LN(0, 1). Here Gamma(a, b) is
the Gamma distribution with shape parameter a and scale parameter b, and LN(a, b) is the distribution
of a random variable whose natural logarithm follows N(a, b). The three scenarios satisfy the DRM in
(1) with q(x) being q1(x) = (1, x, x2)⊤, q2(x) = (1, x, log(x))⊤ and q3(x) = (1, log(x))⊤, respectively.
We consider three sample size pairs: (n0, n1) = (20, 20), (40, 40) and (60, 20). The nominal level is set
to 1− α = 90%, 95% or 99%. The number of simulation repetitions is 2000.

For a generic two-sided interval [xl, xu], there are two corresponding one-sided intervals [xl, ∞]
(Lower Limit) and [∞, xu] (Upper Limit). Since one- and two-sided confidence intervals are designed
for different purposes, we believe that it is more complete to compare two interval estimation methods
from both one- and two-sided interval estimations than from only two-sided interval estimation. Hence
we investigate the performances of the one- and two-sided intervals of the likelihood ratio interval (9)
(EL) and the Wald interval (6) (DL). The simulated coverage probabilities and average interval lengths
of the two-sided EL and DL intervals are reported in Tables (1) and (3), which correspond to µ0 and
µ0 − µ1, respectively. The simulated coverage probabilities of their one-sided intervals for both µ0 and
µ0 − µ1 are reported in Tables (2) and (4), respectively.

We first examine the simulation results for µ0. From Tables 1 and 2, we find that the EL interval has
uniformly better coverage accuracy than the DL interval in both one- and two-sided interval estimations.
The coverage probabilities of the two-sided EL interval are always closer to the nominal levels than those
of the two-sided DL interval in all the 9 combinations of scenario and sample size pair. This is still true in
almost all cases for the one-sided EL and DL intervals. In scenarios I and II, the coverage probabilities of
both the one- and two-sided EL intervals are almost equal to nominal levels. The one- and two-sided DL
intervals have similar performances in most cases in scenarios I and II. However its two-sided coverage
probabilities can be as low as 87.15% and 91.95% at nominal levels 90% and 95% respectively in scenario
II with (n0, n1) = (20, 20), and its one-sided coverage probabilities can be as low as 86.15%, 86.45% and
87.40% at the 90% level, and as low as 91.35%, 92.45% and 92.5% at the 95% level in scenario II. When
the populations become more skewed in scenario III, the relative priority of the EL intervals against the
DL interval is more obvious, although both intervals are getting less accurate. The coverage gains of the
EL interval against the DL interval can be larger than 2% in two-sided interval estimation, and larger
than 4% in one-sided interval estimation.

In scenarios I and II, both interval estimators have acceptable coverage accuracies even when the
sample size pair is as small as (20, 20). However their coverage probabilities are much lower than the
nominal levels in scenario III. This is probably because the log-normal distributions are far more skewed
than the normal and Gamma distributions. When the total sample size increases from 40 to 80, both
intervals have remarkably increasing coverage accuracies as expected.

When the parameter of interest is the mean difference µ0 − µ1, the advantage of the EL intervals
against the DL intervals is not so obvious as the case for µ0. The EL interval still has better coverage
probabilities in most situations, while the DL interval can have better two-sided coverage probabilities
in scenario III at level 90%. However this priority of the DL interval is probably caused by its seriously
inaccurate lower and upper limits. In scenario III, the lower limit of the DL interval has severe under-
coverage while its upper limit has severe over-coverage. In all cases, the two-sided EL interval always
has longer length than the two-sided DL interval for both µ0 and µ0 − µ1, which is probably because of
its larger coverage probabilities or its data-driven shape (Owen 1990).

To get more insights into the above simulations results, we display in Figures 1 and 2 the QQ-plots of
sign(ψ̃−ψ0)

√

R(ψ0), the sign-root of R(ψ0), and
√
n(ψ̂−ψ0)/σ̂ for both ψ = µ0 and µ0−µ1 in scenarios

I, II and III with sample sizes (n0, n1) = (20,20), (40, 40) and (60, 20). The closer their QQ-plots are to
the solid line, the better their finite-sample distributions are approximated by their limiting distribution.
It can be seen that compared with

√
n(ψ̂−ψ0)/σ̂, the sign-root of R(ψ0) is always closer to the standard

normal or equivalently R(ψ0) is always closer to the χ2
1 distribution. This explains why the EL intervals

have more accurate coverage probabilities than the DL intervals. In addition, both their QQ-plots are
very close to the solid line in scenarios I and II, but become far away from it in scenario III. This coincides
with the observation that both intervals have better performances in scenarios I and II but have poor
performances in scenario III.

Overall, the finite-sample distribution of the likelihood ratio R(ψ0) is better approximated by its
limiting χ2

1 distribution than that of
√
n(ψ̂−ψ0)/σ̂ is approximated by its normal distribution. Compared
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with the DL intervals, the EL intervals have comparable or only slightly better coverage accuracy when
the populations under study is non or moderate skewed, and become relatively much more accurate for
severely skewed populations.

Table 1: Coverage probabilities (coverage, %) and average interval lengths (length) of the EL and DL
intervals for µ0

EL DL
Scenario (n0, n1) Level 90% 95% 99% 90% 95% 99%

I (20,20) Coverage 88.30 94.50 98.50 87.35 92.80 97.85
Length 0.73 0.88 1.19 0.70 0.84 1.10

(40,40) Coverage 89.80 94.45 99.10 89.20 94.05 98.65
Length 0.52 0.62 0.83 0.51 0.61 0.80

(60,20) Coverage 90.75 95.10 98.95 90.35 94.75 98.80
Length 0.42 0.51 0.68 0.42 0.50 0.66

II (20,20) Coverage 88.65 94.30 98.70 87.15 91.95 97.10
Length 1.51 1.83 2.53 1.43 1.71 2.24

(40,40) Coverage 88.50 94.70 99.25 88.35 93.50 98.35
Length 1.06 1.28 1.73 1.03 1.23 1.61

(60,20) Coverage 89.10 94.95 99.05 88.75 94.15 98.30
Length 0.86 1.03 1.38 0.84 1.00 1.32

III (20,20) Coverage 80.70 86.70 94.00 79.30 84.55 91.25
Length 3.60 4.34 5.81 3.50 4.17 5.48

(40,40) Coverage 84.35 90.10 96.50 83.85 88.50 93.95
Length 2.79 3.37 4.56 2.69 3.20 4.21

(60,20) Coverage 84.50 91.20 97.35 84.00 89.20 94.70
Length 2.36 2.85 3.86 2.28 2.70 3.55

5 A real data example

In this section, we further compare the DRM-based EL and dual EL interval estimation methods by
analyzing the lumber data, which is obtained from tests conducted by the FPInnovations laboratory at
the University of British Columbia. The data-set, which is available upon request, consists of the MOE
measurements for lumber produced in 2007 and in 2010 with sample sizes 98 and 282, respectively. See
Chen and Liu (2013) for a more detailed description.

Let µ0 and µ1 be the means of MOE in 2010 and 2007. We wish to estimate the mean µ0 and the
differences µ0 − µ1. For the choice of the basis function q(x), we consider q1(x), q2(x), and q3(x), which
are the basis functions used in our simulation study. Table 5 tabulates the EL and DL interval estimates
and the corresponding lengths for the two parameters at nominal level 95%. We observe that the two
intervals are quite close to each other for both parameters in all the four cases, and the EL intervals
are slightly longer than the DL intervals. This observation is consistent with those concluded from our
simulation study. The basis functions q1(x) and q2(x) produce almost the same results. When we change
the base function from q1(x) or q2(x) to q3(x), the intervals have a relatively big change. Since q3(x)
is a subvector of q2(x), DRM with q2(x) would be less risky to be misspecified than DRM with q3(x).
Therefore in this situation, we believe that the results corresponding to q1(x) and q2(x) would be more
reliable.
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Table 2: Coverage probabilities (%) of the one-sided EL and DL intervals for µ0

EL DL
Scenario (n0, n1) 1− α 90% 95% 99% 90% 95% 99%

I (20,20) Lower Limit 88.80 93.75 98.40 88.55 93.55 98.10
Upper Limit 89.15 94.55 99.05 88.45 93.80 98.20

(40,40) Lower Limit 90.00 94.80 98.80 89.90 94.70 98.70
Upper Limit 90.05 95.00 99.05 89.90 94.50 98.70

(60,20) Lower Limit 89.20 95.00 99.05 89.30 94.90 99.00
Upper Limit 90.75 95.75 98.85 90.55 95.45 98.65

II (20,20) Lower Limit 89.20 94.55 99.05 86.15 91.35 96.30
Upper Limit 90.30 94.10 98.65 91.45 95.80 99.30

(40,40) Lower Limit 88.45 94.35 98.90 86.45 92.45 97.40
Upper Limit 89.20 94.15 99.15 90.45 95.90 99.55

(60,20) Lower Limit 89.15 94.15 98.70 87.40 92.50 97.70
Upper Limit 89.95 94.95 99.15 91.05 96.25 99.45

III (20,20) Lower Limit 78.55 85.05 93.30 75.65 80.65 88.95
Upper Limit 91.10 95.65 98.95 95.25 98.65 99.85

(40,40) Lower Limit 83.15 88.75 95.65 79.00 85.45 92.30
Upper Limit 90.55 95.60 99.15 94.90 98.40 99.95

(60,20) Lower Limit 82.45 89.05 95.95 79.85 85.20 93.30
Upper Limit 91.05 95.45 99.40 95.20 98.80 1.00

6 Conclusion

This paper compares the dual EL and the standard EL in the context of two-sample DRM through both
theoretical and numerical analyses. We found that the two methods produce the same point estimators for
any underlying parameter, and both their corresponding intervals have asymptotically correct coverage
probabilities. Even so, their intervals have different finite-sample performances in some situations.

Our primary goal is to highlight that there are differences between the two estimation methods
although they are both based on EL and DRM, and produce the same point estimators. Hence we focus
on parameters having the form of ψ =

∫

u(x, θ)dF0(x) for simplicity. It would be interesting to extend
our results to parameters that are defined through general estimating equations (Qin and Lawless 1994).
Our theoretical results are still true in the just-identified case, namely the number of parameters is equal
to the number of equations. For the over-identified case, where the number of parameters is greater than
the number of equations, the maximum dual EL estimator of the parameters may not be well defined.
In addition, the EL and DL methods would also have different powers in testing hypotheses. We would
leave it as a further research topic.

Appendix: Proofs

We begin with a number of technical lemmas. Throughout, we assume the same conditions in Theorem
1. For the data {xij : j = 1, 2, . . . , ni; i = 0, 1}, define Yn =

∑

i,j u(xij)/{nh(xij)} and

Zn =
∂ℓ1(θ0)

∂θ
=

n1
∑

j=1

q(x1j)−
∑

i,j

h1(xij)q(xij).

Also define S = {ρ(1− ρ)}−1diag{1, 0, . . . , 0} and crs =
∫

u(x)hr(x)hs(x)h(x)dF0(x) for 0 ≤ r, s ≤ 1.

Lemma 1 For Yn and Zn defined above, we have

(a) E(Zn) = 0 and Var(Zn) = n(W −WSW );

8



Table 3: Coverage probabilities (coverage, %) and average interval lengths (length) of the EL and DL
intervals for µ0 − µ1

EL DL
Scenarios (n0, n1) Level 90% 95% 99% 90% 95% 99%

I (20,20) Coverage 88.55 94.65 98.45 87.50 94.00 98.35
Length 1.15 1.37 1.83 1.13 1.34 1.77

(40,40) Coverage 89.20 94.25 99.00 88.85 94.00 98.80
Length 0.81 0.97 1.29 0.81 0.96 1.27

(60,20) Coverage 88.05 94.00 98.75 87.65 93.70 98.20
Length 0.98 1.18 1.57 0.96 1.15 1.51

II (20,20) Coverage 88.60 93.70 98.70 88.50 93.50 98.50
Length 2.44 2.94 3.98 2.38 2.84 3.73

(40,40) Coverage 89.80 94.70 99.05 89.90 94.45 98.85
Length 1.74 2.09 2.80 1.71 2.04 2.68

(60,20) Coverage 87.50 93.20 98.20 87.05 92.45 97.65
Length 2.10 2.52 3.36 2.06 2.45 3.23

III (20,20) Coverage 81.40 88.50 95.30 81.95 87.65 93.75
Length 3.81 4.61 6.29 3.65 4.35 5.72

(40,40) Coverage 85.05 90.50 96.75 85.30 90.65 95.55
Length 2.89 3.49 4.76 2.76 3.29 4.33

(60,20) Coverage 86.05 91.85 98.05 87.00 91.90 97.85
Length 2.68 3.26 4.48 2.55 3.04 3.99

(b) E(Yn) = ψ0 and nVar(Yn) =
∫ u2(x)

h(x)
dF0(x)− 1

(1−ρ)3
c200 − 1

ρ(1−ρ)2
c201;

(c) Cov(Yn, Zn) =
{

c00
(1−ρ)2

− c01
ρ(1−ρ)

}

e⊤1W .

Proof. Result (a) can be proved by direct calculation. See also the proof of Theorem 2.1 of Chen and
Liu (2013).

For result (b), it is trivial to prove E(Yn) = ψ0. We now calculate Var(Yn). It can be seen that

nVar(Yn) = (1− ρ)Var

{

u(x01)

h(x01)

}

+ ρVar

{

u(x11)

h(x11)

}

= (1− ρ)E

(

u(x01)

h(x01)

)2

− (1− ρ)

[

E

{

u(x01)

h(x01)

}]2

+ ρE

(

u(x11)

h(x11)

)2

− ρ

[

E

{

u(x11)

h(x11)

}]2

=

∫

u2(x)

h2(x)
h0(x)h(x)dF0(x)−

c200
(1− ρ)3

+

∫

u2(x)

h2(x)
h1(x)h(x)dF0(x)−

c201
ρ(1− ρ)2

=

∫

u2(x)

h(x)
dF0(x)− c200

(1− ρ)3
− c201
ρ(1− ρ)2

.
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Table 4: Coverage probabilities (%) of the one-sided EL and DL intervals for µ0 − µ1

EL DL
Scenario (n0, n1) 1-α 90% 95% 99% 90% 95% 99%

I (20,20) Lower Limit 88.05 94.10 98.50 87.95 93.45 98.45
Upper Limit 89.20 94.45 99.00 88.60 94.05 98.80

(40,40) Lower Limit 90.50 95.30 99.00 90.60 95.10 99.00
Upper Limit 89.35 93.90 98.30 89.00 93.75 98.15

(60,20) Lower Limit 89.85 94.35 98.30 89.85 94.30 98.15
Upper Limit 88.80 93.70 99.00 88.45 93.35 98.30

II (20,20) Lower Limit 89.35 94.70 99.00 89.30 94.80 98.75
Upper Limit 88.10 93.90 98.40 87.80 93.70 98.35

(40,40) Lower Limit 90.40 95.15 98.95 90.50 95.35 98.80
Upper Limit 89.05 94.65 99.00 89.05 94.55 98.75

(60,20) Lower Limit 89.50 95.35 98.90 90.70 95.80 99.05
Upper Limit 87.25 92.15 98.05 86.35 91.25 97.15

III (20,20) Lower Limit 79.30 86.15 94.60 76.35 83.55 91.80
Upper Limit 90.65 95.25 99.05 94.80 98.40 99.90

(40,40) Lower Limit 84.30 90.00 96.05 81.40 87.50 94.10
Upper Limit 91.05 95.05 99.10 94.00 97.80 99.85

(60,20) Lower Limit 83.70 90.35 97.35 82.80 88.70 95.95
Upper Limit 90.65 95.70 99.15 94.05 98.30 99.85

We now prove result (c). Similarly, we have

Cov(Yn, Zn)

= (1− ρ)Cov

(

u(x01)

h(x01)
,−h1(x01)q(x01)

)

+ ρCov

(

u(x11)

h(x11)
, h0(x11)q(x11)

)

= (1− ρ)

{

−E

(

u(x01)

h(x01)
h1(x01)q

⊤(x01)

)

+ E

(

u(x01)

h(x01)

)

E(h1(x01)q
⊤(x01))

}

+ρE

(

u(x11)

h(x11)
h0(x11)q

⊤(x11)

)

− ρE

(

u(x11)

h(x11)

)

E(h0(x11)q
⊤(x11))

= −
∫

u(x)h1(x)h0(x)q
⊤(x)

h(x)
h(x)dF0(x) +

c00
(1− ρ)2

∫

h1(x)q
⊤(x)h0(x)h(x)dF0(x)

+

∫

u(x)

h(x)
h0(x)h1(x)q

⊤(x)h(x)dF0(x)− c01
ρ(1− ρ)

∫

h0(x)h1(x)q
⊤(x)h(x)dF0(x)

=

{

c00
(1− ρ)2

− c01
ρ(1− ρ)

}

e⊤1W.

�

Lemma 2 Assume the same conditions in Theorem 1. As n is large, θ̂ − θ0 =W−1Zn/n+ op(n
−1/2).

The result in Lemma 2 comes from the proof of Theorem 2.1 of Chen and Liu (2013). The proof is
omitted here.

Proof of Theorem 1

Proof. Rewrite equation (4) as ψ̂ =
∑

i,j u(xij , θ̂)/{nh(xij , θ̂)}. Using θ̂ = θ0 +Op(n
−1/2) and applying

the delta method to (4) , we have

ψ̂ =
∑

i,j

u(xij)

nh(xij)
−

∑

i,j

hθ(xij)u(xij)− uθ(xij)h(xij)

nh2(xij)
(θ̂ − θ) + o(n−1/2).
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Table 5: DL and EL interval estimates at confidence level 95% with q1(x) = (1, x, x2)⊤, q2(x) =
(1, x, log(x))⊤ and q3(x) = (1, log(x))⊤.

Parameter q(x) Method Confidence Interval Interval Length
µ0 q1(x) DL [ 1.4959, 1.5324] 0.0365

EL [ 1.4960, 1.5327] 0.0367
q2(x) DL [ 1.4958, 1.5324] 0.0365

EL [ 1.4960, 1.5327] 0.0367
q3(x) DL [ 1.4959, 1.5315] 0.0356

EL [ 1.4973, 1.5317] 0.0344
µ0 − µ1 q1(x) DL [-0.0244, 0.0420] 0.0664

EL [-0.0248, 0.0420] 0.0668
q2(x) DL [-0.0244, 0.0420] 0.0664

EL [-0.0248, 0.0420] 0.0668
q3(x) DL [-0.0276, 0.0422] 0.0698

EL [-0.0279, 0.0421] 0.0699

where hθ(x, θ) = ∂h(x, θ)/∂θ = h(x, θ)h1(x, θ)q(x) and hθ(x) = hθ(x, θ0). By the law of large numbers,

∑

i,j

hθ(xij)u(xij)− uθ(xij)h(xij)

nh2(xij)
= B + op(1),

where B is defined above Theorem 1. By Lemma 2, we have

ψ̂ = Yn −B⊤(θ̂ − θ) + op(n
−1/2) = Yn −B⊤W−1Zn/n+ op(n

−1/2).

By Slutsky’s theorem,
√
n(ψ̂ − ψ0) has the same limiting distribution as

√
n{(Yn − ψ0)−B⊤W−1Zn/n}

which clearly has mean zero. It remains to calculate the variance of the latter.
Applying the results in Lemma 1, we have

Cov(Yn, B
⊤W−1Zn) =

{

c00
(1− ρ)2

− c01
ρ(1− ρ)

}

e⊤1W (W−1B)

=

{

c00
(1− ρ)2

− c01
ρ(1− ρ)

}

e⊤1 B.

Since Var(Zn)/n = W −WSW and S = {ρ(1 − ρ)}−1diag{1, 0, . . . , 0} = {ρ(1 − ρ)}−1e1e
⊤

1 , it follows
that

nVar(B⊤W−1Zn/n) = B⊤W−1(W −WSW )W−1B

= B⊤W−1B − {ρ(1− ρ)}−1B⊤e1e
⊤

1 B.

Putting all these terms together, we have

σ2 = nVar(Yn − ψ0 −B⊤W−1Zn/n)

= nVar(Yn)− Cov(Yn, B
⊤W−1Zn)− Cov(B⊤W−1Zn, Yn)

+B⊤W−1
Var(Zn)W

−1B

=

∫

u2(x)

h(x)
dF0(x)−

1

(1− ρ)3
c200 −

1

ρ(1− ρ)2
c201

−
{

c00
(1− ρ)2

− c01
ρ(1− ρ)

}

e⊤1 B −B⊤e1

{

c00
(1− ρ)2

− c01
ρ(1− ρ)

}

⊤

+B⊤W−1B − {ρ(1− ρ)}−1B⊤e1e
⊤

1 B

=

∫

u2(x)

h(x)
dF0(x) +B⊤W−1B − η

ρ(1− ρ)
,
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where η = (B⊤e1 +
ρ

1−ρ
c00 − c01)

2 + ρ
1−ρ

(c00 + c01)
2. Since B⊤e1 =

∫

{h1(x)u(x)− e⊤1 uθ(x)}dF0(x), we
have

B⊤e1 +
ρ

1− ρ
c00 − c01 = ρψ −

∫

e⊤1 uθ(x, θ)dF0(x) = ∆.

Further using c00 + c01 = (1− ρ)ψ gives

η = ρ(1− ρ)ψ2 − ∆2

ρ(1− ρ)
.

This proves the expression of σ2 and Theorem 1. �

Proof of Theorem 2

Proof. Partition λ as λ̃ = (λ1, λ2)
⊤ and partition λ̃ in the same way. Setting ∂ℓ2(ξ)/∂ξ = 0 gives

∂ℓ2(θ, ψ)

∂θ
= −

∑

i,j

λ1uθ(xij , θ) + λ2 exp{θ⊤q(xij)}q(xij)
1 + λ1{u(xij , θ)− ψ}+ λ2[exp{θ⊤q(xij)} − 1]

= 0, (10)

∂ℓ2(θ, ψ)

∂ψ
=

∑

i,j

λ1

1 + λ1{u(xij , θ)− ψ}+ λ2[exp{θ⊤q(xij)} − 1]
= 0. (11)

When ψ = ψ̃ and θ = θ̃, it follows from Equations (8) and (11) that λ̃1(θ̃, ψ̃) = 0. This implies that
(θ̃, ψ̃, λ̃2) is simply the solution to































−
∑

i,j

λ2 exp{θ⊤q(xij)}q(xij)
1 + λ2[exp{θ⊤q(xij)} − 1]

= 0,

∑

i,j

u(xij , θ)− ψ

1 + λ2[exp{θ⊤q(xij)} − 1]
= 0,

∑

i,j

exp{θ⊤q(xij)}−1

1+λ2[exp{θ⊤q(xij)}−1]
= 0,

which are Equations (8) and (10) with λ1 replaced by 0. It is trivial to verify that the equations are exactly
those which define (θ̂, ψ̂, λ̂). Consequently, the maximum DRM-based EL estimators for all underlying
parameters, such as θ, ψ, pij , F0 and F1, are equal to the respective maximum dual EL estimators. This
also indicates that supξ ℓ2(ξ) = supθ ℓ1(θ). �

Proof of Theorem 3

Proof. It can be verified that ℓ2(ξ) = minλH(λ, θ, ψ), where

H(λ, θ, ψ) = −
∑

i,j

log{1 + λ⊤m(xij, ξ)}+
n1
∑

j=1

{θ⊤q(x1j)}.

Since ξ̃ is root-n consistent, we need to study the behavior of ℓ2(ξ) for ξ = ξ0 + Op(n
−1/2) with ξ0 =

(θ⊤0 , ψ0)
⊤.

For ξ = ξ0 + Op(n
−1/2), it can be verified that the Lagrange multiplier λ̃ = λ0 + Op(n

−1/2) where
λ0 = (0, ρ). Denote ζ⊤ = (ζ1, ζ2) = n1/2((λ − λ0)

⊤, (ξ − ξ0)
⊤) = n1/2((λ − λ0)

⊤, (θ − θ0)
⊤, (ψ − ψ0)

⊤),
where ζ1 = n1/2((λ− λ0)

⊤, (θ − θ0)
⊤) and ζ2 = n1/2(ψ − ψ0)

⊤. Define

Q(ζ) = H(ζ10 + n−1/2ζ1, ψ0 + n−1/2ζ2)

with ζ10 = (λ0, θ0).
Define

A = n−1/2

(

∂H
∂λ
∂H
∂ξ

)

(λ0,ξ0)

, Cn = n−1









∂2H
∂λ∂λ⊤

∂2H
∂λ∂θ⊤

∂2H
∂λ∂ψ⊤

∂2H
∂θ∂λ⊤

∂2H
∂θ∂θ⊤

∂2H
∂θ∂ψ⊤

∂2H
∂ψ∂λ⊤

∂2H
∂ψ∂θ⊤

∂2H
∂ψ∂ψ⊤









(λ0,ξ0)

.
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It can be verified that An = Op(n
−1/2) and Cn = C+op(1), where C = E(Cn). Applying the second-order

Taylor expansion to Q(ζ), we have

Q(ζ) = H(ζ10, ψ0) + A⊤ζ +
1

2
ζ⊤Cζ + op(1).

Setting ∂Q/∂ζ = 0 gives ζ̂ = −C−1A+ op(1). Hence

sup
ξ
ℓ2(ξ) = Q(ζ̂) = H(ζ10, ψ0)−

1

2
A⊤C−1A+ op(1).

Partition A = (A⊤

1 , A
⊤

2 )
⊤ and C in the same way as ζ. Setting ∂Q/∂ζ1 to zero gives

ζ̂1 = −C−1
11 A1 + op(1).

Consequently,

sup
θ
ℓ2(θ, ψ0) = Q(ζ̂1, 0) = H(ζ10, ψ0)− 1

2
A⊤

1 C
−1
11 A1 + op(1).

Thus we have

R2(ψ0) = 2 sup
(θ,ψ)

ℓ2(θ, ψ)− 2 sup
θ
ℓ2(θ, ψ0) = A⊤

1 C
−1
11 A1 − A⊤C−1A+ op(1).

Since

C−1 =

(

C−1
11 0
0 0

)

+

(

C−1
11 C12

−I

)

C−1
22·1

(

C21C
−1
11 −I

)

with C22·1 = C22 − C21C
−1
11 C12, it can be verified that

A⊤C−1A = A1C
−1
11 A

⊤

1 + (A1, A2)

(

C−1
11 C12

−I

)

C−1
22·1

(

C21C
−1
11 −I

)

(

A⊤

1

A⊤

2

)

.

Consequently,

R2(ψ0) = (A1C
−1
11 C12 − A2)C

−1
22·1(A1C

−1
11 C12 − A2)

⊤ + op(1).

After length algebra, we can show that

√
n(A1C

−1
11 C12 − A2)

d−→N(0, C22·1)

which directly implies R2(ψ0)
d−→χ2

1. This completes the proof. �
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Figure 1: QQ-plots of sign(ψ̃−ψ0)
√

R(ψ0) (EL) and
√

n(ψ̂−ψ0)/σ̂ (DL) for ψ = µ0 in scenarios I, II and
III (from top to bottom) with sample sizes (n0, n1) = (20,20), (40, 40) and (60, 20) (from left to right).
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Figure 2: QQ-plots of sign(ψ̃−ψ0)
√

R(ψ0) (EL) and
√

n(ψ̂−ψ0)/σ̂ (DL) for ψ = µ0 −µ1 in scenarios I, II
and III (from top to bottom) with sample sizes (n0, n1) = (20,20), (40, 40) and (60, 20) (from left to right).
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