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Abstract Binomial detectability models are often used to estimate the size or abun-
dance of a finite population in biology, epidemiology, demography and reliability.
Special cases include incompletely observed multinomial models, capture–recapture
models, and distance sampling models. The most commonly-used confidence inter-
val for the abundance is the Wald-type confidence interval, which is based on the
asymptotic normality of a reasonable point estimator of the abundance. However, the
Wald-type confidence interval may have poor coverage accuracy and its lower limit
may be less than the number of observations. In this paper, we rigorously establish
that the likelihood ratio test statistic for the abundance under the binomial detectabil-
ity models follows the chisquare limiting distribution with one degree of freedom.
This provides a solid theoretical justification for the use of the proposed likelihood
ratio confidence interval. Our simulations indicate that in comparison to theWald-type
confidence interval, the likelihood ratio confidence interval not only has more accu-
rate coverage rate, but also exhibits more stable performance in a variety of binomial
detectability models. The proposed interval is further illustrated through analyzing
three real data-sets.
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1 Introduction

Knowing the size of a finite population is of great importance in many different areas.
Examples include animal abundances in fisheries and wildlife biology, cf. Pollock
(2000) and Borchers et al. (2002, 2015), frequencies of diseases in epidemiological
studies, cf. Chao et al. (2001), population sizes in demography, cf. Hogan (2000),
Chen and Lloyd (2002), and the number of faults in reliability system, cf. Barnard
et al. (2003). Given that the study period is often short, it is reasonable to make a
closed population assumption. Namely, there is no birth, death or migrations, and the
population size remains unchanged throughout the study. The problem of interest is
to make inference for the population size or abundance when data are available.

To this end, there have been a number of models developed in the literature, such
as incompletely observed multinomial models, cf. Sanathanan (1972), mark-recapture
models, cf. Otis et al. (1978), distance sampling models, cf. Buckland et al. (2001),
and a unifying model for capture–recapture and distance sampling, cf. Borchers et al.
(2015). The author in Fewster and Jupp (2009) pointed out that many of the aforemen-
tionedmodels can be unified to be binomial detectabilitymodels. Specifically, suppose
the population of interest consists of N individuals and there are n observed individu-
als with covariate xi ’s (i = 1, 2, . . . , n). Examples for covariates include wing lengths
of birds, body weights of animals, capture histories in a capture–recapture study, and
distance of an individual from the observer in distance sampling. See Fewster and
Jupp (2009) and Liu et al. (2017). A binomial detectability model implies that the
joint distribution of all the observations has the form

pr(n, x1, . . . , xn; N , θ) =
(
N

n

)
{p(θ)}n{1 − p(θ)}N−n

n∏
i=1

k(xi ; θ), (1)

where p(θ) and k(x; θ) are pre-specific functions with 0 < p(θ) < 1 and an unknown
parameter θ . A binomial distribution with success probability p(θ) is used to model
n and a parametric model k(x; θ) is used to model the probability density of an ideal
covariate given that the corresponding individual is detected. Following Fewster and
Jupp (2009), we treat N as continuous and interpret

(N
n

)
as Γ (N + 1)/{Γ (N − n +

1)Γ (n + 1)}.
Besides the binomial detectabilitymodels, an alternativemodelling strategy is to put

a parametric model on the probability of capture or being observed given covariates,
cf. Alho (1990) and Huggins (1989). The resulting model (Alho–Huggins model for
short) has attractedmuch attention so far, cf. Borchers et al. (1998, 2002),Marques and
Buckland (2004) and Liu et al. (2017). It conditions on the covariates and does not need
tomodel their distributions, while in the binomial detectability models, the conditional
distribution of the covariates given detection is required. The Alho–Huggins model is
mainly used for capture–recapture data, in which it is a common sense to havemultiple
capture occasions; there is no method available with a single capture occasion. By
contrast, the binomial detectability models have much wider applications including
not only capture–recapture data, but also incompletely observed multinomial data,
cf. Sanathanan (1972) and distance sampling, cf. Buckland et al. (2001). Finally, the
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Likelihood ratio confidence interval for the abundance…

goodness of k(x; θ) in the binomial detectability models can always be checked using
data, however this is not often feasible for the capture probability function in the
Alho–Huggins model.

Regarding estimation in the binomial detectability models, existing interval esti-
mators for the abundance N are generally Wald-type. See Fewster and Jupp (2009)
for example. Their construction generally consists of three steps. First, one needs to
find a reasonable point estimator, say N̆ . Second, the asymptotic normality of N̆ ,

N−1/2(N̆ − N ) = N 1/2{log(N̆ ) − log(N )} + op(1)
d−→ N (0, σ 2)

is established, where
d−→ means convergence in distribution, and a consistent esti-

mator σ̆ 2 of σ 2 is constructed. Finally, the Wald-type confidence interval for N is

constructed as N̆±z1−α/2σ̆
√
N̆ or N̆ exp(±z1−α/2 N̆−1/2σ̆ ), where z1−α/2 is the lower

1−α/2 quantile of the standard normal distribution. Although the twoWald-type con-
fidence intervals have the same asymptotically correct coverage probability, the latter
is generally superior to the former in terms of coverage probability, cf. Fewster and
Jupp (2009). Hereafter we take the latter as the Wald-type confidence interval of N .
However, even in the simplest case, the finite-sample distribution of the abundance
estimator is far from normal and strongly skewed to the right; see Evans and Bonett
(1994). This may lead to severe under-coverage or over-coverage of the corresponding
Wald-type confidence intervals. We have similar observations in our simulation study.
Moreover, the lower limit of the Wald-type confidence interval may be less than the
number of individuals captured, which is clearly absurd. The necessary estimation of
an asymptotic variance may further inflate the variation of the Wald-type confidence
interval. The poor performance of the Wald-type confidence interval motivates us to
investigate the problem and propose new confidence intervals for the abundance.

Instead of Wald-type interval estimators, the authors in Cormack (1992) and Evans
et al. (1996) proposed the profile likelihood confidence interval for the abundance
from capture–recapture data. This interval turns out to be the likelihood ratio confi-
dence interval under the multinomial likelihood, and was shown to outperform the
Wald-type interval. However, it can not incorporate covariates and may involve too
many nuisance parameters when the number of capture occasions is large, leading to
potential efficiency loss. In Liu et al. (2017) the authors proposed empirical likelihood
ratio confidence intervals based on the Alho–Huggins model. They found that the
empirical likelihood ratio confidence interval overcomes most shortcomings of the
Wald-type confidence intervals. However, their confidence intervals are based on the
Alho–Huggins model and do not apply directly to the binomial detectability models.

In Fewster and Jupp (2009) the authors mentioned the use of likelihood ratio con-
fidence intervals for N under the binomial detectability models, but they did not
provide a theoretical justification. In this paper, we rigorously establish the asymtp-
totic chisquare distribution of the likelihood ratio test statistic for the abundance N .
This lays the foundation for the likelihood ratio confidence intervals, and also implies
that the likelihood ratio confidence intervals have asymptotically correct coverage
probabilities. Compared with the Wald-type interval, the likelihood ratio confidence
interval is one-step and free of variance estimation; its lower limit is no less than the
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sample size n. In addition, our simulations indicate that the likelihood ratio confidence
interval has much more accurate coverage probabilities than the Wald-type interval,
especially when the detection probability is low.

The rest of the paper is organized as follows. In Sect. 2, we review the maximum
full and conditional likelihood estimators of (N , θ) under the binomial detectability
models, and their asymptotic normality. We then formally establish the chisquare
limiting distributions of both the likelihood ratio statistics for N and (N , θ). We
report a simulation study in Sect. 3. In Sect. 4, we illustrate the proposed interval
estimation method by applying it to three real data-sets. All the technical derivations
are postponed to the “Appendix” for clarity.

2 Likelihood ratio interval estimation

With the notation previously defined, the log-likelihood of (N , θ) up to a constant is

�(N , θ) = log{Γ (N + 1)} − log{Γ (N − n + 1)}
+ (N − n) log{1 − p(θ)} + n log{p(θ)} + �c(θ)

with �c(θ) = ∑n
i=1 log{k(xi ; θ)}. This log-likelihood is exactly the same as Eq. (4)

in Fewster and Jupp (2009). Under the binomial detectability model, the two most
popular point estimators of (N , θ) are the maximum full likelihood estimator

(N̂ , θ̂ ) = argN ,θ max �(N , θ) (2)

and the maximum conditional likelihood estimator (Ñ , θ̃ ), where

Ñ = n/p(θ̃), θ̃ = argθ max �c(θ). (3)

The references Sanathanan (1972) and Fewster and Jupp (2009) disclosed that these
two estimators follow the same asymptotic normal distribution.

The following lemma, from Fewster and Jupp (2009), establishes the equivalence
and the common limiting distribution of the two maximum likelihood estimators.
Let (N0, θ0) be the true value of (N , θ) and I (θ) = E{∂ log{k(X; θ)}/∂θ}⊗2, where
X ∼ k(x; θ) and A⊗2 = AA� for a vector or matrix A. Define p1(θ) = ∂ log p(θ)/∂θ

and

Σ = p(θ0)

1 − p(θ0)

(
1 p�

1 (θ0)

p1(θ0) {p1(θ0)}⊗2 + {1 − p(θ0)}I (θ0)
)

.

Lemma 1 (See Fewster and Jupp 2009) Suppose the conditional density k(x; θ) sat-
isfies the regularity conditions in “Appendix A”, and p(θ) satisfies 0 < p(θ) < 1 for
all θ and has a continuous second derivative. If the matrix Σ is positive definite, then
as N0 → ∞,

(i) N̂ − Ñ = Op(1);
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(ii) for (N̆ , θ̆ ) = (N̂ , θ̂ ) or (Ñ , θ̃ ),

N 1/2
0

(
log(N̆ ) − log(N0)

θ̆ − θ0

)
=

(
N−1/2
0 (N̆ − N0)

N 1/2
0 (θ̆ − θ0)

)
+ op(1)

d−→ N (0,Σ−1);

(iii) for N̆ = N̂ or Ñ ,

N 1/2
0 {log(N̆ ) − log(N0)} = N−1/2

0 (N̆ − N0) + op(1)
d−→ N (0, σ 2),

where σ 2 = {p1(θ0)� I (θ0)−1 p1(θ0) + 1 − p(θ0)}/{p(θ0)}.
Wald-type confidence intervals can hence be constructed according to Lemma 1:

IWald =
[
Ñ exp

(
−z1−α/2 Ñ

−1/2σ̃
)

, Ñ exp
(
z1−α/2 Ñ

−1/2σ̃
)]

, (4)

where

σ̃ 2 = {p1(θ̃)� Ĩ (θ̃)−1 p1(θ̃) + 1 − p(θ̃)}/{p(θ̃)}

and

Ĩ (θ) = (1/n)

n∑
i=1

{∂ log{k(xi ; θ)}/∂θ}⊗2.

However such intervalsmay suffer fromvariance estimation, unreasonable lower limits
and severe undercoverage. Given the nice performance of likelihood ratio confidence
intervals for N from capture–recapture data, cf. Cormack (1992), Evans et al. (1996)
and Liu et al. (2017), wemay expect that those under the binomial detectabilitymodels
would also perform well. Define the likelihood ratio functions of (N , θ) and N as

R(N , θ) = 2{�(N̂ , θ̂ ) − �(N , θ)} and R′(N ) = 2{�(N̂ , θ̂ ) − �(N , θ̂N )},

where (N̂ , θ̂ ) is defined in Eq. (2) and θ̂N = argmaxθ∗ �(N , θ∗) given N .

Theorem 1 Suppose the conditions of Lemma 1 are satisfied. As N0 → ∞,

R(N0, θ0)
d−→ χ2

d+1 and R′(N0)
d−→ χ2

1 , where d is the dimension of θ .

According to Theorem 1, we recommend the use of a likelihood ratio confidence
interval for N0 at level 1 − α:

ILR =
{
N : R′(N ) ≤ χ2

1,1−α

}
, (5)

where χ2
1,1−α is the (1 − α) quantile of the chisquare distribution with one degree of

freedom. Theorem 1 indicates that ILR has asymptotically correct coverage probabili-
ties when N0 is large enough. The authors in Fewster and Jupp (2009) also mentioned
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the use of ILR, but they did not give a theoretical justification. In comparison with
IWald, there is no need of variance estimation in ILR. Since the likelihood function
makes sense only for N ≥ n, the lower limit of ILR must be no less than n. There is
no such a guarantee for IWald. Lemma 1 implies that IWald also has asymptotically
correct coverage probabilities when N0 is large enough.

An alternative confidence interval for N uses the transformation log(Ñ −n), which
was attributed to Burnham by Chao (1987). Using the results in Lemma 1, we can
show that

C(N0; Ñ ) = log(Ñ − n) − log(N0 − n)[
log

{
1 + Ñ σ̂ 2/(Ñ − n)2

}]1/2

is asymptotically distributed as N (0, 1). Hence, anotherWald-type confidence interval
for N based on the conditional likelihood is

IChao =
{
N : |C(N ; Ñ )| ≤ z1−α/2

}
.

An advantage of IChao is that its lower limit is ensured to be larger than n, the number
of individuals been captured. In the next section, we shall compare by simulation the
finite-sample performance of ILR, IWald and IChao.

3 Simulation

3.1 Simulation set-up

We generate data from four binomial detectability models; the first three are capture–
recapture models and the last is a distance sampling model. In capture–recapture
experiments, the capture probability of an individual may be affected by time (t ; also
called capture occasion), behavioral response (b), or heterogeneity between individuals
(h). All combinations of these factors produce M0, Mt , Mb, Mh , Mth , Mbh , Mbt , and
Mtbh models, see Otis et al. (1978). In all the four models, we choose N0 = 100 as
small populations are common in practical situations.

(A) Suppose there are m (m ≥ 2) capture occasions in a capture–recapture study,
and let x denote the total number of captures of a generic subject. We consider
the capture–recapture model M0, which implies that all subjects have the same
capture probability, say θ , on each of the m capture occasions. If we take x as a
covariate, then the p(θ) and k(x; θ) functions corresponding to model M0 are

p(θ) = 1 − (1 − θ)m and k(x; θ) =
(m
x

)
θ x (1 − θ)m−x

p(θ)
, x ∈ {1, 2, . . . ,m}.

We choose m = 5 and appropriate θ0 values such that p(θ0) = 0.5 and 0.8.
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(B) We consider the capture–recapture model Mtb, in which both capture occasion
and behavioral response affect the capture probability. Suppose there are m cap-
ture occasions. Let p j be the capture probability of an individual at its first capture
if its first capture is at the j th capture occasion. And let c j = φp j be the prob-
ability of an individual at the j th capture if it was captured previously, we refer
to Chao et al. (2000), where φ > 0 is an unknown scalar. The overall underly-
ing parameters constitute θ = (p1, . . . , pm, φ). Denote x = (x(1), . . . , x(m)) a
generic history where x( j) ∈ {0, 1}, and x( j) = 1 means that the individual was
captured at the j th occasion and 0 otherwise. If we take the capture history x as
a covariate, then the p(θ) and k(x; θ) functions corresponding to model Mtb are
p(θ) = 1 − ∏m

j=1(1 − p j ) and

k(x; θ) =
∏δ(x)

j=1

{
p
x( j)
j (1− p j )

1−x( j)

}
· ∏m

j=δ(x)+1

{
(φp j )

x( j) (1− φp j )
1−x( j)

}
1−∏m

j=1(1− p j )
,

where δ(x) = min{ j : x( j) > 0}.Wechoosem = 10, (p1, p2, p3, p4, p5, p6, p7,
p8, p9, p10) = (0.2, 0.2, 0.15, 0.24, 0.24, 0.2, 0.2, 0.15, 0.24, 0.24), and φ0 =
0.8 or 1.5.

(C) The third capture–recapture model we consider is model Mh with m capture
occasions. Let x denote a characteristic of a generic individual and suppose it
follows the exponential distribution with rate θ . Namely, its probability density
function is f (x; θ) = θe−θx . Suppose in each occasion, the probability of a
generic individual being captured given its covariate x is 1 − e−x . If we take x
as a covariate, then the p(θ) and k(x; θ) functions corresponding to model Mh

are p(θ) = m/(m + θ) and

k(x; θ) = θ(m + θ)(1 − e−mx )e−θx/m.

We choose θ0 = 18 and m = 2 or 4.
(D) We consider a distance sampling model. Let A = 1 be the area of the region to be

sampled and w = 0.5 be the half-width of the strip around a single line transect
with length 1, where animals might be detected. Then a = 2w = 1 is the area
covered by this strip. Let x be the perpendicular distance of an individual from
the line, which follows a uniform distribution between 0 and 0.5. We choose the
commonly used half-normal detection function exp(−θx2) to model the prob-
ability of detecting an animal that is at vertical distance x from the line. If we
take x as a covariate, then the p(θ) and k(x; θ) functions corresponding to the
distance sampling model are

p(θ) = 2(π/θ)1/2
[
Φ

{
0.5(2θ)1/2

}
− 0.5

]
and

k(x; θ) = exp
(−θx2

)
(π/θ)1/2

[
Φ

{
0.5(2θ)1/2

} − 0.5
] , 0 ≤ x ≤ 0.5,
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where Φ(·) is the cumulative distribution function of the standard normal. We
choose appropriate θ0 values such that p(θ0) = 0.1 and 0.25.

3.2 Simulation results

The confidence intervals previously mentioned are two-sided, say [Nl , Nu]. From
each of them, we can construct two one-sided confidence intervals, [Nl ,∞] (lower
limit) and [n, Nu] (upper limit). Their coverage probabilities are nearly 1−α/2 if that
for [Nl , Nu] is 1 − α. In this simulation study, we conducted 2000 simulations for
each of the simulation settings and consider three confidence levels 90, 95 and 99%.
Tables 1 and 2 report the simulated coverage probabilities of ILR, IWald, IChao, and
the corresponding one-sided confidence intervals.

To evaluate the performance of a two-sided interval, we also consider the average
interval score criterion, cf. Gneiting and Raftery (2007). The interval score of [Nl , Nu]
at level 1 − α is defined to be

(Nu − Nl) + 2

α
(N0 − Nu)I (N0 > Nu) + 2

α
(Nl − N0)I (N0 < Nl).

The smaller the interval score, the better the confidence interval. The average interval
scores of the three two-sided intervals are given in the paratheses in Tables 1 and 2.

It is impressive to see that in scenarios C and D, the proposed interval ILR always
produces the most accurate coverage probabilities for both one- and two-sided interval
estimation and the smallest interval scores for two-sided interval estimation at all
the three confidence levels. In scenario A, ILR and Iwald have nearly the same ideal
performance in term of coverage accuracy, while IChao often produces undercoverage.
In scenario Awith p(θ0) = 0.5, although ILR has larger interval scores than IWald and
IChao, its one- and two-sided coverage probabilities are relatively the most accurate.
In scenario B, IChao is the winner in terms of interval score and lower-limit coverage
accuracy, while its upper limit often produces undercoverage compared with that of
ILR.AlthoughIChao improvesIWald by a largemargin in scenarioB, in scenarioAwith
p(θ0) = 0.8 its two-sided intervals and upper-limits have even larger undercoverage
and its lower-limits have even larger overcoverage than the latter. In scenarios C and
D, both IWald and IChao have severe two-sided and lower-limit overcoverage and
severe upper-limit undercoverage, while ILR almost always has the most desirable
performance. For example, at the 90% level, lower-limit overcoverage of IWald and
IChao are at least 2.7% in scenario C and at least 3.4% in scenario D. In summary,
IChao does not always improve IWald; Although beaten by IChao in scenario B, ILR
has the best and most stable overall performance.

To get some insight into the above simulation results, we display in Figs. 1 and 2 the
box-plots of the interval lengths of ILR, IWald and IChao, and the QQ-plots of R′(N0)

versus χ2
1 ,

√
Ñ {log(Ñ ) − log(N0)}/σ̃ versus N (0, 1), and C(N0; Ñ ) versus N (0, 1).

In scenarios C, and D, our previous observation is that the coverage probabilities of
ILR are always almost identical to the nominal levels. This is probably because the
finite-sample distribution of R′(N0) is very close to its limiting distribution, χ2

1 , as
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Table 1 Simulated coverage probabilities (%) and interval scores of (in parentheses)ILR,IWald andIChao
in Scenarios A and B

Scenario A Scenario B

p(θ0) = 0.5 0.8 φ0 = 0.8 1.5

Two-sided

Level = 90%

ILR 90.05 (97.74) 89.55 (29.70) 86.14 (60.61) 86.02 (44.91)

IWald 90.40 (92.55) 90.00 (29.50) 85.53 (55.68) 86.95 (40.33)

IChao 89.05 (97.60) 88.05 (30.88) 87.03 (53.97) 86.20 (41.60)

Level = 95%

ILR 94.90 (113.71) 94.60 (33.93) 92.21 (74.92) 92.90 (60.12)

IWald 95.85 (106.07) 94.95 (33.93) 88.63 (73.24) 89.40 (51.18)

IChao 94.20 (112.92) 93.30 (35.69) 93.74 (67.71) 92.75 (50.52)

Level = 99%

ILR 99.15 (151.30) 99.05 (41.19) 97.85 (138.56) 97.87 (103.68)

IWald 98.70 (138.28) 98.55 (43.78) 92.54 (139.37) 93.80 (90.26)

IChao 99.15 (145.76) 98.15 (47.21) 98.75 (107.95) 98.65 (74.26)

Lower limit

Level = 90%

ILR 90.30 88.15 79.10 82.02

IWald 90.05 88.75 81.00 83.15

IChao 91.65 92.50 87.95 88.05

Level = 95%

ILR 95.15 94.20 87.85 88.41

IWald 94.15 93.80 85.50 86.95

IChao 96.20 96.75 94.05 94.35

Level = 99%

ILR 99.15 98.35 96.45 96.93

IWald 98.15 98.05 91.20 92.25

IChao 99.55 99.80 99.25 99.50

Upper limit

Level = 90%

ILR 89.30 90.40 95.50 95.47

IWald 90.95 90.60 100.0 99.35

IChao 87.25 85.50 87.35 86.25

Level = 95%

ILR 94.90 95.35 97.20 97.93

IWald 96.25 96.20 100.0 100.0

IChao 92.85 91.30 92.85 91.85

Level = 99%

ILR 98.90 99.15 99.75 99.65

IWald 99.90 99.80 100.0 100.0

IChao 98.45 97.20 97.95 97.70
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Table 2 Simulated coverage probabilities (%) and interval scores of ILR, IWald and IChao in Scenarios
C and D

Scenario C Scenario D

K = 2 4 p(θ0) = 0.1 0.25

Two-sided

Level = 90%

ILR 90.15 (159.28) 90.35 (111.02) 90.90 (165.58) 90.25 (96.72)

IWald 92.90 (168.52) 91.40 (113.31) 93.60 (191.85) 91.65 (99.17)

IChao 91.10 (165.98) 90.70 (113.73) 92.15 (183.26) 90.45 (100.36)

Level = 95%

ILR 95.25 (183.02) 94.80 (127.33) 95.75 (190.81) 95.00 (111.54)

IWald 96.45 (199.65) 95.60 (131.73) 97.00 (236.47) 95.65 (115.31)

IChao 95.65 (195.68) 95.15 (133.21) 95.85 (219.99) 95.25 (117.47)

Level = 99%

ILR 98.95 (234.68) 98.90 (165.93) 99.25 (242.38) 98.65 (144.57)

IWald 99.50 (275.85) 99.25 (172.24) 99.25 (317.13) 98.90 (150.76)

IChao 99.35 (266.54) 99.05 (176.15) 98.85 (309.58) 98.60 (157.26)

Lower limit

Level = 90%

ILR 89.95 90.20 91.90 91.25

IWald 94.15 92.70 96.40 93.40

IChao 93.30 92.70 95.55 94.10

Level = 95%

ILR 94.95 94.90 96.45 95.70

IWald 97.65 96.20 98.90 96.90

IChao 97.10 96.45 98.70 97.25

Level = 99%

ILR 99.20 99.20 99.10 98.85

IWald 99.70 99.25 99.95 99.15

IChao 99.70 99.50 99.85 99.60

Upper limit

Level = 90%

ILR 90.05 90.85 88.30 89.45

IWald 90.10 89.95 89.30 89.20

IChao 88.75 88.80 87.85 87.95

Level = 95%

ILR 95.20 95.45 94.45 94.55

IWald 95.25 95.20 94.70 94.75

IChao 94.00 94.25 93.45 93.20

Level = 99%

ILR 99.15 98.85 99.00 98.95

IWald 99.25 99.15 98.60 98.70

IChao 98.85 98.35 98.25 98.10
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Fig. 1 QQ-plots and box-plots for scenario Awith p = 0.5 (row 1), B with φ = 0.8 (row 2), C with K = 2
(row 3), and D with p = 0.1 (row 4). Column 1: QQ-plots of R′(N0) versus χ2

1 ; Column 2: QQ-plots of√
Ñ {log(Ñ ) − log(N0)}/σ̃ versus N (0, 1); Column 3: QQ-plots of C(N0; Ñ ) versus N (0, 1); Column 4:

box-plots of the average lengths of ILR, IWald and IChao

we can see from Figs. 1 and 2. However IWald and IChao may have undercoverage
or overcoverage. In terms of interval length, ILR has the shortest average lengths
in all the two scenarios. In scenario A, ILR, IWald and IChao have close coverage
probabilities. This can be explained by the corresponding QQ-plots, in which both the

distributions of R′(N0),
√
Ñ {log(Ñ ) − log(N0)}/σ̃ and C(N0; Ñ ) are close to their

limiting distributions. Meanwhile ILR and IWald seem to have shorter length than
IChao.

In Scenario B, IChao outperforms ILR and IWald although all intervals have severe
undercoverage. This probably can be explained by theirQQ-plots, inwhich the approx-
imation of the limiting distribution to the finite-sample distribution of C(N0; Ñ ) is

better than those of R′(N0) and
√
Ñ {log(Ñ )− log(N0)}/σ̃ . It is worth mentioning that

ILR always has very close two-sided coverage probabilities to those of IChao. Their
severe undercoverage makes it unfair to compare their interval lengths. A possible
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Fig. 2 QQ-plots and box-plots for scenario A with p = 0.8 (row 1), B with φ = 1.5 (row 2), C with K = 4
(row 3), and D with p = 0.25 (row 4). Column 1: QQ-plots of R′(N0) versus χ2

1 ; Column 2: QQ-plots of√
Ñ {log(Ñ ) − log(N0)}/σ̃ versus N (0, 1); Column 3: QQ-plots of C(N0; Ñ ) versus N (0, 1); Column 4:

box-plots of the average lengths of ILR, IWald and IChao

for these undesirable performance is that there are too many unknown parameters
(the dimension of θ is 11) in the model but there are too few observations since the
abundance is only 100.

In addition, the lower-tail quantiles of N (0, 1) are much larger than those of√
Ñ {log(Ñ ) − log(N0)}/σ̃ in scenario B, which explains the sever under-coverage

of the lower limit of IWald. The inverse occurs in scenarios C and D with lower cap-
ture probabilities. The upper-tail quantiles of N (0, 1) are much larger than those of√
Ñ {log(Ñ ) − log(N0)}/σ̃ in scenario B, but are very close to the latter in other sce-

narios. This probably explains why the upper limit of IWald has sever overcoverage in
scenario B, but produces very accurate coverage probabilities in other scenarios.

Overall, the proposed likelihood ratio confidence interval usually (except in scenario
B) has very accurate coverage probability with reasonable interval length and interval
score, and exhibits more stable performance than IWald and IChao under varieties of
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binomial detectability models, especially in scenarios C and D. There is still much
room for improvement in its performance in scenario B.

4 Real applications

We illustrate the proposed interval estimation method by analyzing three data sets.
The first two can be suitably modelled by capture–recapture models, while the last is
obtained in a distance sampling experiment.

4.1 Possum data and Mouse data

We first analyze two capture–recapture data: the possum data, cf. Heinze et al. (2004);
Huggins and Hwang (2007) and the mouse data, cf. Stoklosa et al. (2011). The possum
data, collected over five consecutive nights in November 2003, records the capture
histories of mountain Pygmy Possum (Burramys parvus) at mount Hotham in the
snowfields of Victoria, Australia. The mouse data records the captures of the Harvest
mouse (Micromys minutus) over 14 occasions at Wulin Recreation Area in Shei-Pa
natinal Park, Taiwan, in the summer of 2008.

We assume both data follow M0 models, which were employed in scenario A in
our simulation study. Table 3 presents the maximum full likelihood estimates (MLE)
andmaximum conditional likelihood estimates (MCLE) of the abundances for the two
populations, and the interval estimates ILR, IWald, and IChao at confidence levels 95%
and 99%. The MLE and MCLE point estimates are quite close to each other for the
possums data and the mouse data. This observation is consistent with the theoretical
result in Lemma 1.

Table 3 Point and interval estimates for the possums data and the mouse data

Model Data n MLE MCLE ILR IWald IChao
M0 Confidence level: 95%

Possum 43 47.3 48.1 [43.2, 54.7] [43.2, 53.6] [44.9, 56.3]

Mouse 142 157.3 158.0 [149.0, 168.4] [149.3, 167.1] [151.2, 169.6]

Confidence level: 99%

Possum [43.0, 57.9] [41.7, 55.5] [44.4, 61.0]

Mouse [146.9, 172.6] [146.7, 170.1] [149.8, 174.8]

Mh Confidence level: 95%

Possum 43 48.6 49.1 [44.2, 54.7] [44.0, 54.7] [45.6, 57.0]

Mouse 142 175.3 175.8 [162.9, 190.1] [162.6, 190.1] [164.6, 192.6]

Confidence level: 99%

Possum [43.2, 57.1] [42.6, 56.6] [45.0, 61.3]

Mouse [159.5, 195.3] [158.7, 194.9] [162.0, 199.4]
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The three interval estimates are also very close to each other. However, for the
possum data, the lower limit, 41.7, of IWald at level 99% is smaller than the sample
size n = 43, which is unreasonable. In comparison, the lower limits of ILR and IChao
in all the four cases are no less than the corresponding n. According to our simulation
experience in scenario A, IChao tends to produce undercoverage under M0. Hence we
believe that ILR is the most reliable two-side confidence interval for these two data.

Since both data include body mass, which can be regarded as a covariate, we
can apply the Alho-Huggins model to them, together with the Mh model. Under these
models, by the maximum conditional likelihoodmethod, we find that the fitted capture
probability of an individual given its covariate x is g(x) = exp(2.12−0.07x)

1+exp(2.12−0.07x) for the

Possum data and g(x) = exp(−4.08+0.27x)
1+exp(−4.08+0.27x) for the Mouse data. We further assume

that the covariates follows a log-normal distribution LN (μ, σ 2) and denote its density
function by f (x; θ) with θ = (μ, σ 2). These lead to a model for the marginal capture
probability, p(θ) = ∫ ∞

0 f (x; θ)φ(x)dx , and a model for the conditional distribution
of the covariate, k(x; θ) = f (x; θ)φ(x)/p(θ), where φ(x) = 1− {1− g(x)}m and m
is the capture times. The numerical results paralleling those under the M0 model are
also presented in Table 3. Our general observations are similar to those under the M0
model, except that all numbers increase.

4.2 Hawaiian Amakihi data

Wenext apply the proposed estimationmethod to a distance sampling data and estimate
the abundance of Hawaiian amakihi. The data were collected on the island of Hawaii
from point transects in seven survey periods between July 1992 and April 1995, cf.
Fancy et al. (1997) and Marques et al. (2007), and are available from the R package
Distance.

The radii W (unit: meter) of the point transects in each period, the numbers n of
observations, and themonths inwhich the surveyswere conducted are given in Table 4.
Let x (x ≤ W ) denote the distance between a generic amakihi and the observer. For
illustration purpose, we take x as a covariate, and assume that the overall capture
probability and the conditional density function of x are respectively

p(θ) = 1

θW 2

(
1 − e−θW 2

)
and k(x; θ) = 2θxe−θx2

1 − e−θW 2 , 0 ≤ x ≤ W.

For each survey period, we calculate the MLE and MCLE, and the likelihood ratio
interval and Wald-type interval estimates at the confidence level 95%. We present in
Table 4 the MLEs and MCLEs, and the interval estimates ILR, IWald, and IChao at
confidence levels 95%. Again the MLEs are very close to the corresponding MCLEs.
The interval estimate is shifting to the right from ILR to IWald to IChao. If the assumed
models are correct then ILR is the most reliable because it has the best coverage
accuracy, the shortest interval length and the smallest interval score among the three
intervals in scenario D, which is a distance sampling model.
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Appendix

A. Regularity conditions on k(x; θ)

We assume that k(x; θ) satisfies the following regularity conditions, which are from
§4.2.2 of Serfling (1980).

(R1) Let Θ be the parameter space of θ and θ0 be its true value. Suppose Θ is an
open set and θ0 belongs to Θ .

(R2) For each θ ∈ Θ , the derivatives

∂ log k(x; θ)

∂θ
,

∂2 log k(x; θ)

∂θ2
,

∂3 log k(x; θ)

∂θ3

exist for all x .
(R3) There exist functions g(x), h(x) and H(x) such that for θ in a neighborhood of

θ0,

∣∣∣∂ log k(x; θ)

∂θ

∣∣∣ ≤ g(x),
∣∣∣∂2 log k(x; θ)

∂θ2

∣∣∣ ≤ h(x),
∣∣∣∂3 log k(x; θ)

∂θ3

∣∣∣ ≤ H(x)

hold for all x and

∫
g(x)dx < ∞,

∫
h(x)dx < ∞,

∫
H(x)k(x; θ)dx < ∞.

(R4) For each θ ∈ Θ , 0 <
∫ {∂ log k(x; θ)/∂θ}2 k(x; θ)dx < ∞.

B. Technical preparations

We make technical preparations for the proof of Theorem 1. For any positive real
number x greater than n, define the digamma function ψ0(x) = d log{Γ (x)}/dx and
S1(x, n) = ψ0(x + 1) − ψ0(x − n + 1). For a = 1, 2, . . . , we define the polygamma
functions
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ψa(x) =da+1 log{Γ (x)}
dxa+1 = daψ0(x)

dxa
= (−1)a+1a!

∞∑
k=0

1

(x + k)a+1 , (6)

Sa(x, u) =ψa−1(x + 1) − ψa−1(x − u + 1) = (−1)a−1(a − 1)!
x∑

k=x−u+1

k−a .

(7)

It is clear that ψ1(x) = dψ0(x)/dx and therefore S2(x, n) = dS1(x, n)/dx .
Since x−1 and x−2 are both monotone decreasing functions for x > 0, it follows

from Eqs. (6) and (7) that

log{(N + 1)/(N + 1 − n)} < S1(N , n) < log{N/(N − n)},
− n/{N (N − n)} < S2(N , n) < −n/{(N + 1)(N + 1 − n)}.

Note that the number n of detected observations follows a binomial distribution
B(N0, p(θ0)). By the central limit theorem,

√
N0

{
n

N0
− p(θ0)

}
d−→ N (0, p(θ0){1 − p(θ0)}) ,

as N0 → ∞. Therefore, it follows that

S1(N0, n) = log{N0/ (N0 − n)} + Op

(
N−1
0

)

= − log{1 − p(θ0)} + (n/N0) − p (θ0)

1 − p (θ0)
+ Op

(
N−1
0

)
,

S2 (N0, n) = − n

N0 (N0 − n)
+ Op

(
N−2
0

)

= − p (θ0)

N0{1 − p(θ0)} + Op

(
N−3/2
0

)
.

The following lemma fromHjort and Pollard (2011) can ease much of the technical
burden in our proof of Theorem 1.

Lemma 2 Assume that θ� = (θ�
1 , θ�

2 ) where θ1 and θ2 are r- and s-dimensional
vectors, respectively. Let θ�

0 = (θ�
10, θ

�
20) be its true value, and γ = (γ �

1 , γ �
2 )� =√

n(θ −θ0) where n is the sample size. Suppose for θ = θ0 +Op(n−1/2), it holds that

H(θ) = Cn + a�
n γ − 1

2
γ �Aγ + εn(θ)

where an = Op(1), A is a positive definite matrix, Cn does not depend on θ , and
εn(θ) = op(1) for any fixed θ . According to θ = (θ�

1 , θ�
2 )�, we partition A into

A = (Ai j )1≤i, j≤2, and partition a�
n into (a�

n1, a
�
n2). As n → ∞, if an

d−→ N (0, A),
then

123

Author's personal copy



Y. Liu et al.

(a) the maximizer θ̂ of H(θ) satisfies
√
n(θ̂ − θ0) = A−1an +op(1)

d−→ N (0, A−1),

(b) 2{maxθ H(θ) − H(θ0)} = a�
n A

−1an + op(1)
d−→ χ2

r+s , and

(c) 2{maxθ H(θ) − maxθ2 H(θ10, θ2)} = a�
n A

−1an − a�
n2A

−1
22 an2 + op(1)

d−→ χ2
r .

C. Proof of Theorem 1

Using a similar argument to that in the proofs of Lemma 1 and Theorem 1 of Qin and
Lawless (1994), we have N̂ = N0 + Op(N

1/2
0 ) and θ̂ − θ0 = Op(N

−1/2
0 ). Since the

results in Theorem 1 are about the properties of (N̂ , θ̂ ), our proof begins by studying
the behavior of �(N , θ) for (N , θ) such that ((N − N0)/N0, θ − θ0) = Op(N

−1/2
0 ).

Let α = (α1, α
�
2 )� with α1 = N−1/2

0 (N − N0) and α2 = N 1/2
0 (θ − θ0). Define

H(α) = �(N0 + N 1/2
0 α1, θ0 + N−1/2

0 α2). The likelihood ratio function of (N , θ) can
be expressed as

R(N , θ) = 2{H(α) − H(0)}.

By the second-order Taylor expansion, we have

H(α) = H(0) + α�u + 1

2
α�Vα + op(1),

where u ≡ (u1, u�
2 )� = ∂H(0)/∂α and V is the leading term of ∂2H(0)/(∂α∂α�).

To proceed, we need the expressions of u and V . It can be seen that

∂�(N , θ)

∂N
= S1(N , n) + log{1 − p(θ)},

∂�(N , θ)

∂θ
= n − Np(θ)

p(θ){1 − p(θ)}
dp(θ)

dθ
+

n∑
i=1

∂ log{k(xi ; θ)}
∂θ

.

According to the properties of the digamma functions, we further have

u1 = ∂H(0)

∂α1
= N 1/2

0
∂�(N0, θ0)

∂N

= N 1/2
0

[
S1(N0, n) + log{1 − p(θ0)}

]
= N 1/2

0
(n/N0) − p(θ0)

1 − p(θ0)
+ Op

(
N−1/2
0

)
.

and

u2 = ∂H(0)

∂α2
= N−1/2

0
∂�(N0, θ0)

∂θ

= N−1/2
0

[
n − N0 p(θ0)

1 − p(θ0)

d log{p(θ0)}
dθ

+
n∑

i=1

d log{k(xi , θ0)}
dθ

]
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= N 1/2
0

(n/N0) − p(θ0)

1 − p(θ0)
p1(θ0) + {p(θ0)}1/2n−1/2

n∑
i=1

d log{k(xi , θ0)}
dθ

+ Op

(
N−1/2
0

)
.

By the central limit theorem, it can be shown that u
d−→ N (0,Σ).

Write V = (Vi j )1≤i, j≤2. It can be seen that V11 is the leading term of

∂H(0)

∂α2
1

= N0
∂�(N0, θ0)

∂N 2 = N0S2(N0, n) = − p(θ0)

1 − p(θ0)
+ Op

(
N−1/2
0

)
,

where we have used an approximate of S2(N0, n). This implies that

V11 = − p(θ0)

1 − p(θ0)
.

With tedious algebra, we similarly have

V21 = − p(θ0)

1 − p(θ0)
p1(θ0), V22 = − p(θ0)

1 − p(θ0)
p1(θ0){p1(θ0)}� − p(θ0)I (θ0).

Since u
d−→ N (0,Σ) and V = −Σ , Theorem 1 is proved by applying Lemma 2. ��
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