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1. Introduction

Capture-recapture experiments are widely used cost-effective sampling techniques for es-

timating population sizes or abundances (Otis et al., 1978), which are of fundamental

importance in biology, ecology, demography, epidemiology, and reliability studies (Pol-

lock, 1991, 2000; Chao et al., 2001; Borchers et al., 2002, 2015). Examples of abundances

include the sizes of animal populations in fisheries and wildlife biology, the number of

faults in reliability testing, and the frequencies of diseases in epidemiological studies. The

population of interest in this paper is assumed to be closed—in other words, there is

no birth, death, or migration—and hence the abundance remains unchanged during the

sampling experiment.

A capture-recapture experiment normally consists of a number of occasions when in-

dividuals from a population are captured. They are marked, or their existing marks are

noted, and then released back into the population. For each captured individual a cap-

ture history is recorded. According to whether the captures occur on a limited number

of occasions or on a continuous basis, these experiments can be divided into discrete-time

and continuous-time capture-recapture experiments. There has been extensive research

into discrete-time capture-recapture data. See, for example, Seber (1982), Chao (1987),

Huggins (1989), Alho (1990), Chen and Lloyd (2000, 2002), Fewster and Jupp (2009),

Stoklosa et al. (2011), Liu et al. (2017), and the references therein.

We focus on continuous-time capture-recapture experiments. In a continuous-time

experiment, only one animal is caught at each trapping occasion. In addition to the

marking process, we also record the exact capture times for each animal. Thus, any capture

is regarded as a trapping occasion, and the exact time of each occasion is recorded. Such

experiments are often used in studies of insects, sperm whales, grizzly bears, and other large

mammals (Wilson and Anderson, 1995). Earlier work on abundance estimation based on

continuous-time capture-recapture data includes the papers by Craig (1953) and Darroch

(1958), which dealt with a homogeneous population. Becker (1984) first established a

martingale-based approach for continuous-time experiments. Becker and Heyde (1990),

Yip et al. (1993), and Yip et al. (2000) subsequently developed a class of high-efficiency

martingale-based estimators, which are the solutions to a certain set of martingale-based

estimating equations. Chao and Lee (1993) and Yip and Chao (1996) proposed new

abundance estimators using sample coverage and estimating function approaches.

As is well known, heterogeneity is almost always present in capture-recapture experi-

ments. Failure to account for this heterogeneity may cause substantial bias (Otis et al.,
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1978; Burnham and Overton, 1978; Chao, 1987). The above works are free of covari-

ates, but a better way to account for heterogeneity is to model the capture process via

covariates. For continuous-time capture-recapture data, the most widely used method

is the Andersen–Gill intensity model (Andersen and Gill, 1982), which is a nonhomoge-

neous Poisson process with its intensity function depending on the covariates. Yip et al.

(1996) used a partial likelihood under this model to estimate the unknown parameters

and employed the Horvitz–Thompson estimator to estimate the abundance. Lin and Yip

(1999) and Hwang and Chao (2002) proposed a score-function-based estimating function

approach for abundance estimation. Chen (2001) suggested a likelihood-based method

and showed that his estimator achieves the semiparametric efficiency lower bound. Recent

developments on continuous-time capture-recapture data include considerations of mea-

surement errors (Hwang and Huang, 2003; Yip et al., 2005) and a frailty model (Xi et al.,

2007; Xu et al., 2007).

The existing estimation methods for abundance are largely based on the conditional

likelihood (Huggins and Hwang, 2011) and generally consist of two steps. In the first step,

a desirable point estimator for the abundance is derived under some probability model on

the capture process with or without covariates. The Horvitz–Thompson estimator, also

known as the inverse probability weighting estimator, is usually used for this purpose. In

the second step, the abundance estimator is shown to have asymptotic normality, and a

consistent estimator for its asymptotic variance is prepared. Wald-type confidence intervals

are then constructed for the abundance. However, even in the simplest case, the small-

sample distribution of the abundance estimator is strongly skewed to the right (Evans

and Bonett, 1994), which may lead to severe undercoverage of the corresponding Wald-

type confidence interval. Also its lower limit can be below the number of individuals

captured. Similar observations have been made in our simulation studies. The necessary

estimation of an asymptotic variance may inflate the variation of Wald-type confidence

intervals. Further, it has been widely recognized that Horvitz and Thompson (1952)’s

inverse probability weighting approach might not be stable since some weights might be

quite small, so that certain individuals become unduly influential and the final abundance

estimates are too large. These shortcomings motivate our work.

In this paper, we use the empirical likelihood (Owen, 1988, 1990) to construct a novel

approach for abundance estimation in continuous-time capture-recapture experiments. As

a nonparametric counterpart of the parametric likelihood, the empirical likelihood has

many nice properties. For example, empirical likelihood confidence regions are Bartlett



4 Y. Liu, Y. Liu, P. Li and J. Qin

correctable (DiCiccio et al., 1991), range preserving, transformation respecting (Hall and

La Scala, 1990), and free of variance estimation. See Owen (2001) and Newey and Smith

(2004) for a thorough review.

Instead of conventional conditional likelihood approaches, we develop a full likelihood

setup under the Andersen–Gill intensity model, where the capture-recapture process is

a Poisson process with a covariate-dependent intensity function. When the capture-

recapture data are modelled by mixture models other than non-homogeneous Poisson

processes, the relationship between the conditional and full likelihoods has been extensive-

ly studied (Farcomeni and Tardella, 2012; Holzmann et al., 2006; Link, 2003). However,

when the capture-recapture process is a Poisson process, this relationship has not been

explored. Our paper fills this gap. The full likelihood is composed of three parts. The

first part is a binomial likelihood, the second part is a conditional parametric likelihood or

partial likelihood, and the third part is the marginal empirical likelihood constructed from

the covariate information. The details can be found in Section 2.2. Under both parametric

and semiparametric intensity model assumptions, we establish the asymptotic normality

and semiparametric efficiency of the maximum likelihood abundance estimator and show

that the full likelihood ratio test statistic follows a chisquare limiting distribution with one

degree of freedom. When used to construct confidence intervals for the abundance, the

full likelihood method has two obvious advantages over the conditional likelihood meth-

ods discussed in Chen (2001). First, the full likelihood approach is one-step and free of

variance estimation. Second, the lower limit of the confidence interval derived from the

full likelihood is always no less than the number of individuals captured. Compared with

Chen (2001)’s method, our simulation results indicate that the maximum full likelihood

abundance estimator is more accurate in terms of mean square error, and that the pro-

posed full-likelihood-based confidence intervals often have remarkable gains in coverage

probability. As a by-product, the proposed approach produces a consistent estimator for

the marginal covariate distribution although the observed covariates are subject to biased

sampling.

The rest of the paper is organized as follows. In Section 2, we introduce the Andersen–

Gill intensity model, the empirical likelihood, and the profile empirical likelihood. We

also point out the close relationship between the empirical likelihood and Chen (2001)’s

full likelihood. In Section 3, we present the maximum empirical likelihood estimators and

empirical likelihood ratio functions, and we study their asymptotic distributions under

both parametric and semiparametric intensity models. Section 4 presents a simulation
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study. In Section 5, we illustrate the proposed empirical likelihood method by analyzing

illegal immigrant data for the Netherlands and Prinia flaviventris data from Hong Kong.

A short discussion is given in Section 6. For convenience of presentation, we defer to the

online supplementary document the technical details, some additional simulation results,

the algorithms for the calculation of the proposed method, the goodness-of-fit tests and

model selection for the underlying parametric and semiparametric models, and a study of

the influence of additional heterogeneity via a frailty model.

2. Full Empirical Likelihood

2.1. Model and Data

Denote by ν the abundance of the closed population of interest. Suppose a continuous-time

capture-recapture experiment with duration time [0, τ ] is conducted to sample individuals

from this population. Since the period of the experiment is relatively short in general, it

is reasonable to assume that the covariates are time-independent. Let Z∗ be the time-

independent covariates and N∗(t), t ∈ [0, τ ] the number of captures up to time t for

a subject in the population. Denote the conditional intensity function of the counting

process N∗ at time t given Z∗ = z by λ(t|z), i.e.,

lim
∆t↓0

1

∆t
P{N∗(t+ ∆t)−N∗(t) = 1|Z∗ = z,N∗(s), s ≤ t} = λ(t|z). (1)

This implies that N∗ is a nonhomogeneous Poisson process with intensity λ(t|z). The form

of λ(t|z) is assumed to be known for the time being and will be modelled by parametric

and semiparametric models, respectively, in the subsequent sections.

Let D∗ = I(N∗(τ) > 0) be the indicator of a generic subject captured at least once

before τ , and let

π(z) = P (D∗ = 1|Z∗ = z) = 1− exp{−
∫ τ

0
λ(t|z)dt} (2)

and α = P (D∗ = 0) be respectively the conditional probability of a subject being captured

at least once given the covariate and the unconditional probability of never being captured.

Let (N,Z) follow the conditional distribution of (N∗, Z∗) given D∗ = 1, and let n be the

random number of subjects captured throughout the study. For i = 1, 2, . . . , n, denote

by (Ni, Zi) the analogue of (N,Z) for subject i being captured. Then given n captured

subjects, (Ni, Zi), i = 1, 2, . . . , n, are conditionally independent with the same distribution

as (N,Z).
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2.2. Empirical Likelihood

The likelihood based on the full data (n,N1, . . . , Nn, Z1, . . . , Zn) consists of three parts

L̃ = P (n)× P (Z1, . . . , Zn|n)× P (N1, . . . , Nn|n,Z1, . . . , Zn),

where

P (n) =

(
ν

n

)
(1− α)nαν−n (3)

represents the binomial probability of observing n subjects. Denote by FZ and FZ∗ the

distribution functions of Z and Z∗, respectively. We see that dFZ(z) = {π(z)dFZ∗(z)}/(1−

α), and

P (Z1, . . . , Zn|n) =

n∏
i=1

dFZ(Zi) =

n∏
i=1

π(Zi)dFZ∗(Zi)

1− α
(4)

represents the probability of observing the covariates Zi, given n subjects being captured.

It follows (see Formula (2.7.4’) of Andersen et al. (1993)) that the conditional density

of N(·) given Z = z is

P (N(·)|Z = z) =
exp{−

∫ τ
0 λ(t|z)dt}
π(z)

exp

[∫ τ

0
log{λ(t|z)}dN(t)

]
.

Accordingly, given that n subjects are captured and given their covariates {Zi : i =

1, 2, . . . , n}, the conditional joint distribution of {Ni(·), i = 1, 2, . . . , n} is

P (N1, . . . , Nn|n,Z1, . . . , Zn) =

n∏
i=1

P (Ni(·)|Zi)

=

n∏
i=1

exp{−
∫ τ

0 λ(t|Zi)dt}
π(Zi)

exp

[∫ τ

0
log{λ(t|Zi)}dNi(t)

]
, (5)

which is a conditional likelihood, denoted by Lc.

Combining Equations (3), (4), and (5) and taking the logarithm, we arrive at the

log-likelihood

˜̀ = log(L̃) = log

(
ν

n

)
+ (ν − n) log(α)

+

n∑
i=1

[
log{dFZ∗(Zi)} −

∫ τ

0
λ(t|Zi)dt+

∫ τ

0
log{λ(t|Zi)}dNi(t)

]
.

We note here that α, λ(t|z), and FZ∗(z) are the only unknowns, and they satisfy

α =

∫
exp

{
−
∫ τ

0
λ(t|z)dt

}
dFZ∗(z), (6)

which follows from α =
∫
{1− π(z)}dFZ∗(z) and Equation (2).
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2.3. Profile empirical likelihood

According to the principle of the empirical likelihood (Owen, 1988, 1990), we need only

consider the distributions FZ∗ having supports on {Z1, Z2, . . . , Zn}. Let pi = dFZ∗(Zi)

(i = 1, 2, . . . , n) such that pi ≥ 0 and
∑n

i=1 pi = 1. Maximizing ˜̀ with respect to the pi’s

under constraint (6) leads to

pi =
1

n

1

1 + ξ
[
exp

{
−
∫ τ

0 λ(t|Zi)dt
}
− α

] ,
where the Lagrange multiplier ξ, an implicit function of α and λ(·), is the solution to

n∑
i=1

exp
{
−
∫ τ

0 λ(t|Zi)dt
}
− α

1 + ξ
[
exp

{
−
∫ τ

0 λ(t|Zi)dt
}
− α

] = 0. (7)

Thus, the profile empirical log-likelihood function of (ν, α, λ(·)) is

`(ν, α, λ(·)) = log

(
ν

n

)
+ (ν − n) log(α) +

n∑
i=1

[
−
∫ τ

0
λ(t|Zi)dt+

∫ τ

0
log{λ(t|Zi)}dNi(t)

]

−
n∑
i=1

log

{
1 + ξ

[
exp

{
−
∫ τ

0
λ(t|Zi)dt

}
− α

]}
, (8)

which is the foundation of our subsequent statistical inference.

Our empirical likelihood has a close relationship with Chen’s full likelihood L(ν, θ, fZ).

It can be verified that pi = dFZ∗(Zi) = qi(1− α)/π(Zi), where qi = dFZ(Zi) is defined in

Chen (2001), and Equation (6) is equivalent to 1 =
∑n

i=1 qi(1− α)/π(Zi). In terms of the

qi’s, the empirical log-likelihood function becomes

˜̀= log

(
ν

n

)
+ (ν − n) log(α) + n log(1− α) +

n∑
i=1

log(qi) + log(Lc),

where Lc is defined in (5). By noting that 1−α and log(Lc) are equal to Chen’s p and `n(θ)

respectively, we can show that ˜̀ is exactly his full likelihood log{L(ν, θ, fZ)}. Although

Chen (2001) proposed a maximum likelihood estimation procedure for the abundance

based on this full likelihood, his recommended estimation procedure is based on the con-

ditional likelihood Lc or his `n(θ). In this paper, we instead propose to perform inference

for the abundance based directly on the profile full empirical likelihood.

3. Estimation and Asymptotics

3.1. Parametric intensity model

It is natural to postulate a parametric model λ(t|z) = λ(t, z, β) on the intensity func-

tion, where λ(t, z, β) is known up to a parameter β. Simple examples of λ(t, z, β) include

exp(z>β) and t exp(z>β). Parametric intensity models have been used by Lin and Yip
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(1999) to propose a martingale-based estimation function approach to abundance estima-

tion.

Under the parametric intensity model λ(t|z) = λ(t, z, β), let `p(ν, α, β) denote the

profile empirical log-likelihood function, which is the same as (8) with λ(t, z, β) in place

of λ(t|z). We use the subscript p to highlight the parametric intensity model. Denote the

maximum likelihood estimators by

(ν̂p, α̂p, β̂p) = arg max
(ν,α,β)

`p(ν, α, β). (9)

We propose to estimate the abundance ν by ν̂p and estimate λ(t|z) by λ(t, z, β̂p). The

empirical log-likelihood ratio functions of (ν, α, β) and ν are defined as

Rp(ν, α, β) = 2{`p(ν̂p, α̂p, β̂p)− `p(ν, α, β)},

R′p(ν) = 2{`p(ν̂p, α̂p, β̂p)− sup
α,β

`p(ν, α, β)}.

Next, we study the large-sample properties of the maximum likelihood estimators and

the empirical log-likelihood ratio functions. Let (ν0, α0, β0) be the true value of (ν, α, β)

with α0 ∈ (0, 1), which excludes the trivial cases α0 = 0 and 1. Define πp(z, β) = 1 −

exp{−
∫ τ

0 λ(t, z, β)dt} to be the parametric counterpart of π(z).

Theorem 3.1. Suppose
∫
{πp(z, β)}−1dFZ∗(z) < ∞ for β in a neighbourhood of β0.

If the matrix Wp defined in Equation (4) of the supplementary document is nonsingular,

then as ν0 goes to infinity,

(a)
√
ν0(log(ν̂p/ν0), α̂p−α0, β̂p−β0)>

d−→ N(0,W−1
p ), where

d−→ stands for convergence

in distribution, and

(b) Rp(ν0, α0, β0)
d−→ χ2

k+2 and R′p(ν0)
d−→ χ2

1, where k is the dimension of β0.

We suggest constructing a confidence interval for ν0 at level 1 − α as {ν : R′p(ν) ≤

χ2
1,1−α}, where χ2

1,1−α is the (1−α) quantile of the chisquare distribution with one degree

of freedom. Theorem 3.1 indicates that this confidence interval has an asymptotically

correct coverage probability.

As an alternative to ν̂p, Chen (2001)’s conditional likelihood estimator of ν is ν̃p =∑n
i=1{πp(Zi, β̃p)}−1, where β̃p = arg maxβ L

c(β). We find that the proposed maximum

empirical likelihood estimator ν̂p has the same asymptotic behavior as the conditional

likelihood estimator ν̃p.

Let λ̇(t, z, β) = ∂λ(t, z, β)/∂β. Define ϕp = E[{πp(Z∗, β0)}−1], Vp22 = α−1
0 − ϕp, and

Vp32 = V >p23 = −E
{

1− πp(Z∗, β0)

πp(Z∗, β0)

∫ τ

0
λ̇(t, Z∗, β0)dt

}
,
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Vp33 = E
[ ∫ τ

0

{λ̇(t, Z∗, β0)}⊗2

λ(t, Z∗, β0)
dt− 1− πp(Z∗, β0)

πp(Z∗, β0)

{∫ τ

0
λ̇(t, Z∗, β0)dt

}⊗2]
.

The expectation operator E is with respect to FZ∗ and A⊗2 = AA>.

Theorem 3.2. Under the assumptions in Theorem 3.1, as ν0 goes to infinity, we have

(a) β̂p − β̃p = Op(ν
−1
0 ) and ν̂p − ν̃p = Op(1);

(b) Both
√
ν0(β̂p − β0) and

√
ν0(β̃p − β0) converge in distribution to N(0, V −1

p33);

(c) Both ν
−1/2
0 (ν̂p − ν0) and ν

−1/2
0 (ν̃p − ν0) converge in distribution to N(0, σ2

p), where

σ2
p = ϕp − 1 + Vp23V

−1
p33Vp32.

In the supplementary document, we show that σ2
p is exactly equal to the asymptotic

variance in Equation (3.5) of Chen (2001). Since Chen showed that his estimator achieves

the semiparametric efficiency lower bound, Theorem 3.2 implies that the proposed empir-

ical likelihood estimator ν̂p also achieves the semiparametric efficiency lower bound.

When constructing confidence intervals for ν based on the conditional likelihood es-

timator ν̃p, we need a consistent estimator of its asymptotic variance σ2
p, for example,

σ̃2
p = ϕ̃p − 1 + Ṽp23Ṽ

−1
p33 Ṽp32, where ϕ̃p = (1/ν̃p)

∑n
i=1{πp(Zi, β̃p)}−2, and

Ṽp32 = Ṽ >p23 = − 1

ν̃p

n∑
i=1

1− πp(Zi, β̃p)
{πp(Zi, β̃p)}2

∫ τ

0
λ̇(t, Zi, β̃p)dt,

Ṽp33 =
1

ν̃p

n∑
i=1

[
1

πp(Zi, β̃p)

∫ τ

0

{λ̇(t, Zi, β̃p)}⊗2

λ(t, Zi, β̃p)
dt− 1− πp(Zi, β̃p)

{πp(Zi, β̃p)}2

{∫ τ

0
λ̇(t, Zi, β̃p)dt

}⊗2
]
.

It is worth noting that in the expression of σ̃2
p, we use not the maximum empirical likelihood

estimator β̂p but the maximum conditional likelihood estimator β̃p. This is because a

variance estimator is needed by the Wald-type confidence intervals but not the empirical

likelihood confidence intervals. We can verify that σ̃2
p is indeed a

√
ν0-consistent estimator

of σ2
p by the consistency of (β̃p, ν̃p) and the central limit theorem.

3.2. Semiparametric intensity model

If we are not sure about the form of the intensity function λ(t|z), a completely parametric

intensity model would be risky. To alleviate the risk, we consider semiparametric models,

and the proportional hazard model (Cox, 1972) is probably the most popular. Cox’s

model assumes λ(t|z) = λ0(t)ez
>β, where λ0(t), which is independent of the covariate z,

is an unknown baseline intensity function. Under this model, the empirical log-likelihood

function in (8) becomes

`(ν, α, β, λ0(·)) = log

(
ν

n

)
+ (ν − n) log(α)
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+

n∑
i=1

[
− eZ>i β

∫ τ

0
λ0(t)dt+

∫ τ

0
{log λ0(t) + Z>i β}dNi(t)

]
−

n∑
i=1

log

{
1 + ξ

[
exp

{
− exp(Z>i β)

∫ τ

0
λ0(t)dt

}
− α

]}
,

where ξ = ξ(α, β, λ0(·)) is the solution to

n∑
i=1

exp
{
− exp(Z>i β)

∫ τ
0 λ0(t)dt

}
− α

1 + ξ
[
exp

{
− exp(Z>i β)

∫ τ
0 λ0(t)dt

}
− α

] = 0

for fixed α, β, and λ0(·).

To facilitate our statistical inference for ν, we need to profile out the infinite-dimensional

baseline intensity function λ0(·) in `(ν, α, β, λ0(·)). Let 0 = t0 < t1 < t2 < . . . < tK ≤ τ

be distinct time points for which there is at least one capture. Denote hk =
∫ tk
tk−1

λ0(s)ds

for k = 1, 2, . . . ,K. When K is large enough, max1≤k≤K(tk − tk−1) will be very small.

Therefore, λ0(tk) ≈ hk/(tk − tk−1) for all k, by the mean value theorem. With this

reasoning, the empirical log-likelihood becomes

log

(
ν

n

)
+ (ν − n) log(α) +

n∑
i=1

K∑
k=1

{−eZ>i βhk + (log hk + Z>i β)∆Ni(tk)}

+C −
n∑
i=1

log

[
1 + ξ

{
exp

(
−eZ>i β

K∑
k=1

hk

)
− α

}]
, (10)

where ∆Ni(tk) = Ni(tk) − Ni(tk−) is the number of captures at the time points tk, and

C = −
∑n

i=1

∑K
k=1 ∆Ni(tk) log(tk − tk−1) is independent of the unknown parameters.

Since the capture process is continuous in a closed time interval [0, τ ], it is reasonable

to assume that each component process Ni has a finite number of jumps, each positive

and of size 1, and two component processes Ni and Nj (i 6= j) cannot jump at the same

time point; see Andersen and Gill (1982). This implies that
∑n

i=1 ∆Ni(tk) = 1 holds at

any time point k = 1, 2, . . . ,K.

Setting the partial derivatives of the log-likelihood in (10) with respect to hk to zero,

we have h1 = h2 = . . . = hK . Denote their common value by h and let φ = Kh. Up to

quantities that are independent of the unknown parameters, the log-likelihood in (10) has

the same maximizer as

`s(ν, α, β, φ) = log

(
ν

n

)
+ (ν − n) log(α)− φ

n∑
i=1

eZ
>
i β +

n∑
i=1

{Z>i β + log(φ)}Ni(τ)

−
n∑
i=1

log[1 + ξ{exp(−eZ>i βφ)− α}], (11)
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where ξ = ξ(α, β, φ) is the solution to

n∑
i=1

exp(−eZ>i βφ)− α
1 + ξ{exp(−eZ>i βφ)− α}

= 0.

We use the subscript s to highlight the semiparametric intensity model. The maximum

likelihood estimator of (ν, α, β, φ) is (ν̂s, α̂s, β̂s, φ̂s) = arg max `s(ν, α, β, φ). Accordingly,

we define the likelihood ratio functions of (ν, α, β, φ) and ν as

Rs(ν, α, β, φ) = 2{`s(ν̂s, α̂s, β̂s, φ̂s)− `s(ν, α, β, φ)},

R′s(ν) = 2{`s(ν̂s, α̂s, β̂s, φ̂s)− sup
α,β,φ

`s(ν, α, β, φ)}.

Let φ0 =
∫ τ

0 λ0(t)dt when λ0(·) takes its true value, and suppose (ν0, α0, β0) is the

true value of (ν, α, β) with α0 ∈ (0, 1). Define πs(z, β, φ) = 1 − exp(−φez>β) with

πs(z) = πs(z, β0, φ0). Similarly to the parametric case, we find that the maximum like-

lihood estimator ν̂s is asymptotically normal and the empirical likelihood ratio statistic

follows an asymptotic χ2
1 distribution.

Theorem 3.3. Suppose
∫
{πs(z, β, φ)}−1dFZ∗(z) <∞ for (β, φ) in a neighbourhood of

(β0, φ0). If Ws defined in Equation (5) of the supplementary document is nonsingular,

then as ν0 goes to infinity,

(a)
√
ν0(log(ν̂s/ν0), α̂s − α0, β̂s − β0, φ̂s − φ0)>

d−→ N(0,W−1
s ), and

(b) Rs(ν0, α0, β0, φ0)
d−→ χ2

k+3 and R′s(ν0)
d−→ χ2

1, where k is the dimension of β0.

With the same reasoning as in the derivation of `s(ν, α, β, φ), we can show that the

conditional log-likelihood log(Lc) in (5) is equivalent, up to a constant, to

`s(β, φ) =

n∑
i=1

[−φeZ>i β − log{1− exp(−φeZ>i β)}+ {log(φ) + Z>i β}Ni(τ)].

Denote the maximum conditional likelihood estimator as (β̃s, φ̃s) = arg maxβ,φ `s(β, φ).

Accordingly, Chen (2001)’s conditional likelihood estimator of ν is ν̃s =
∑n

i=1{πs(Zi, β̃s, φ̃s)}−1.

Like those in the parametric case, the maximum empirical likelihood estimators and the

conditional likelihood estimators are asymptotically equivalent in the semiparametric case.

Let ϕs = E[{πs(Z∗)}−1], and define

Vs22 = α−1
0 − ϕs, Vs32 = V >s23 = −φ0E

{
1− πs(Z∗)
πs(Z∗)

eZ
∗>β0Z∗

}
,

Vs33 = E
[{
φ0e

Z∗>β0 − 1− πs(Z∗)
πs(Z∗)

(
φ0e

Z∗>β0

)2}
Z∗Z∗>

]
,

Vs24 = Vs42 = −E
{

1− πs(Z∗)
πs(Z∗)

eZ
∗>β0

}
,
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Vs34 = V >s43 = E
[{

eZ
∗>β0 − 1− πs(Z∗)

πs(Z∗)
φ0e

2Z∗>β0

}
Z∗
]
,

Vs44 = E
{

1

φ0
eZ
∗>β0 − 1− πs(Z∗)

πs(Z∗)
e2Z∗>β0

}
.

Theorem 3.4. Assume the conditions in Theorem 3.3. Let Θ̂ = (β̂>s , φ̂s)
>, Θ̃ =

(β̃>s , φ̃s)
>, and Θ = (β>, φ)> with true value Θ0 = (β>0 , φ0)>. As ν0 goes to infinity,

(a) Θ̂− Θ̃ = Op(ν
−1
0 ) and ν̂ − ν̃ = Op(1);

(b) Both
√
ν0(Θ̂ − Θ0) and

√
ν0(Θ̃ − Θ0) converge in distribution to N(0, V −1

Θ ), where

VΘ = (Vsij)3≤i,j≤4;

(c) Both ν
−1/2
0 (ν̂s − ν0) and ν

−1/2
0 (ν̃s − ν0) converge in distribution to N(0, σ2

s), where

σ2
s = ϕs − 1 + V >s2V

−1
Θ Vs2, Vs2 = (Vs23, Vs24)>.

In the supplementary document, we also show that σ2
s is exactly equal to the asymptotic

variance on the bottom of page 613 of Chen (2001) when the covariate is time-independent.

Since Chen’s abundance estimator achieves the semiparametric efficiency lower bound,

Theorem 3.4 implies that so does the proposed empirical likelihood estimator ν̂s.

For the construction of Wald-type confidence intervals based on ν̃s, we estimate σ2
s by

σ̃2
s = ϕ̃s−1 + Ṽ >s2Ṽ

−1
Θ Ṽs2. Here ϕ̃s = (ν̃s)

−1
∑n

i=1{πs(Zi, β̃s, φ̃s)}−2, Ṽ >s2 = (Ṽs23, Ṽs24), and

Ṽ >Θ = (Ṽs2ij)3≤i,j≤4, where

Ṽs23 = − φ̃s
ν̃s

n∑
i=1

[
1− πs(Zi, β̃s, φ̃s)
{πs(Zi, β̃s, φ̃s)}2

eZ
>
i β̃sZ>i

]
, Ṽs24 = − 1

ν̃s

n∑
i=1

[
1− πs(Zi, β̃s, φ̃s)
{πs(Zi, β̃s, φ̃s)}2

eZ
>
i β̃s

]
,

Ṽs33 =
φ̃s
ν̃s

n∑
i=1

[
1

πs(Zi, β̃s, φ̃s)
eZ

T
i β̃s − 1− πs(Zi, β̃s, φ̃s)

{πs(Zi, β̃s, φ̃s)}2
φ̃e2Z>i β̃s

]
ZiZ

>
i ,

Ṽs34 =
1

ν̃s

n∑
i=1

[
1

πs(Zi, β̃s, φ̃s)
eZ

T
i β̃s − 1− πs(Zi, β̃s, φ̃s)

{πs(Zi, β̃s, φ̃s)}2
φ̃e2Z>i β̃s

]
Zi,

Ṽs44 =
1

φ̃sν̃s

n∑
i=1

[
1

πs(Zi, β̃s, φ̃s)
eZ

T
i β̃s − 1− πs(Zi, β̃s, φ̃s)

{πs(Zi, β̃s, φ̃s)}2
φ̃e2Z>i β̃s

]
.

The consistency of β̃s and φ̃s implies that σ̃2
s is a

√
ν0-consistent estimator of σ2

s .

4. Simulation Study

We carry out simulations to study the finite-sample performance of the proposed empirical

likelihood inference approach for point and interval estimation under both parametric

and semiparametric intensity models. The numerical procedure for implementing the

empirical-likelihood-based methods is discussed in the supplementary document.
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For the point estimation, we compare the proposed abundance estimator ν̂ (ν̂p or ν̂s)

with Chen (2001)’s estimator ν̃ (ν̃p or ν̃s). The proposed empirical likelihood confidence

interval for ν is

I1 = {ν : R′(ν) ≤ χ2
1,1−α},

where R′(ν) = R′p(ν) (parametric case) or R′s(ν) (semiparametric case). A Wald-type

confidence interval based on Chen’s estimator ν̃ is

I2 = {ν : (ν̃ − ν)2/(ν̃σ̃2) ≤ χ2
1,1−α},

where (ν̃, σ̃) = (ν̃p, σ̃p) (parametric case) or (ν̃s, σ̃s) (semiparametric case). Theorems 3.1–

3.4 indicate that all the above confidence intervals have asymptotically correct coverage

probabilities. For a generic two-sided confidence interval I = [νl, νu], we also study the

performance of the corresponding one-sided confidence intervals [νl,∞] (lower limit) and

[n, νu] (upper limit).

4.1. Simulation Set-up

We fix the population size to ν0 = 100 or 200, set the period of the recapture study to [0, 2],

and consider a bivariate covariate Z∗ = (Z∗(1), Z
∗
(2)), where Z∗(1) and Z∗(2) are independent

of each other. We generate data from the following two scenarios.

A. This scenario is borrowed from Chen (2001). Here Z∗(1) and Z∗(2) follow a uniform

distribution on [0,1] and a binomial distribution B(1, 0.5), respectively. The true

value of β is β0 = (0.3,−0.2)> and the intensity function λ(t, Z, β) = t exp(Z>β).

B. Scenario A with β0 = (−3.2, 0.8)>.

The overall probabilities of being captured in scenarios A and B are 87.5% and 49.0%,

respectively. Our simulation results are based on 5000 simulated data sets. When interval

estimation is studied, the confidence levels are set to 90%, 95%, and 99%, repectively.

4.2. Simulation Results

When modelling the intensity function by a parametric model, we choose λ(t|Z) = t exp(Z>β)

with β unknown, while when modelling it by a semiparametric model, we choose λ(t|Z) =

λ0(t) exp(Z>β), where both β and λ0(·) are unknown.

Point estimation comparison We first examine the performance of the point estima-

tors ν̂p and ν̃p. Table 1 lists their simulated medians, averages, and mean square errors

(MSEs). We observe that the MSEs of the proposed estimator ν̂p are uniformly smaller
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Table 1. Medians, averages, and mean square errors of proposed estimate ν̂ and Chen (2001)’s estimate

ν̃.

Parametric intensity model Semiparametric intensity model

Scenario A Scenario B Scenario A Scenario B

ν0 100 200 100 200 100 200 100 200

Median
ν̂ 99.90 200.03 96.50 197.27 100.17 200.17 99.45 199.89

ν̃ 100.59 200.71 100.25 201.56 100.94 200.92 103.65 204.08

Average
ν̂ 99.96 200.02 109.69 207.76 100.25 200.28 113.99 210.79

ν̃ 100.66 200.72 114.35 212.12 101.02 201.04 119.02 215.28

MSE
ν̂ 20.32 39.77 5184.84 2731.30 22.95 43.84 5775.60 2968.56

ν̃ 21.04 40.55 5690.30 2988.17 24.30 45.15 6419.77 3267.31

than those of Chen’s estimator ν̃p. Compared with ν̃p, ν̂p has a remarkably increasing gain

in MSE as the overall capture probability decreases; see the comparisons of scenarios A

and B.

We display the plots of ν̂p versus ν̃p under the parametric intensity model in the sup-

plementary document. The plots for the semiparametric case are similar and are omitted.

Together with the medians and averages in Table 1, these plots indicate that although the

two estimators are generally close to each other, the proposed estimator ν̂ is usually closer

to the true abundance and has smaller MSEs (particularly in scenario B). In addition,

when we relax the intensity model from parametric to semiparametric, the MSEs become

larger since there is less information available for the point estimation.

Interval estimation comparison We report in Table 2 the simulated coverage prob-

abilities of the empirical likelihood confidence interval I1 and the Wald-type confidence

interval I2, which is based on the asymptotic normality of ν̃. We display in Figure 1 the

QQ-plots of the empirical likelihood ratio R′p(ν0) versus the χ2
1 distribution, and the piv-

otal statistic (ν̃p − ν0)/(ν̃
1/2
p σ̃p) versus N(0, 1) under the parametric intensity model with

ν0 = 100. The QQ-plots for ν0 = 200 under the parametric model and for both ν0 = 100

and 200 under the semiparametric model are similar and are in the supplementary docu-

ment to save space.

Let us first examine the two-sided coverage probabilities of the two confidence intervals.

In all cases the coverage probabilities of the empirical likelihood confidence interval I1 are

very close to the nominal levels, and the departure is at most 1.04%; see the case in

scenario B under the parametric intensity model with ν0 = 100 at the nominal level 90%.

Although the Wald-type interval I2 has acceptable performance in scenario A, its coverage
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Table 2. Simulated coverage probabilities for the empirical likelihood confidence interval I1 and the

Wald-type confidence interval I2
Parametric intensity model Semiparametric intensity model

Scenario A Scenario B Scenario A Scenario B

Type Level ν0 100 200 100 200 100 200 100 200

Two-sided

90%

I1 90.23 90.13 88.96 89.04 89.93 90.37 89.40 89.11

I2 90.64 90.48 87.26 90.08 90.78 91.00 89.48 91.12

95%

I1 94.98 95.18 94.32 94.52 94.89 95.18 94.66 94.63

I2 95.62 95.10 90.50 92.46 95.74 95.46 92.44 93.32

99%

I1 98.94 98.86 98.66 99.04 99.10 98.92 98.92 99.16

I2 98.70 98.88 94.74 96.22 98.64 98.94 95.64 96.84

Lower limit

90%

I1 90.23 90.01 86.78 88.78 90.91 90.49 89.12 90.03

I2 90.60 90.32 82.64 85.42 91.20 90.76 85.38 86.98

95%

I1 95.06 95.10 93.30 93.94 95.29 95.66 94.74 94.67

I2 94.34 94.74 87.26 90.08 94.48 95.06 89.48 91.12

99%

I1 98.94 99.06 98.28 98.62 99.00 99.12 98.72 98.92

I2 98.14 98.40 93.42 95.00 98.02 98.60 94.68 95.76

Upper limit

90%

I1 90.43 90.05 91.22 90.50 89.29 89.27 89.96 89.51

I2 90.72 90.16 99.98 98.16 89.70 89.42 100.0 98.00

95%

I1 95.18 95.04 95.66 95.10 94.63 94.71 94.66 94.43

I2 96.30 95.74 100.0 100.0 96.30 95.94 100.0 100.0

99%

I1 99.22 98.88 99.04 99.24 99.12 98.88 98.78 99.14

I2 99.82 99.48 100.0 100.0 99.86 99.50 100.0 100.0

probability is well below the nominal levels in scenario B, and the undercoverage can be

as large as 4.5%. From the QQ-plots in Figure 1, we observe that the distribution of

the empirical likelihood ratio R′(ν0) is much closer to its limiting χ2
1 distribution than

that of the pivotal statistic (ν̃ − ν0)/(ν̃1/2σ̃) is to its limiting distribution N(0, 1). This

explains why the empirical likelihood confidence interval I1 has more accurate coverage

probabilities than the Wald-type confidence interval I2.

We now investigate the one-sided coverage probabilities of the two confidence intervals.

The coverage probabilities of both the lower and upper limits of the empirical likelihood

confidence interval I1 are again the closest to the nominal levels in most cases. The lower

limits of I2 often produce undercoverage, but its upper limits often produce overcoverage.

As indicated by Figure 1, a possible reason for this is that the quantiles of (ν̃−ν0)/(ν̃1/2σ̃)
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Fig. 1. QQ-plots of R′
p(ν0) (first column) and (ν̃p − ν0)/(ν̃

1/2
p σ̃p) (second column), under the

parametric intensity model in scenario A (upper row) and scenario B (lower row) with ν0 = 100.

are generally smaller than those of N(0, 1) in both scenarios A and B. As the overall

probability of being captured decreases from 87.5% to 49.0% or from scenario A to B, both

the lower and upper limits of I2 have worse coverage probabilities. This can be explained

by Figure 1: from scenario A to B, the finite-sample distribution of (ν̃− ν0)/(ν̃1/2σ̃) looks

even further from its limiting distribution N(0, 1).

Overall, the proposed estimator ν̂ is more reliable and more accurate than Chen’s

estimator ν̃. The empirical likelihood confidence interval I1 always has more accurate

coverage probabilities and more stable performance than the Wald-type confidence interval

I2. The usual normality-based confidence interval I2 has severe two-sided undercoverage

and unacceptable one-sided coverage when the probability of being captured is around one

half.

In the supplementary document, we present additional simulation results for a small

overall capture probability and a large ν0. We also perform additional simulations to gain

insight into when we can feel confident in the proposed estimate.
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5. Real data analysis

We illustrate the proposed full likelihood estimation procedure by analyzing illegal immi-

grant data for the Netherlands and Prinia flaviventris data from Hong Kong. For each

data set, we choose to use the parametric model λ(t|Z) = eβ0+β>1 Z and the semiparametric

model λ(t|Z) = λ0(t)eβ
>
1 Z to model the intensity function, where Z denotes a vector of

covariates.

We make a remark on the inference under the two model assumptions. Let `p(ν, α, β0, β1)

and `s(ν, α, β1, φ) be the profile log-likelihoods of the proposed method under the para-

metric and semiparametric models, respectively. It can be verified that

`p(ν, α, β0, β1) = `s(ν, α, β1, τe
β0)−

n∑
i=1

log(τ)Ni(τ),

which implies that the empirical log-likelihood ratio functions of ν are the same under

both models. The resulting maximum likelihood estimator p̂i’s of pi and the conditional

likelihood abundance estimators of ν are also equal to each other. Consequently, the

point and interval estimators of the empirical likelihood (EL) method and Chen (2001)’s

conditional likelihood (CL) method coincide under the two intensity models.

5.1. Netherlands illegal immigrant data

We first consider the estimation of illegal immigrants in the Netherlands based on data

(Heijden et al., 2003) obtained from police records. These are count data for illegal im-

migrants who could not be effectively expelled from the country. The data record the

number of times the immigrant has been apprehended by the police, and they date back

to 1995; see Table 3. This is a real continuous-time capture-recapture data set, and it has

been analyzed accordingly: see Schofield et al. (2017) and the references therein. The data

set contains 1180 distinct illegal immigrants who have been apprehended by the police at

least once. Let τ = 1 be the regularized period. We take either gender (= 1 for male and

0 for female) or age (= 1 if an individual is no more than 40 years old and 0 otherwise)

as the covariate Z. The corresponding models are called the gender model and the age

model.

The analysis results are presented in Table 4. The EL abundance estimates are close to

but slightly less than the CL abundance estimates. This coincides with the observations in

our simulation study and again confirms the asymptotic equivalence results in Theorems

3.2 and 3.4. The positive signs of the β1 estimates for both gender and age indicate

that younger individuals are more likely to be apprehended than older individuals, and
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Table 3. Illegal-immigrant data for the Netherlands. fj : number of distinct individuals

apprehended j times, j = 1, . . . , 6.

Covariate Covariate category f1 f2 f3 f4 f5 f6 Total

Age
> 40 years 105 6 111

< 40 years 1540 177 37 13 1 1 1769

Gender
Female 366 24 6 1 1 398

Male 1279 159 31 12 1 1482

Table 4. Point estimates of ν and (β0, β1), and 95% confidence intervals of ν under the gender and age

models.

Model Method Estimate of ν Confidence interval for ν Estimate of (β0, β1)

Age Model
EL 7542.8 [6665.1, 9215.3] (-2.2397, 1.1031)

CL 7545.5 [6471.7, 8619.4] (-2.2416, 1.1048)

Gender Model
EL 7317.3 [6574.4, 8227.1] (-1.5658, 0.4721)

CL 7320.8 [6505.1, 8136.4] (-1.5667, 0.4726)

males are more likely to be apprehended than females. Since the age model produces

a larger profile empirical log-likelihood (−655.22) than the gender model (−655.86), we

recommend the age model based on the AIC criterion. In addition, our simulation results

imply that the EL point and interval estimators are more reliable than the CL estimators,

so the number of illegal immigrants is likely to be 7543 with a 95% confidence interval

[6665, 9215].

5.2. Prinia flaviventris data in Hong Kong

The second data set is a capture-recapture data set for the bird species Prinia flaviventris

(Hwang and Huang, 2003) in Hong Kong in 1993, available in the R-package PL.popN

(Stoklosa et al., 2011). There are n = 164 birds in total captured at least once over

17 weekly capture occasions (τ = 17). Although the data is obtained by a discrete-

time experiment, we follow Xu et al. (2007) and analyze it as if the birds were captured

continuously. Wing length measurements (mm) were collected for each individual; they

are denoted by X. We take Z = (X,X2) as the covariate associated with the probability

of being captured. In contrast to the gender and age variables in the first data set, this

covariate takes continuous values.

Estimation of ν and β = (β0, β
>
1 )> Table 5 presents point estimates for ν and β,

for both the EL and CL methods, and the EL and CL confidence intervals. We again see

that the EL estimates for ν and β are almost the same as the corresponding CL estimates.
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Table 5. Point estimates for ν and β, and 95% confidence intervals for ν

Method Estimate of ν Confidence interval Estimate of β

EL 692.4 [453.2, 1266.0] (−353.82, 14.944,−0.1592)

CL 709.8 [143.8, 1275.8] (−363.81, 15.374,−0.1638)

However, the confidence intervals for ν based on EL and CL are rather different. The

lower limit 143.8 of I2 is lower than the number n = 164 of individuals captured, which

is clearly absurd. Hence, the more reliable confidence interval for ν is the EL confidence

interval, which is [453, 1266] after rounding.

As observed by a referee, the capture probability or intensity function should be an

increasing function of the wing length. However, the estimated intensity functions of our

method and Chen’s method both reach a maximum around 47. That is, both functions

are increasing when the wing length is less than 47 and are then decreasing. A possible

reason for this is as follows. In general, a bird’s wing length increases with increasing age.

Juvenile and subadult birds have shorter wing lengths as well as a lower flight capacity,

which may explain the lower intensity in shorter wing lengths. Adult birds with longer

wings may be getting older and becoming less active. This may be the reason for the

decreasing intensity in longer wings.

Estimation of cumulative hazards and covariate densities The proposed EL proce-

dure can produce reasonable estimators not only for the abundance and the underlying

parameters but also for the hazard function λ(t|z) and the marginal distribution function

FZ∗(z), or the cumulative hazard function Λ(t|z) =
∫ t

0 λ(s|z)ds and the marginal density

function fZ∗(z).

Under the parametric intensity model λ(t, z, β), the consistency of β̂p implies that

Λ̂(t|z) =
∫ t

0 λ(s, z, β̂p)ds is a consistent estimator of the cumulative hazard Λ(t|z) =∫ t
0 λ(s|z)ds. Under the semiparametric intensity model λ(t|z) = λ0(t) exp(z>β), a rea-

sonable estimator of Λ0(t) =
∫ t

0 λ0(s)ds is

Λ̂0(t) = φ̂sK
−1

K∑
k=1

I(tk ≤ t) = φ̂s
(1/n)

∑n
i=1

∫ t
0 dNi(s)

(1/n)
∑n

i=1

∫ τ
0 dNi(s)

,

where we have used the fact that
∑K

k=1 I(tk ≤ t) =
∑n

i=1

∫ t
0 dNi(s) for any t. We estimate

Λ(t|z) via Λ̂(t|z) = Λ̂0(t) exp(z>β̂s). We can show that Λ̂(t|z) = Λ̂0(t) exp(z>β̂s) is a

consistent estimator of Λ(t|z).

Given Λ̂(t|z) =
∫ t

0 λ(s, z, β̂p)ds in the parametric case or Λ̂0(t) exp(z>β̂s) in the semi-
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parametric case, let

p̂i =
1

n

1

1 + ξ̂[exp{−Λ̂(τ |zi)} − α̂]
, (12)

where ξ̂ is the solution to
∑n

i=1
exp{−Λ̂(τ |zi)}−α̂

1+ξ[exp{−Λ̂(τ |zi)}−α̂]
= 0, and α̂ = α̂p (parametric) and α̂s

(semiparametric). We estimate the marginal distribution FZ∗(z) via

F̂Z∗(z) =

n∑
i=1

p̂iI(zi ≤ z).

The inequality zi ≤ z holds elementwise for vector-valued zi and z, and I(·) is the indicator

function. For both Λ̂(t|z) = Λ̂(t, z, β̂p) in the parametric case and Λ̂(t|z) = Λ̂0(t) exp(z>β̂s)

in the semiparametric case, we have ξ̂ = −1/(1− α0) + op(1); see the proofs of Theorems

1 and 3 in the supplementary document. This together with the consistency of α̂ implies

that F̂Z∗(z) is a consistent estimator of FZ∗(z).

For the Prinia flaviventris data, let X∗ and X be the unbiased and biased wing lengths,

respectively. To estimate the density function fX∗(x) of the unbiased wing length, we

consider the naive kernel density estimator,

f̂u(x) =
1

n

n∑
i=1

G{(xi − x)/h}/h,

where G(·) is a kernel function and h is a bandwidth. Here, we choose G(·) to be the

standard normal density function, and we set h = 1.06σ̂xn
−1/5 by rule of thumb, where

σ̂2
x is the sample variance of the observed wing lengths {xi : i = 1, 2, . . . , n}. Based on the

proposed EL, we estimate fX∗(x) via a weighted kernel density estimator

f̂w(x) =

n∑
i=1

p̂iG{(xi − x)/h}/h,

where the p̂i’s are defined in (12). We remark that although the p̂i’s are the estimated

probability weights of the zi’s, they are also those of the xi’s because there is an invertible

transformation zi = (xi, x
2
i )
> between them.

An advantage of the proposed EL method is that it can correct the sampling bias

automatically. It can be shown that as ν0 →∞, if h = o(1) and (ν0h
2)−1 = o(1), then

f̂u(x) =
1− exp{−

∫ τ
0 λ(s|z)ds}

1− α0
fX∗(x) + op(1), f̂w(x) = fX∗(x) + op(1),

where z = (x, x2)>. Hence, f̂u(·) is asymptotically biased unless the intensity function

λ(t|z) is independent of z or the wing length x, while the proposed density estimator

f̂w(x) is asymptotically unbiased.
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Fig. 2. Left plot: Histogram, naive kernel density estimate (solid black line) and weighted kernel

density estimate (dashed red line) of wing length under parametric model λ(t|z) = eβ0+z
>β1 . Right

plot: Intensity function estimate under parametric model.

Figure 2 shows the histogram and kernel density estimates of the wing length (left plot)

and the estimated hazard function (right plot) under the parametric model. The solid line

is the usual kernel density estimate. It appears close to the histogram in shape since

both reflect the observed wing lengths. The dashed line is the weighted kernel density

estimate under the parametric model. The weighted kernel density estimate under the

semiparametric model is exactly the same because the p̂i’s are unchanged when λ(t|z) is

changed from the parametric model eβ0+z>β1 to the semiparametric model λ0(t)ez
>β1 . We

observe that the naive kernel density estimate and the weighted kernel density estimate are

very different. Together with the right-hand plot, this finding indicates that the proposed

EL method succeeds in correcting the sampling bias: it puts more probability weight on the

observations with less intensity, and less weight on the observations with more intensity.

6. Discussion

In this paper, we have explored the strength of the empirical likelihood (Owen, 1988) in

capture-recapture studies. Our approach is a new development of the empirical likelihood

that solves nonregular statistical problems. It has potential applications to abundance

estimation in many other fields where sampling bias occurs, such as truncation problems

and meta-analyses of publication bias.

Overall, the proposed point estimators are quite close to the maximum conditional

likelihood estimators. However, the proposed likelihood ratio confidence interval has two

clear advantages over the Wald-type confidence interval based on the conditional likelihood:
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it usually has a more accurate coverage probability, and its lower limit is never less than

the number of individuals captured. A further advantage is that it provides a reasonable

estimator for the hazard function and the covariates’ marginal distribution function, as

illustrated in Section 5.2. Although the first real-data application did not show a significant

difference between the full and conditional likelihood methods, our simulations show the

clear advantage of the full-likelihood approach.

Our approach assumes that the covariate is time-independent, e.g., gender. Other

covariates such as the wing length may vary over time, especially when the sampling

period is long. It would be interesting to study full empirical likelihood inference for

abundance with time-dependent covariates. One benefit of time-independent covariates is

that the proposed point and the interval estimator for the abundance are independent of

the time points where captures and recaptures occur. This benefit disappears when the

covariate is time-dependent.

Our work is based on Model (1), which is an Mth model (Seber, 1982; Borchers et al.,

2002) because the intensity varies not only from individual to individual but also from

capture occasion to capture occasion. It would be possible to extend our work to an Mtbh

model by also taking behavioural effects into account (Farcomeni and Scacciatelli, 2013).

We leave this to future work.
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