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Abstract

We provide a general and rigorous proof for the strong consistency of maxi-

mum likelihood estimators of the cumulative distribution function of the mix-

ing distribution and structural parameter under finite mixtures of location-scale

distributions with a structural parameter. The consistency results do not re-

quire the parameter space of location and scale to be compact. We illustrate

the results by applying them to finite mixtures of location-scale distributions

with the component density function being one of the commonly used density

functions: normal, logistic, extreme-value, or t. An extension of the strong con-

sistency results to finite mixtures of multivariate elliptical distributions is also

discussed.
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Maximum likelihood estimator, Structural parameter.

1. Introduction

Suppose we have an independent and identically distributed (i.i.d.) sample

X1, . . . , Xn from the following finite mixture model:

g(x; Ψ, σ) =
m
∑

j=1

αjf(x;µj , σ) =

∫

R

f(x;µ, σ)dΨ(µ). (1)
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Here f(x;µ, σ), the component density function, is assumed to come from a

location-scale distribution family, namely, f(x;µ, σ) = σ−1f ((x − µ)/σ; 0, 1)

with µ ∈ R and σ ∈ R
+ being the location and scale parameters, respectively.

The positive integer m is called the order of the mixture model, (α1, . . . , αm)5

with αj ≥ 0 and
∑m

j=1 αj = 1 are called the mixing proportions, and Ψ(µ) =
∑m

j=1 αjI(µj ≤ µ) is called the cumulative distribution function of the mixing

distribution. The parameter σ, appearing in all m component density func-

tions, is called a structural parameter, and Model (1) is called a finite mixture

of location-scale distributions with a structural parameter. Note that Ψ(·) in-10

cludes unknown µj and αj parameters. Hence, (Ψ, σ) covers all the unknown

parameters in (1). In this paper, we investigate the strong consistency of the

maximum likelihood estimator (MLE) of (Ψ, σ) under Model (1).

Finite mixtures of location-scale distributions with a structural parameter

have many applications. They play an important role in medical studies and ge-15

netics. For example, Roeder (1994) applied the finite normal mixture model with

a structural parameter to analyze sodium–lithium countertransport activity in

red blood cells. Finite mixtures of logistic distributions and of extreme value

distributions with a structural parameter are widely used to analyze failure-time

data. For instance, a finite mixture of logistic distributions with a structural20

parameter was used by Naya et al. (2006) to study the thermogravimetric anal-

ysis trace. A finite mixture of extreme value distributions with a structural

parameter was found to provide an adequate fit to the logarithm of the number

of cycles to failure for a group of 60 electrical appliances (Lawless, 2003; Ex-

ample 4.4.2). More applications can be found in McLachlan & Peel (2000) and25

Lawless (2003).

The maximum likelihood method has been widely used to estimate the un-

known parameters in finite mixture models (McLachlan & Peel, 2000; Chen,

2017). The consistency of the MLE under finite mixture models has been

studied by Kiefer & Wolfowitz (1956), Redner (1981), and Chen (2017). As30

pointed out by Chen (2017), the results in Kiefer & Wolfowitz (1956) require

that g(x; Ψ, σ) can be continuously extended to a compact space of (Ψ, σ). This
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turns out to be impossible because f(x;µ, σ) is not well defined at σ = 0. To

make the results in Kiefer & Wolfowitz (1956) applicable to our current setup,

we must constrain the parameter σ to be in a compact subset of R+. The con-35

sistency results in Redner (1981) require even more restrictive conditions: the

parameter space for (µ, σ) must be a compact subset of R×R
+; see Chen (2017)

for more discussion. It is worth mentioning that Bryant (1991) established the

strong consistency of the estimators obtained by the linear-optimization-based

method. His result can be viewed as a generalization of the classical consistency40

result for MLE. However, it requires that the parameter space be closed and that

m be equal to the true order of the mixture model. By utilizing the properties

of the normal distribution, Chen (2017) proved the strong consistency of the

MLE under finite normal mixture models with a structural parameter without

imposing the compactness assumption on the parameter space. To the best of45

our knowledge, general consistency results for the MLE of (Ψ, σ) under Model

(1) are not available in the literature except for the normal mixture model.

Because of the importance of finite mixtures of location-scale distributions

with a structural parameter, it is necessary to study the consistency of the MLE

of the underlying parameters, (Ψ, σ), under Model (1). The goal of this paper50

is to provide a general and rigorous proof of this consistency. In Section 2,

we present the main consistency results. We emphasize that we do not require

the parameter space of (µ, σ) to be compact. The detailed proofs are given

in Section 3. Section 4 illustrates the consistency results by applying them to

Model (1) with f(x;µ, σ) being one of the commonly used component density55

functions: normal, logistic, extreme-value, or t. An extension of the consistency

results to finite mixtures of multivariate elliptical distributions is discussed in

Section 5.
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2. Main results

With the i.i.d. sample X1, . . . , Xn from (1), the log-likelihood function of

(Ψ, σ) is given by

ℓn(Ψ, σ) =

n
∑

i=1

log{g(Xi; Ψ, σ)}.

The MLE of (Ψ, σ) is defined as

(Ψ̂, σ̂) = arg max
Ψ∈Ψm, σ>0

ℓn(Ψ, σ),

where

Ψm =







m
∑

j=1

αjI(µj ≤ µ) : αj ≥ 0,

m
∑

j=1

αj = 1, µj ∈ R







.

In this section, we establish the consistency property of (Ψ̂, σ̂) without im-

posing compactness on the parameter space of (µ, σ). To discuss the consistency

of Ψ̂, we define

D (Ψ1,Ψ2) =

∫

R

|Ψ1(µ)−Ψ2(µ)| exp(−|µ|)dµ. (2)

We show that D (Ψ1,Ψ2) is a distance on Ψm in the Appendix. Suppose Ψ0 ∈60

Ψm is the true cumulative distribution function of the mixing distribution. We

say that Ψ̂ is strongly consistent if D(Ψ̂,Ψ0) → 0 almost surely as n → ∞.

The strong consistency of (Ψ̂, σ̂) depends on the following regularity condi-

tions.

C1. The finite mixture model in (1) is identifiable. That is, if (Ψ1, σ1) and

(Ψ2, σ2) with Ψ1 ∈ Ψm, Ψ2 ∈ Ψm, σ1 > 0, and σ2 > 0 satisfy
∫

R

f(x;µ, σ1)dΨ1(µ) =

∫

R

f(x;µ, σ2)dΨ2(µ)

for all x, then Ψ1 = Ψ2 and σ1 = σ2.65

C2.
∫

R
| log{g(x; Ψ0, σ0)}| g(x; Ψ0, σ0)dx < ∞, where (Ψ0, σ0) is the true value

of (Ψ, σ).

C3. There exist positive constants v0, v1, and β with β > 1 such that for all x

f(x; 0, 1) ≤ min
{

v0, v1|x|−β
}

.
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C4. The function f(x; 0, 1) is continuous with respect to x.

Theorem 1. Assume Conditions C1–C4 and that the true density is g(x; Ψ0, σ0).

If an estimator (Ψ̄, σ̄) of (Ψ, σ) satisfies70

ℓn(Ψ̄, σ̄)− ℓn(Ψ0, σ0) ≥ c > −∞ (3)

for some constant c, then Ψ̄ → Ψ0 with respect to the metric D(·, ·) in (2) and

σ̄ → σ0 almost surely as n → ∞.

We comment that Conditions C1 and C2 are the standard regularity condi-

tions for the consistency of the MLE. Condition C2 implies Wald’s integrability

condition (Wald, 1949). Conditions C3 and C4 ensure that Lemma 1 in Section75

3 is correct and the mixture density g(x; Ψ, σ) can be continuously extended

to a compact space for (Ψ, σ). Conditions C2–C4 together guarantee that σ̄ is

away from 0 and bounded above almost surely as n → ∞. Then the MLE con-

sistency results in Kiefer & Wolfowitz (1956) can be applied; more discussion is

given in Section 3. In Section 4, we show that Model (1) with f(x;µ, σ) being80

one of the four commonly used component density functions (normal, logistic,

extreme-value, or t) satisfies these conditions.

It can be seen that the MLE (Ψ̂, σ̂) satisfies (3) with c = 0. Therefore, by

Theorem 1, both Ψ̂ and σ̂ are strongly consistent under Conditions C1–C4.

Corollary 1. Assume Conditions C1–C4 and that the true density is g(x; Ψ0, σ0).85

Then Ψ̂ → Ψ0 with respect to the metric D(·, ·) in (2) and σ̂ → σ0 almost surely

as n → ∞.

3. Proofs

3.1. Some useful lemmas

As discussed in Chen (2017), except for Conditions C1 and C2, a key regu-90

larity condition for the MLE consistency results in Kiefer & Wolfowitz (1956) is

that the definition of g(x; Ψ, σ) can be continuously extended to a compact space

of (Ψ, σ). This extension could fail under our current setup because f(x;µ, σ) is
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not well defined at σ = 0. To make the consistency results in Kiefer & Wolfowitz

(1956) applicable, a key step is to show that there exist positive constants ǫ and95

∆ such that as n → ∞, the event sequence {ǫ ≤ σ̄ ≤ ∆} occurs almost surely.

We first present a technical lemma that gives a uniform upper bound for the

number of observations in the σ1−a neighborhood of µ. Here a = (1 + β)/(2β),

where β is given in Condition C3. With the condition that β > 1 in Condition

C3, we have 0 < a < 1.100

For convenience of presentation, we let b = 2(β + 1)/(β − 1) and ǫ0 =

(3mbv0/σ0)
−1/(1−a)

. Further, let

Gn(x) = n−1
n
∑

i=1

I(Xi ≤ x)

be the empirical cumulative distribution function, and let G(x) be the cumula-

tive distribution function of the Xi’s. Define

E = lim inf
n→∞

{

sup
µ∈R

n
∑

i=1

I(|Xi − µ| < ǫ1−a
0 ) ≤ n/(mb)

}

.

Lemma 1. Suppose {X1, . . . , Xn} is an i.i.d. sample from Model (1). Further,

assume Conditions C3 and C4 are satisfied. Then we have

P (E) = 1,

and therefore almost surely there exists an n0 such that when n ≥ n0, we have

sup
µ∈R

n
∑

i=1

I(|Xi − µ| < ǫ1−a
0 ) ≤ n/(mb).

Proof. Since

sup
µ∈R

n
∑

i=1

I(|Xi − µ| < ǫ1−a
0 ) ≤ sup

µ∈R

[

n{Gn(µ+ ǫ1−a
0 )−Gn(µ− ǫ1−a

0 )}
]

,

it suffices to show that

P

(

lim inf
n→∞

{

sup
µ∈R

{Gn(µ+ ǫ1−a
0 )−Gn(µ− ǫ1−a

0 )} ≤ 1/(mb)

})

= 1. (4)
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Note that

sup
µ∈R

{

Gn(µ+ ǫ1−a
0 )−Gn(µ− ǫ1−a

0 )
}

≤ sup
µ∈R

|Gn(µ+ ǫ1−a
0 )−G(µ+ ǫ1−a

0 )|

+ sup
µ∈R

|G(µ+ ǫ1−a
0 )−G(µ− ǫ1−a

0 )|

+ sup
µ∈R

|Gn(µ− ǫ1−a
0 )−G(µ− ǫ1−a

0 )|.

Under Conditions C3 and C4,

sup
µ∈R

|G(µ + ǫ1−a
0 )−G(µ− ǫ1−a

0 )| ≤ 2v0ǫ
1−a
0 /σ0.

Let

A1 =

{

lim
n→∞

sup
µ∈R

|Gn(µ+ ǫ1−a
0 )−G(µ+ ǫ1−a

0 )| = 0

}

and

A2 =

{

lim
n→∞

sup
µ∈R

|Gn(µ− ǫ1−a
0 )−G(µ− ǫ1−a

0 )| = 0

}

.

By the Glivenko–Cantelli theorem,

P (A1) = P (A2) = 1.

Hence, P (A1 ∩ A2) = 1. Then almost surely there exists an n0 such that when

n ≥ n0,

sup
µ∈R

{

Gn(µ+ ǫ1−a
0 )−Gn(µ− ǫ1−a

0 )
}

≤ 3v0ǫ
1−a
0 /σ0 = 1/(mb),

which implies (4). This completes the proof.

The next lemma helps us to show that asymptotically we can restrict σ to105

be in a bounded interval away from 0 and ∞. To formally present the result, we

define some notation. Let K0 =
∫

R
log{g(x; Ψ0, σ0)}g(x; Ψ0, σ0)dx. Condition

C2 ensures that |K0| < ∞. Further, define ∆ = v0/ exp(K0 − 1). We choose a

positive number ǫ that satisfies the following conditions:

D1. ǫ ≤ ǫ0 = (3mbv0/σ0)
−1/(1−a)

;110

D2. ǫ ≤ (v1/v0)
−2/(β+1);

D3. b−1 log v0 + (1− b−1) log v1 +
1
4 (β − 1) log ǫ ≤ K0 − 1.
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Clearly, an ǫ satisfying the above conditions exists, since β > 1 as assumed in

Condition C3.

Lemma 2. Suppose {X1, . . . , Xn} is an i.i.d. sample from Model (1). Further,

assume Conditions C1–C4 are satisfied. Then we have

P

(

lim
n→∞

{

sup
Ψ∈Ψm,σ∈[∆,∞)

ℓn(Ψ, σ)− ℓn(Ψ0, σ0)

}

= −∞
)

= 1 (5)

and

P

(

lim
n→∞

{

sup
Ψ∈Ψm,σ∈(0,ǫ]

ℓn(Ψ, σ)− ℓn(Ψ0, σ0)

}

= −∞
)

= 1. (6)

Proof. We start with (5). Recall that f(x;µ, σ) = σ−1f((x − µ)/σ; 0, 1). By115

Condition C3, we have

ℓn(Ψ, σ) =
n
∑

i=1

log







m
∑

j=1

αj

σ
f

(

Xi − µj

σ
; 0, 1

)







≤
n
∑

i=1

log







m
∑

j=1

αj

σ
v0







≤ n (log v0 − log σ) , (7)

where v0 is given in Condition C3.

Hence, with ∆ = v0/ exp(K0 − 1), we have

sup
Ψ∈Ψm, σ≥∆

ℓn(Ψ, σ)− ℓn(Ψ0, σ0) ≤ n(K0 − 1)− ℓn(Ψ0, σ0).

By the strong law of large numbers and the definition of K0, we have (5).

We next consider (6). Let A = {i : min1≤j≤m |Xi − µj | ≤ σ1−a} and n(A)

be the number of indices in set A. For an index set S, define ℓn(Ψ, σ;S) =120

∑

i∈S log g(Xi; Ψ, σ). Similarly to (7), it can be shown that

ℓn(Ψ, σ;A) ≤ n(A)(log v0 − log σ). (8)

By Condition C3, we have

ℓn(Ψ, σ;Ac) ≤
∑

i∈Ac

log







m
∑

j=1

αj

σ
v1

( |Xi − µj |
σ

)−β






=
∑

i∈Ac



log v1 + (β − 1) log σ + log







m
∑

j=1

αj |Xi − µj |−β









 .
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Since min1≤j≤m |Xi − µj | ≥ σ1−a for all i ∈ Ac, it follows that

ℓn(Ψ, σ;Ac) ≤
∑

i∈Ac

{log v1 + (βa− 1) logσ}

= n(Ac)

{

log v1 +
1

2
(β − 1) log σ

}

, (9)

where the equality holds because βa = (β + 1)/2 > 1.

Combining (8) and (9) gives

ℓn(Ψ, σ) = ℓn(Ψ, σ;A) + ℓn(Ψ, σ;Ac)

≤ n(log v0 − log σ) + n(Ac)

{

log v1 − log v0 +
1

2
(β + 1) log σ

}

.

= n(log v0 − log σ) + n(1− b−1)

{

log v1 − log v0 +
1

2
(β + 1) log σ

}

+ {n(Ac)− n(1− b−1)}
{

log v1 − log v0 +
1

2
(β + 1) log σ

}

= n

{

b−1 log v0 + (1− b−1) log v1 +
1

4
(β − 1) log σ

}

+ {n/b− n(A)}
{

log v1 − log v0 +
1

2
(β + 1) log σ

}

,

where in the last step we have used the fact that b = 2(β + 1)/(β − 1). Then,

for σ ∈ (0, ǫ], since β > 1 and ǫ satisfies D3, we have

ℓn(Ψ, σ)− ℓn(Ψ0, σ0)

≤ n

{

b−1 log v0 + (1− b−1) log v1 +
1

4
(β − 1) log ǫ

}

− ℓn(Ψ0, σ0)

+ {n/b− n(A)}
{

log v1 − log v0 +
1

2
(β + 1) log σ

}

≤ n(K0 − 1)− ℓn(Ψ0, σ0) (10)

+ {n/b− n(A)}
{

log v1 − log v0 +
1

2
(β + 1) log σ

}

. (11)

By the strong law of large numbers and the definition of K0, we have

P
(

lim
n→∞

{n(K0 − 1)− ℓn(Ψ0, σ0)} = −∞
)

= 1. (12)

Again for σ ∈ (0, ǫ], since ǫ satisfies D2, it follows that

log v1 − log v0 +
1

2
(β + 1) log σ ≤ log v1 − log v0 +

1

2
(β + 1) log ǫ ≤ 0. (13)
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Since for each i ∈ {1, 2, . . . , n},

I( min
1≤j≤m

|Xi − µj | ≤ σ1−a) ≤
m
∑

j=1

I(|Xi − µj | ≤ σ1−a),

we have

n(A) =

n
∑

i=1

I( min
1≤j≤m

|Xi − µj | ≤ σ1−a)

≤
n
∑

i=1

m
∑

j=1

I(|Xi − µj | ≤ σ1−a)

≤ m · sup
µ∈R

n
∑

i=1

I(|Xi − µ| ≤ σ1−a).

Because σ ∈ (0, ǫ] and ǫ satisfies D1, it follows from Lemma 1 that

n(A) ≤ m · sup
µ∈R

n
∑

i=1

I(|Xi − µ| ≤ ǫ1−a
0 ) ≤ n/b.

This together with (13) implies that for large enough n,

{n/b− n(A)}
{

log v1 − log v0 +
1

2
(β + 1) log σ

}

≤ 0,

almost surely. Combining (10)–(13) leads to (6). This completes the proof.125

3.2. Proof of Theorem 1

The results in (5) and (6) imply that

P
(

lim inf
n→∞

{ǫ ≤ σ̄ ≤ ∆}
)

= 1.

Hence, we can confine σ̄ to [ǫ,∆] asymptotically, and the results of Kiefer & Wolfowitz

(1956) apply. For completeness, we outline the key steps of the proof of Theorem

1 by following Kiefer & Wolfowitz (1956).

In the first step, we compactify the parameter space Ψm. Let

Ψ̄m = {γ + ρΨ : Ψ ∈ Ψm, γ ≥ 0, ρ ≥ 0, 0 ≤ γ + ρ ≤ 1}.

We extend the definition of D(·, ·) to Ψ̄m without modifications. Then Ψ̄m is a

compact metric space with respect to D(·, ·). See the Appendix for a proof of

its compactness. Let θ = (Ψ, σ) and define

D̄(θ1, θ2) = D(Ψ1,Ψ2) + |σ1 − σ2|.
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Since D(·, ·) is a distance and

D(Ψ1,Ψ2) ≤ 2

∫

R

exp(−|µ|)dµ = 4,

we can verify that D̄(·, ·) is a bounded distance on Ψ̄m×[ǫ,∆]. Hence, Ψ̄m×[ǫ,∆]130

is compact with respect to D̄(·, ·).
In the second step, we argue that g(x; Ψ, σ) is continuous for all x on Ψ̄m ×

[ǫ,∆] under the distance D̄(·, ·). That is, for any θ = (Ψ, σ) ∈ Ψ̄m × [ǫ,∆], if

D̄(θ̃, θ) → 0, then we have

g(x; Ψ̃, σ̃) → g(x; Ψ, σ).

For the given (Ψ, σ), we define

H(µ, σ∗) = Ψ(µ)I(σ ≤ σ∗)

and define H̃ to be H with (Ψ̃, σ̃) in place of (Ψ, σ). Then the mixture density

can be written as

g(x; Ψ, σ) =

∫

R×R+

f(x;µ, σ∗)dH(µ, σ∗).

We further define

D̃(H1, H2) =

∫

R×R+

|H1(µ, σ
∗)−H2(µ, σ

∗)| exp{−|µ| − |σ∗|}dµdσ∗.

Lemma 2.4 of Chen (2017) implies that if f(x;µ, σ) is continuous for (µ, σ),

lim|µ|+|σ|→∞ f(x;µ, σ) = 0, and D̃(H̃,H) → 0, then we have g(x; Ψ̃, σ̃) →
g(x; Ψ, σ).

Condition C4 ensures that f(x;µ, σ) is continuous for (µ, σ); Condition C3135

ensures that lim|µ|+|σ|→∞ f(x;µ, σ) = 0. Hence, to argue that g(x; Ψ, σ) is

continuous for all x, we need to show only that if D̄(θ̃, θ) → 0, then we must
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have D̃(H̃,H) → 0. Note that

D̃(H̃,H) =

∫

R×R+

|Ψ̃(µ)I(σ̃ ≤ σ∗)−Ψ(µ)I(σ ≤ σ∗)| exp{−|µ| − |σ∗|}dµdσ∗

≤
∫

R×R+

|Ψ̃(µ)−Ψ(µ)| exp{−|µ| − |σ∗|}dµdσ∗

+

∫

R×R+

|I(σ̃ ≤ σ∗)− I(σ ≤ σ∗)| exp{−|µ| − |σ∗|}dµdσ∗

≤
∫

R

|Ψ̃(µ)−Ψ(µ)| exp{−|µ|}dµ

+2

∫

R+

|I(σ̃ ≤ σ∗)− I(σ ≤ σ∗)| exp{−|σ∗|}dσ∗

≤ D(Ψ̃,Ψ) + 2|σ̃ − σ| exp{−min(σ̃, σ)}. (14)

Further, when D̄(θ̃, θ) → 0, we must have D(Ψ̃,Ψ) → 0 and σ̃ → σ, which,

together with (14), implies that D̃(H̃,H) → 0. Hence, g(x; Ψ, σ) is continuous140

for all x on Ψ̄m × [ǫ,∆] under the distance D̄(·, ·).
In the third step, we show that for any θ = (Ψ, σ) ∈ Ψ̄m × [ǫ,∆] such that

(Ψ, σ) 6= (Ψ0, σ0), we can find a δ such that

E
{

log g
(

X ;Bδ(θ)
)}

− E
{

log g
(

X ; Ψ0, σ0

)}

< 0, (15)

where

Bδ(θ) =
{

θ∗ = (Ψ∗, σ∗) : D̄(θ∗, θ) < δ, θ∗ ∈ Ψ̄m × [ǫ,∆]
}

and

g
(

x;Bδ(θ)
)

= sup
θ∗∈Bδ(θ)

g(x; Ψ∗, σ∗).

By Kiefer & Wolfowitz (1956) and Chen (2017) and because of Conditions C1,

C2, and C4, we can obtain (15) by arguing that

lim
δ→0+

E





{

log
g
(

X ;Bδ(θ)
)

g
(

X ; Ψ0, σ0

)

}+


 < ∞. (16)

Here x+ = max(x, 0). By Condition C3,

log
g
(

X ;Bδ(θ)
)

g
(

X ; Ψ0, σ0

) ≤ log(v0/σ0)− log g
(

X ; Ψ0, σ0

)

.
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Hence,

{

log
g
(

X ;Bδ(θ)
)

g
(

X ; Ψ0, σ0

)

}+

≤ | log(v0/σ0)|+ | log g
(

X ; Ψ0, σ0

)

|,

which, together with Condition C2, implies (16). Hence, (15) is proved.

In the last step, we combine the above results to complete the proof of

Theorem 1. For any δ > 0, let

B(0) = Bδ(θ0).

The result in (15) leads to a finite open cover of the compact set {Ψ̄m ×
[ǫ,∆]}\B(0). Then by the finite covering theorem, we can find θ1, . . . , θK from

Ψ̄m × [ǫ,∆] and positive δ1, . . . , δK for some positive integer K such that

{Ψ̄m × [ǫ,∆]}\B(0) ⊂
K
⋃

k=1

Bδk(θk)

and

E
{

log g
(

X ;Bδk(θk)
)}

− E
{

log g
(

X ; Ψ0, σ0

)}

< 0. (17)

Define

B(k) = Bδk(θk), k = 1, . . . ,K, B(K+1) = {Ψ̄m × (0, ǫ]}
⋃

{Ψ̄m × [∆,∞)}.

Then the whole parameter space of θ = (Ψ, σ) can be written as

Ψ̄m × (0,∞) =
K+1
⋃

k=0

B(k).

Note that it can be easily verified that

sup
Ψ∈Ψm,σ∈(0,ǫ]

ℓn(Ψ, σ) = sup
Ψ∈Ψ̄m,σ∈(0,ǫ]

ℓn(Ψ, σ)

and

sup
Ψ∈Ψm,σ∈[∆,∞)

ℓn(Ψ, σ) = sup
Ψ∈Ψ̄m,σ∈[∆,∞)

ℓn(Ψ, σ).

Hence, by the strong law of large numbers, (5)–(6), and (17), we have for k =

1, . . . ,K + 1

P

(

lim
n→∞

{

sup
θ∈B(k)

ℓn(Ψ, σ)− ℓn(Ψ0, σ0)

}

= −∞
)

= 1.
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Therefore, for any estimator (Ψ̄, σ̄) of (Ψ, σ) such that

ℓn(Ψ̄, σ̄)− ℓn(Ψ0, σ0) ≥ c > −∞

for some constant c, we must have for any δ > 0

P
(

lim inf
n→∞

{θ̄ ∈ B(0)}
)

= P
(

lim inf
n→∞

{D̄(θ̄, θ0) < δ}
)

= 1.

This implies that D̄(θ̄, θ0) → 0 almost surely. Equivalently, D(Ψ̄,Ψ0) → 0 and

σ̄ → σ0 almost surely. This completes the proof of Theorem 1.145

4. Examples

In this section, we illustrate the consistency results of Section 2 by showing

that the four commonly used component density functions satisfy Conditions

C1–C4. Consequently, by Corollary 1, the MLE of (Ψ, σ) is strongly consistent

if f(x;µ, σ) is one of these four functions. As preparation, we present a sufficient150

condition for verifying Condition C2.

Proposition 1. If
∫

R
{log f(x;µ, 1)}f(x; 0, 1)dx > −∞ for any given µ and

Condition C3 is satisfied, then Condition C2 is satisfied.

Proof. Let

Ψ0(µ) =

m0
∑

j=1

α0jI(µ0j ≤ µ).

Without loss of generality, we assume σ0 = 1. Otherwise, we can take the

transformation t = x/σ0.155
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Note that

∫

R

| log{g(x; Ψ0, σ0)}| g(x; Ψ0, σ0)dx

=

∫

R

∣

∣

∣

∣

∣

∣

log







m0
∑

j=1

α0jf(x;µ0j , 1)







∣

∣

∣

∣

∣

∣

m0
∑

j=1

α0jf(x;µ0j , 1)dx

=

∫

R

∣

∣

∣

∣

∣

∣

log







m0
∑

j=1

α0j
f(x;µ0j , 1)

v0







+ log v0

∣

∣

∣

∣

∣

∣

m0
∑

j=1

α0jf(x;µ0j , 1)dx

≤ | log v0|+
∫

R

∣

∣

∣

∣

∣

∣

log







m0
∑

j=1

α0j
f(x;µ0j , 1)

v0







∣

∣

∣

∣

∣

∣

m0
∑

j=1

α0jf(x;µ0j , 1)dx

= | log v0| −
∫

R

log







m0
∑

j=1

α0j
f(x;µ0j , 1)

v0







m0
∑

j=1

α0jf(x;µ0j , 1)dx,

where in the last step we have used the fact that f(x; 0, 1) ≤ v0 in Condition

C3. Hence, to verify Condition C2, it suffices to show that

∫

R

log







m0
∑

j=1

α0jf(x;µ0j , 1)







m0
∑

j=1

α0jf(x;µ0j , 1)dx > −∞. (18)

By Jensen’s inequality,

∫

R

log







m0
∑

j=1

α0jf(x;µ0j , 1)







m0
∑

j=1

α0jf(x;µ0j , 1)dx

≥
∫

R







m0
∑

j=1

α0j log f(x;µ0j , 1)







m0
∑

j=1

α0jf(x;µ0j , 1)dx

=

m0
∑

j=1

m0
∑

h=1

α0jα0h

∫

R

{log f(x;µ0j , 1)}f(x;µ0h, 1)dx

=

m0
∑

j=1

m0
∑

h=1

α0jα0h

∫

R

{log f(t;µ0j − µ0h, 1)}f(t; 0, 1)dt.

By the condition
∫

R
{log f(x;µ, 1)}f(x; 0, 1)dx > −∞ for any given µ, we have

(18). This completes the proof.

Note that it is easy to verify that the four commonly used component density160

functions all satisfy Condition C4. We now verify that they all satisfy Conditions

C1–C3.
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Example 1 (Normal distribution). Let f(x; 0, 1) = (2π)−1/2 exp(−x2/2), the

probability density function of the standard normal distribution.

(a) The identifiability of Model (1) with the normal component density func-165

tion follows from Teicher (1963) and Yakowitz & Spragins (1968). Hence,

Condition C1 is satisfied.

(b) Condition C3 is satisfied if we choose v0 = v1 = (2π)
−1/2

and β = 2.

(c) For any given µ,

∫

R

{log f(x;µ, 1)}f(x; 0, 1)dx = −0.5 log(2π)− 0.5(µ2 + 1) > −∞.

Thus, Condition C2 is also satisfied by Proposition 1.

Example 2 (Logistic distribution). Let f(x; 0, 1) = ex/(1+ex)2, the probability170

density function of the standard logistic distribution.

(a) Following Theorem 2.1 of Holzmann et al. (2004), Model (1) with a lo-

gistic component density function is identifiable. Hence, Condition C1 is

satisfied.

(b) It can be verified that Condition C3 is satisfied with v0 = v1 = 1 and175

β = 2.

(c) Since log(1 + ex) ≤ log 2 + |x| ≤ log 2 + 0.5(1 + x2) for any x, it follows

that

∫

R

{log f(x;µ, 1)}f(x; 0, 1)dx = −µ− 2

∫

R

{

log
(

1 + ex−µ
)}

f(x; 0, 1)dx

≥ −µ− 2 log 2−
∫

R

{1 + (x − µ)2}f(x; 0, 1)dx

= −µ− 2 log 2− (1 + µ2 + π2/3) > −∞.

Thus, Condition C2 is also satisfied by Proposition 1.
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Example 3 (Extreme-value distribution). Let f(x; 0, 1) = exp{−x−exp(−x)},180

the probability density function of the standard extreme value type I distribution

or the Gumbel distribution.

(a) The identifiability of Model (1) with the component density function being

the probability density function of the Gumbel distribution follows from

Ahmad et al. (2010). Hence, Condition C1 is satisfied.185

(b) It can be verified that Condition C3 is satisfied with v0 = v1 = 1 and

β = 2.

(c) Note that

∫

R

{log f(x;µ, 1)}f(x; 0, 1)dx =

∫

R

{−(x− µ)− e−(x−µ)} exp(−x− e−x)dx

= µ− γ − eµ > −∞.

Here γ is the Euler–Mascheroni constant. Hence, Condition C2 is satisfied

by Proposition 1.190

Example 4 (Student’s t distribution). Let f(x; 0, 1) = (1 + x2/ν)−(ν+1)/2Cν ,

the probability density function of Student’s t distribution with ν degrees of free-

dom. Here ν is a given positive integer, Cν = Γ{(ν + 1)/2}{√νπΓ(ν/2)}−1,

and Γ(·) is the Gamma function.

(a) The identifiability of Model (1) with the component density function195

being the probability density function of the t-distribution follows from

Holzmann et al. (2006). Hence, Condition C1 is satisfied.

(b) It can be verified that Condition C3 is satisfied with v0 = 1, v1 = ν, and

β = 2.

(c) Note that200

∫

R

{log f(x;µ, 1)}f(x; 0, 1)dx

= logCν − ν + 1

2
Cν

∫

R

log

{

1 +
(x− µ)2

ν

}

(1 + x2/ν)−(ν+1)/2dx.
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By the comparison test for improper integrals,

0 ≤
∫

R

log

{

1 +
(x− µ)2

ν

}

(1 + x2/ν)−(ν+1)/2dx < ∞

for any given µ. Hence,
∫

R
log f(x;µ, 1)f(x; 0, 1)dx > −∞ and Condition

C2 is satisfied by Proposition 1.

5. Extension to multivariate case

In this section, we extend the results in Corollary 1 to finite mixtures of mul-

tivariate elliptical distributions, a special class of finite mixtures of multivariate205

location-scale distributions. The identifiability of this special class of models

has been well studied in Holzmann et al. (2006).

Suppose we have i.i.d. p-dimensional random vectors X1, . . . ,Xn from the

following finite mixture model:

g(x; Ψ,Σ) =

m
∑

j=1

αjf(x;µj,Σ) =

∫

Rp

f(x;µ,Σ)dΨ(µ). (19)

Here f(x;µ,Σ), the component density function, is assumed to take the form

f(x;µ,Σ) = |Σ|−1/2f0
(

(x− µ)τΣ−1(x− µ)
)

,

where x, µ ∈ R
p, Σ is a p × p positive definite matrix, and f0(x) is a den-

sity generator, i.e., a non-negative function on [0,∞) such that f0(x
τx) is a

probability density function. The MLE (Ψ̂, Σ̂) of (Ψ,Σ) is defined as for the

univariate case. Next we extend the distance D(·, ·) from the univariate to the

multivariate case:

D∗(Ψ1,Ψ2) =

∫

R

|Ψ1(µ)−Ψ2(µ)| exp(−|µ|)dµ. (20)

Here for µ = (µ1, . . . , µp)
τ , |µ| is interpreted as

∑p
l=1 |µl|. Similarly to the

proof for D(·, ·) in the Appendix, we can verify that D∗(·, ·) is a distance.

The consistency of (Ψ̂, Σ̂) relies on the following regularity conditions:210

C1*. The finite mixture model in (19) is identifiable.
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C2*.
∫

Rp | log{g(x; Ψ0,Σ0)}|g(x; Ψ0,Σ0)dx < ∞, where (Ψ0,Σ0) is the true

value of (Ψ,Σ).

C3*. There exist positive constants v0, v1, and β with β > p such that for all

x ≥ 0

f0(x) ≤ min
{

v0, v1x
−β/2

}

.

C4*. For x ≥ 0, f0(x) is continuous in x.

Under the regularity conditions C1*–C4*, we have the strong consistency of215

(Ψ̂, Σ̂) in the following theorem.

Theorem 2. Assume Conditions C1*–C4* and that the true density is g(x; Ψ0,Σ0).

Then Ψ̂ → Ψ0 with respect to the metric D∗(·, ·) in (20) and Σ̂ → Σ0 almost

surely as n → ∞.

One of the key steps of the proof of Theorem 2 is to establish a similar result220

to Lemma 1 for the multivariate case. This result can be obtained by combining

the proof of Corollary 3 in Alexandrovich (2014) with that of Lemma 1. See the

Appendix for a proof of Theorem 2.

As an illustration, we consider finite mixtures of multivariate normal distri-

butions with a common and unknown variance-covariance matrix Σ.225

Example 5. (Multivariate normal distribution). Let f0(x) = (2π)−1/2 exp(−x/2),

the density generator for the multivariate normal density function. Clearly,

f0(x) satisfies Condition C4*.

(a) The identifiability of finite mixtures of multivariate normal distributions

is covered by Holzmann et al. (2006). Hence, Condition C1* is satisfied.230

(b) It can be verified that Condition C3* is satisfied with v0 = (2π)−p/2,

v1 = (2π)−p/2(p+ 1)(p+1)/2,

and β = p+ 1.
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(c) Following the proof of Proposition 1, to verify Condition C2*, it suffices

to show that

∫

Rp

{log f(x;µ,Σ0)}f(x;0,Σ0)dx > −∞

for all µ. Note that

∫

Rp

{log f(x;µ,Σ0)}f(x;0,Σ0)dx

= −0.5p log(2π)− 0.5 log |Σ0| − 2p− µτΣ0
−1µ

> −∞.

Hence, Condition C2* is satisfied.

Since finite mixtures of multivariate normal distributions with a common and

unknown variance-covariance matrix satisfy regularity conditions C1*–C4*, the235

MLE (Ψ̂, Σ̂) under this model is strongly consistent.

6. Summary and discussion

In this paper, we establish the strong consistency of the cumulative distribu-

tion function of the mixing distribution and the structural parameter in finite

mixtures of location-scale distributions with a structural parameter in both the240

univariate and multivariate cases. We further demonstrate that some commonly

used finite mixtures of location-scale distributions satisfy the regularity condi-

tions.

For the model setups in (1) and (19), Ψ is assumed to have finite support,

and the scale parameter σ or Σ is assumed to be the same in all the component245

density functions. Two considerations underlie these assumptions. First, if

Ψ is fully nonparametric, then the mixture model may not be identifiable. For

example, the normal mixture model is not identifiable if Ψ is fully nonparametric

(Chen, 2017). Assuming that Ψ has finite support ensures that finite mixtures

of some commonly used location-scale distributions are identifiable. Second, if250

the σ or Σ can vary in different component density functions, then the log-

likelihood is unbounded (Chen et al., 2008; Chen & Tan, 2009). Hence, the
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usual MLEs of the unknown parameters are not well defined. We may need

to consider other estimation methods such as the penalized MLE considered in

Chen et al. (2008), Chen & Tan (2009), and Alexandrovich (2014). We leave255

the consistency properties of such estimators to future research.

We next discuss the applicability of Corollary 1 and Theorem 2. The results

in Corollary 1 and Theorem 2 are applicable only to the MLE, i.e., the global

maximum point of the log-likelihood function. Commonly used algorithms such

as the EM-algorithm may lead to a local maximum point of the log-likelihood,260

which is not guaranteed by our result to be consistent. In practice, we sug-

gest trying multiple initial values to increase the chance of locating the global

maximum point.

A. Appendix

A.1. Proof that D (·, ·) is a distance265

To show that D (·, ·) is a distance., it suffices to show

(a) D (Ψ1,Ψ2) ≥ 0;

(b) D (Ψ1,Ψ3) ≤ D (Ψ1,Ψ2) +D (Ψ2,Ψ3) for any Ψ1,Ψ2,Ψ3 ∈ Ψm;

(c) D (Ψ1,Ψ2) = D (Ψ2,Ψ1);

(d) D (Ψ1,Ψ2) = 0 if and only if Ψ1(µ) = Ψ2(µ) for all µ ∈ R.270

Based on the definition of D(·, ·) in (2), it is easy to verify that (a)–(c) are

satisfied. Next we discuss (d). If Ψ1(µ) = Ψ2(µ) for all µ ∈ R, then obviously

D (Ψ1,Ψ2) =

∫

R

|Ψ1(µ)−Ψ2(µ)| exp(−|µ|)dµ = 0.

We now argue that if D (Ψ1,Ψ2) = 0, we must have Ψ1(µ) = Ψ2(µ) for all

µ ∈ R. We denote the distinct values of the supports of Ψ1(µ) and Ψ2(µ) as

{t1 < t2 < · · · < tm∗} and define tm∗+1 = +∞. We write Ψ1(µ) and Ψ2(µ) as

Ψ1(µ) =

m∗

∑

j=1

αj1I(tj ≤ µ) and Ψ2(µ) =

m∗

∑

j=1

αj2I(tj ≤ µ).
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If Ψ1(µ) 6= Ψ2(µ) for some µ, then we can find a j0 such that

αj1 = αj2 for j ≤ j0 − 1 and αj01 6= αj02.

This implies that

D (Ψ1,Ψ2) ≥
∫

µ∈[tj0 ,tj0+1)

|Ψ1(µ)−Ψ2(µ)| exp(−|µ|)dµ

≥ |αj01 − αj02|
∫ tj0+1

tj0

exp(−|µ|)dµ > 0.

Hence, if D (Ψ1,Ψ2) = 0, we must have Ψ1(µ) = Ψ2(µ) for all µ ∈ R. This

completes the proof.

A.2. Proof of the compactness of Ψ̄m

We prove that Ψ̄m is compact with respect to the distance D(·, ·) according275

to the following equivalent definition of compactness of a metric space. A metric

space is compact if and only if every sequence in this space has a convergent

subsequence whose limit is also in this space.

In the proof of the compactness of Ψ̄m, we need the following results from

real analysis.280

Result (i). If {cn, n = 1, 2, . . . } is a bounded real sequence, then {cn, n =

1, 2, . . . } has a convergent subsequence {cnk
, k = 1, 2, . . . }, and its limit

is finite.

Rresult (ii). If {cn, n = 1, 2, . . . } is a unbounded real sequence, then

{cn, n = 1, 2, . . .} has a subsequence {cnk
, k = 1, 2, . . .} that diverges to285

∞ or −∞.

Result (i) is just the classic Bolzano–Weierstrass theorem from real analysis.

Hence, we give only the proof for Result (ii). Suppose {cn, n = 1, 2, . . .} has no

upper bound. Then for any given positive integer k, there exists nk such that

cnk
> k. Then limk→∞ cnk

= ∞. Hence, Result (ii) holds.290

Next we return to the proof of the compactness of Ψ̄m. Let {ΨL, L =

1, 2, . . .} be a sequence in Ψ̄m, where

ΨL(µ) = γL + ρL

m
∑

j=1

αjLI(µjL ≤ µ)
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with γL ≥ 0, ρL ≥ 0, 0 ≤ γL + ρL ≤ 1, αjL ≥ 0,
∑m

j=1 αjL = 1, and −∞ <

µ1L ≤ µ2L ≤ . . . ≤ µmL < ∞.

Using Results (i)–(ii) and G. Cantor’s “diagonal method,” we can find a

subsequence {Lk, k = 1, 2, . . .} such that

γ0 = lim
k→∞

γLk
, ρ0 = lim

k→∞
ρLk

, αj0 = lim
k→∞

αjLk
, µj0 = lim

k→∞
µjLk

,

where γ0 ≥ 0, ρ0 ≥ 0, 0 ≤ γ0 + ρ0 ≤ 1, αj0 ≥ 0,
∑m

j=1 αj0 = 1, and −∞ ≤
µ10 ≤ µ20 ≤ . . . ≤ µm0 ≤ ∞. We define

Ψ0(µ) = γ0 + ρ0

m
∑

j=1

αj0I(µj0 ≤ µ).

Further, we define two index sets S1 and S2 as S1 = {j : µj0 = −∞} and

S2 = {j : µj0 = ∞}, respectively. Let S = S1 ∪ S2. Then Ψ0(µ) can be

rewritten as

Ψ0(µ) = γ′
0 + ρ′0

∑

j /∈S

α′
j0I(µj0 ≤ µ),

where γ′
0 = γ0 + ρ0

∑

j∈S1
αj0, ρ

′
0 = ρ0

∑

j /∈S αj0, and α′
j0 = αj0/

∑

l/∈S αl0 for

j /∈ S. This implies that Ψ0 ∈ Ψ̄m.

Let ΨLk
= γLk

+ ρLk

∑m
j=1 αjLk

I(µjLk
≤ µ). To finish the proof, we need

to argue that as k → ∞,

D(ΨLk
,Ψ0) → 0.

Note that

D(ΨLk
,Ψ0) =

∫

R

|ΨLk
(µ) −Ψ0(µ)| exp(−|µ|)dµ

=

∫

R

|γLk
− γ0 +

m
∑

j=1

{ρLk
αjLk

I(µjLk
≤ µ)− ρ0αj0I(µj0 ≤ µ)} | exp(−|µ|)dµ

≤
∫

R

|γLk
− γ0| exp(−|µ|)dµ (21)

+
m
∑

j=1

∫

R

|ρLk
αjLk

I(µjLk
≤ µ)− ρ0αj0I(µj0 ≤ µ)| exp(−|µ|)dµ.

(22)

Since γ0 = limk→∞ γLk
, we have that as k → ∞,

∫

R

|γLk
− γ0| exp(−|µ|)dµ = 2 |γLk

− γ0| → 0. (23)
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By the triangular inequality and the facts that 0 ≤ ρ0 ≤ 1 and 0 ≤ αj0 ≤ 1, we

have
∫

R

|ρLk
αjLk

I(µjLk
≤ µ)− ρ0αj0I(µj0 ≤ µ)| exp(−|µ|)dµ

≤
∫

R

|ρLk
αjLk

− ρ0αj0| exp(−|µ|)dµ (24)

+

∫

R

|I(µjLk
≤ µ)− I(µj0 ≤ µ)| exp(−|µ|)dµ (25)

Similarly to (23), as k → ∞ we have
∫

R

|ρLk
αjLk

− ρ0αj0| exp(−|µ|)dµ → 0. (26)

For (25), we have that if µj0 is finite,
∫

R

|I(µjLk
≤ µ)− I(µj0 ≤ µ)| exp(−|µ|)dµ ≤ |µjLk

− µj0| → 0 (27)

as k → ∞, and if µj0 = ∞ or −∞,
∫

R

|I(µjLk
≤ µ)− I(µj0 ≤ µ)| exp(−|µ|)dµ = exp(−|µjLk

|) → 0 (28)

as k → ∞.295

Combining (24)–(28) leads to

lim
k→∞

∫

R

|ρLk
αjLk

I(µjLk
≤ µ)− ρ0αj0I(µj0 ≤ µ)| exp(−|µ|)dµ = 0,

which, together with (21)–(23), implies that

lim
k→∞

D(ΨLk
,Ψ0) = 0.

This completes the proof.

A.3. Proof of Theorem 2

Our proof of Theorem 2 is similar to that of Theorem 1. Hence, we simply

outline the key steps.

In the first step, we establish a result similar to Lemma 1. Let a∗ = (β +

p)/(2β) and b∗ = 2(β − p+ 2)/(β − p), where β > p is given in Condition C3*.

Hence, 0 < a∗ < 1 and b∗ > 1. We choose ǫ∗0 such that

v0π
p/2

|Σ0|1/2Γ(p/2 + 1)
(ǫ∗0)

(1−a∗)/2 = 1/(2mb∗).

For the matrix Σ, “Σ > 0” means that Σ is a positive definite matrix.300
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Lemma 3. Suppose {X1, . . . ,Xn} is an i.i.d. sample from g(x; Ψ0,Σ0). Fur-

ther, assume Condition C3*. Let

E∗ = lim inf
n→∞

{

sup
{Σ>0,|Σ|≤ǫ∗0}

sup
µ∈Rp

n
∑

i=1

I
{

(xi − µ)τΣ−1(xi − µ) ≤ |Σ|−a∗/p
}

≤ n/(mb∗)

}

.

Then P (E∗) = 1.

Proof. Following the proof of Corollary 3 in Alexandrovich (2014), we can show

that

P

(

lim inf
n→∞

{

sup
{Σ>0,|Σ|≤ǫ∗0}

sup
µ∈Rp

n
∑

i=1

I
{

(xi − µ)τΣ−1(xi − µ) ≤ |Σ|−a∗/p
}

≤ an

})

= 1,

where

an =
3

4

√

n log logn+
nv0π

p/2

|Σ0|1/2Γ(p/2 + 1)
(ǫ∗0)

(1−a∗)/2 =
3

4

√

n log logn+
n

2mb∗
.

When n is large enough, an ≤ n/(mb∗). Hence, P (E∗) = 1. This completes the

proof.

In the second step, we establish a result similar to Lemma 2. We first define

some notation. Based on i.i.d. p-dimensional random vectors X1, . . . ,Xn from

g(x; Ψ,Σ), the log-likelihood of (Ψ,Σ) is

ℓn(Ψ, σ) =

n
∑

i=1

log{g(Xi; Ψ,Σ)}.

Let K∗
0 =

∫

Rp log{g(x; Ψ0,Σ0)}g(x; Ψ0,Σ0)dx. Condition C2* ensures that

|K∗
0 | < ∞. Further, define ∆∗ = {v0/ exp(K∗

0 − 1)}2. We choose a positive305

number ǫ∗ that satisfies the following conditions:

D1*. ǫ∗ ≤ ǫ∗0;

D2*. ǫ∗ ≤ (v1/v0)
−4/(β−p+2);

D3*. (1/b∗) log v0 + (1− 1/b∗) log v1 +
1
8 (β − p) log ǫ∗ ≤ K∗

0 − 1.

Clearly, an ǫ∗ satisfying the above conditions exists, since β > p as assumed in310

Condition C3*.
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Lemma 4. Suppose {X1, . . . , Xn} is an i.i.d. sample from g(x; Ψ0,Σ0). Fur-

ther, assume Conditions C1*–C4* are satisfied. Then we have

P

(

lim
n→∞

{

sup
Ψ∈Ψm,Σ>0,|Σ|≥∆∗

ℓn(Ψ,Σ)− ℓn(Ψ0,Σ0)

}

= −∞
)

= 1 (29)

and

P

(

lim
n→∞

{

sup
Ψ∈Ψm,Σ>0,|Σ|≤ǫ∗

ℓn(Ψ,Σ)− ℓn(Ψ0,Σ0)

}

= −∞
)

= 1. (30)

Proof. We start with (29). By Condition C3*, we have

ℓn(Ψ,Σ) =

n
∑

i=1

log







m
∑

j=1

αj

|Σ|1/2 f0
(

(Xi − µj)
τΣ−1(Xi − µj)

)







≤ n (log v0 − 0.5 log |Σ|) , (31)

where v0 is given in Condition C3*.

Hence, with ∆∗ = {v0/ exp(K∗
0 − 1)}2, we have

sup
Ψ∈Ψm,Σ>0,|Σ|≥∆∗

ℓn(Ψ,Σ)− ℓn(Ψ0,Σ0) ≤ n(K∗
0 − 1)− ℓn(Ψ0,Σ0).

By the strong law of large numbers and the definition of K∗
0 , we have (29).

We next consider (30). Let

A∗ =

{

i : min
1≤j≤m

(Xi − µj)
τΣ−1(Xi − µj) ≤ |Σ|−a∗/p

}

.

Similarly to (31), it can be shown that315

ℓn(Ψ,Σ;A∗) ≤ n(A∗)(log v0 − 0.5 log |Σ|). (32)

By Condition C3*, we have

ℓn(Ψ,Σ; (A∗)c) ≤
∑

i∈(A∗)c

log





m
∑

j=1

αj

|Σ|1/2 v1
{

(Xi − µj)
τΣ−1(Xi − µj)

}−β/2





≤ n
(

(A∗)c
)

{log v1 + 0.5(a∗β/p− 1) log |Σ|}

= n
(

(A∗)c
)

{log v1 + 0.25(β − p) log |Σ|} , (33)

where in the last step we have used the fact that a∗β = (β + p)/2.
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Combining (32) and (33) gives

ℓn(Ψ,Σ) = ℓn(Ψ,Σ;A∗) + ℓn(Ψ,Σ; (A∗)c)

≤ n(log v0 − 0.5 log |Σ|) + n
(

(A∗)c
)

{log v1 − log v0 + 0.25(β − p+ 2) log |Σ|}

= n(log v0 − 0.5 log |Σ|) + n(1 − 1/b∗) {log v1 − log v0 + 0.25(β − p+ 2) log |Σ|}

+
{

n
(

(A∗)c
)

− n(1− 1/b∗)
}

{log v1 − log v0 + 0.25(β − p+ 2) log |Σ|}

= n

{

(1/b∗) log v0 + (1− 1/b∗) log v1 +
1

8
(β − p) log |Σ|

}

+ {n/b∗ − n
(

A∗
)

} {log v1 − log v0 + 0.25(β − p+ 2) log |Σ|} ,

where in the last step we have used the fact that b∗ = 2(β − p + 2)/(β − p).

Then, for Σ satisfying |Σ| ≤ ǫ∗, since ǫ∗ satisfies D3*, we have

ℓn(Ψ,Σ)− ℓn(Ψ0,Σ0)

≤ n(K∗
0 − 1)− ℓn(Ψ0,Σ0) (34)

+ {n/b∗ − n
(

A∗
)

} {log v1 − log v0 + 0.25(β − p+ 2) log |Σ|} . (35)

By the strong law of large numbers and the definition of K∗
0 , we have

P
(

lim
n→∞

{n(K∗
0 − 1)− ℓn(Ψ0,Σ0)} = −∞

)

= 1. (36)

Again for Σ satisfying |Σ| ≤ ǫ∗, since ǫ∗ satisfies D2*, we have

log v1− log v0+0.25(β−p+2) log |Σ| ≤ log v1− log v0+0.25(β−p+2) log ǫ∗ ≤ 0,

(37)

which together with Lemma 3 implies that, for large enough n,

{n/b∗ − n
(

A∗
)

} {log v1 − log v0 + 0.25(β − p+ 2) log |Σ|} ≤ 0,

almost surely. Combining (34)–(37) leads to (30). This completes the proof.

Lemma 4 implies that asymptotically we can confine (Ψ̂, Σ̂) to Θ, where

Θ = Ψm × {Σ : Σ > 0, |Σ| ∈ [ǫ∗,∆∗]}. Note that Θ is completely regular320

(Chen & Tan, 2009), so the techniques in Wald (1949) and Kiefer & Wolfowitz

(1956) can be applied to establish the strong consistency of (Ψ̂, Σ̂). This com-

pletes the proof of Theorem 2.
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