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Abstract In survival analysis, it is routine to test equality of two survival curves,
which is often conducted by using the log-rank test. Although it is optimal under the
proportional hazards assumption, the log-rank test is known to have little power when
the survival or hazard functions cross. To test the overall homogeneity of hazard rate
functions, we propose a group of partitioned log-rank tests. By partitioning the time
axis and taking the supremum of the sum of two partitioned log-rank statistics over
different partitioning points, the proposed test gains enormous power for cases with
crossing hazards. On the other hand, when the hazards are indeed proportional, our
test still maintains high power close to that of the optimal log-rank test. Extensive
simulation studies are conducted to compare the proposed test with existing methods,
and three real data examples are used to illustrate the commonality of crossing hazards
and the advantages of the partitioned log-rank tests.
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1 Introduction

One of themost fundamental goals in survival analysis is to compare survival or hazard
functions between a treatment group and a control group based on data subject to right
censoring (Kleinbaum and Klein 2012). Due to its great importance in evaluating
treatment effects, this problem has attracted considerable attention and a large number
of testing procedures have been proposed in the literature (see for example, Fleming
andHarrington 1991,Chapter 7). Themostwidely-used approach is a class ofweighted
log-rank tests, which include the usual log-rank test with unit weights (Mantel 1966;
Cox 1972) and Wilcoxon tests (Gehan 1965; Breslow 1970; Peto and Peto 1972;
Prentice 1978) as special cases. The log-rank test is generally optimal when the two
hazard functions are proportional to each other over time, while the Wilcoxon tests
have been found to be more powerful in detecting differences that are early during the
follow-up time (Lee et al. 1975; Prentice and Marek 1979). Klein and Moeschberger
(2003) and Hosmer and Lemeshow (1999) have more thorough discussions on these
weighted testing procedures. Yin and Zeng (2005) proposed a pair chart approach to
detecting survival differences, which is shown to be particularly powerful for early
differences.

However, the aforementioned tests might have little power if the underlying hazard
rates cross each other. This is mainly due to the cancellation of the Mantel–Haenzel
test statistics before and after the crossing point. One such example is the clinical trial
study for evaluating the effect of zinc nasal spray in curing common cold (Belongia
et al. 2001). Statistical analysis in Belongia et al. (2001) did not find any significant
treatment effect regarding cold duration, while further investigation suggested a tran-
sient reduction of symptom severity in the early stage of the medical treatment. Liu
et al. (2007) found that the life-table estimates of the two hazard rates of cold resolu-
tion for the treatment and control groups cross each other. In general, it is frequently
encountered in applications that the hazard rates cross each other, or that differences
between two hazard rates may be apparent at one point in time but fail to exist else-
where (Fleming et al. 1980). Examples include radiation and chemotherapy treatments
for cancer and surgery (Qiu and Sheng 2008).

These various features in comparison of two survival curves have motivated devel-
opment of many testing procedures that can handle the crossing hazard rates problem.
These methods can be roughly classified into three groups: (i) Omnibus tests such
as the modified Kolmogorov–Smirnov test (Fleming et al. 1980), the Renyi-type test
(Gill 1980) and Liu et al. (2007)’s test; (ii) Weighted log-rank tests whose weights
change signs before and after a potential crossing point (i.e., Mantel and Stablein
1988; Moreau et al. 1992; Qiu and Sheng 2008); and (iii) Methods based on explic-
itly modeling the crossing structure of the hazard rates (Anderson and Senthilselvan
1982; Breslow et al. 1984; Liu et al. 2007; Bagdonavičius et al. 2012). Comparing the
above three groups of approaches, we expect the second and third groups to be more
powerful in testing differences between two crossing hazard rates, because they are
designed specifically for testing the alternatives of crossing hazard rates, instead of
some more general alternatives that are aimed at by the first group of methods (Liu
et al. 2007). However, since they are designed specifically to test crossing hazard rates,
the later two groups of methods for handling the crossing hazard rates problem may

123



402 Y. Liu, G. Yin

lose power when two hazard rates are different but not crossing, such as parallel for
the additive hazards case (Lin and Ying 1994; Qiu and Sheng 2008). On the basis of
forming stochastic processes indexed by weight functions, Kosorok and Lin (1999)
studied function-indexed weighted log-rank statistics for testing a wide array of sto-
chastic ordering alternatives. Eng and Kosorok (2005) further developed a sample size
formula based on the supremum log-rank statistic for planning time-to-event clinical
trials where a wide variety of stochastic ordering alternatives are expected. Yang and
Prentice (2010) utilized adaptive weights in the log-rank tests based on the short-term
and long-term hazard ratios from the model of Yang and Prentice (2005) to detect
proportional and nonproportional alternatives.

In this paper, we propose a group of new methods for comparing hazard rates by
combiningweighted log-rank tests and apartitioningmethod.Theoverall homogeneity
of two hazard rates is equivalent to that they are both homogeneous before and after
any given time point. We may apply any weighted log-rank tests to examine the
homogeneity before and after a given time point. Summing up the two weighted log-
rank tests naturally leads to an overall homogeneity test for the two hazard rates. To
avoid the subjectiveness in choosing the cutting time point, we take the supremum of
the summation of the two test statistics (before and after the partitioning point) over
all time points as the proposed test for the overall homogeneity of two hazard rates.
A bootstrap method is proposed to determine the distribution of the supremum test
statistic under the null hypothesis.

Compared with the method in Qiu and Sheng (2008), the proposed partitioned
log-rank tests have several major advantages: (i) Our tests are one-stage procedures
and thus are easy to use, while in comparison, Qiu and Sheng (2008)’s method is a
two-stage procedure and involves complicated weights. (ii) We can easily extend the
proposed approach to testing the homogeneity of more than two hazard rates, which
is not straightforward under Qiu and Sheng (2008)’s method. (iii) The construction
of time partitions is very flexible, and any pair of weighted log-rank tests for the
homogeneity before and after a cutting point produce a new test. Our simulation
results indicate that with the commonly-used weighting schemes, the resulting new
tests outperform in terms of power their competitors in almost all cases.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
weighted log-rank test and further propose the partitioned log-rank test. The asymptotic
properties of the proposed test and a bootstrap procedure are presented in Sect. 3.
We extend the proposed test to compare multiple groups in Sect. 4. In Sect. 5, we
conduct extensive simulation studies to examine the finite sample performance of the
partitioned log-rank test, and we illustrate the new testing procedure with real data
examples in Sect. 6. Section 7 concludes with some remarks. All proofs are postponed
in the Appendix.

2 Partitioned log-rank test

Webeginwith comparing twohazard rates, althoughour proposed tests apply generally
to comparison of multiple groups. Suppose that we have two groups of survival data
{(Tkj ,Ckj ) : j = 1, . . . , nk}, where Tkj ( j = 1, 2, . . . , nk) denote the death times
of patients in group k (k = 0, 1) and Ckj ’s are the accompanying censoring times.
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We may rewrite the observed survival data as {(Xkj , δk j ) : j = 1, . . . , nk}, where
Xkj = min{Tkj ,Ckj } and δk j = 1(Tkj ≤ Ckj ). Here 1(s < t) denotes an indicator
function, equal to 1 if s < t and 0 otherwise. Let Sk(t) and hk(t) be the survival and
hazard rate function of group k, respectively. Our goal is to test the equality of the
hazard functions of the two groups, i.e., H0 : h0(t) = h1(t) (or S0(t) = S1(t)) for all
t ∈ [0, ∞), and the alternative is that there exists some difference between h0(t) and
h1(t) at certain time t , i.e., H1 : h0(t) �= h1(t) (or S0(t) �= S1(t)) for some t .

Suppose that in total there arem distinct death times in the pooled sample of the two
groups of data, i.e., t1 < t2 < · · · < tm , and at the death time ti , there are dki events
and rki individuals at risk in group k (k = 0, 1). Let di = d0i + d1i and ri = r0i + r1i .
The commonly-used weighted log-rank test is defined as

Tw =
{

m∑
i=1

wi

(
d1i − dir1i

ri

)}2 / m∑
i=1

w2
i r0i r1i di (ri − di )

r2i (ri − 1)
,

where wi ’s are prespecified weights. It includes many well-known tests as special
cases. Withwi = 1, Tw is actually the original log-rank test (Mantel 1966; Cox 1972);
and if wi = ri , Tw reduces to the Gehan–Wilcoxon test (Gehan 1965; Breslow 1970).
Let Ŝ(t) be the Kaplan–Meier estimator of the common survival function S(t) based
on (di , ri ) (i = 1, . . . ,m), assuming that the two survival functions are equal. The
test of Peto and Peto (1972) corresponds to Tw with wi = nŜ(ti ) and n = n0 + n1.
There are also many other weighting schemes, such as wi = {Ŝ(ti )}α (Fleming and
Harrington 1981) and wi = r1/2i (Tarone and Ware 1977). See Jones and Crowley
(1989) for more discussions on various weighted log-rank tests.

If the two hazard rate functions cross each other, then Tw may lose substantial
power because there is some cancellation in

∑m
i=1 wi (d1i − dir1i/ri ). We propose a

group of new tests by partitioning the time axis to circumvent this problem. Testing
H0 : h0(t) = h1(t) for all t ∈ [0, ∞) is equivalent to testing both H01 : h0(t) =
h1(t) for all t ∈ [0, u) and H02 : h0(t) = h1(t) for all t ∈ [u, ∞) simultaneously for
all u ∈ [0, ∞), where u is a partitioning time point. We can apply any homogeneity
test for two hazard rates to both H01 and H02, and the summation of the respective
homogeneity tests for H01 and H02 leads to a natural test for the overall homogeneity
H0.

In particular, we choose the weighted log-rank test as the basis for testing each
sub-hypothesis of H01 and H02. Define the lower and upper components of the test by
the partitioning time point t ,

Dl(t) =
m∑
i=1

wi

(
d1i − dir1i

ri

)
1(ti < t), Du(t) =

m∑
i=1

wi

(
d1i − dir1i

ri

)
1(ti ≥ t)

with the accompanying variance estimates,

Vl(t) =
m∑
i=1

w2
i r0i r1i di (ri − di )

r2i (ri − 1)
1(ti < t), Vu(t)=

m∑
i=1

w2
i r0i r1i di (ri − di )

r2i (ri − 1)
1(ti ≥ t).
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Throughout the paper, 0/0 is defined to be zero. Given a time point t , a natural test
for H0 is based on the test statistic

T̃ (t) = D2
l (t)

Vl(t)
+ D2

u(t)

Vu(t)
.

When t = t1 or tm , T̃ (t) reduces to the usual weighted log-rank test.
Compared with the usual weighted log-rank tests, the test based on T̃ (t) loses little

power if the two underlying hazard rates do not cross, while it gains much power if
the two underlying hazard rates cross only once and the crossing point happens to be
at time t . However, this test is not easy to use since it is difficult to know the exact
crossing point in practice. Furthermore, its testing capability is questionable if the two
underlying hazard rates cross twice or multiple times. To avoid the arbitrariness of t
and possible power loss, we propose to test H0 by a supremum statistic,

T = sup
t∈[0,∞]

T̃ (t) = max
1≤i≤m

T̃ (ti ),

which we call a partitioned log-rank test. Similar to the usual log-rank type tests,
different weight choices result in different performances for the partitioned log-rank
test.

3 Asymptotics

3.1 Two-sample comparison

To understand the theoretical performance of the proposed partitioned log-rank test,
we investigate its large-sample properties under the null hypothesis and a series of local
alternatives, respectively. Suppose that {(Tkj ,Ckj ) : j = 1, . . . , nk} are independent
and identically distributed copies of (Tk,Ck) and that Tk and Ck are independent
(k = 0, 1). Denote n = n0 + n1. For group k, let πk(t) = Sk(t)Lk(t), where Sk(t)
and Lk(t) are the respective survivor functions of Tk and Ck .

It is convenient to use the notation of counting process when studying the limiting
distributions of T̃ (t) and T . Denote Nk(t) = ∑nk

j=1 1(Xkj ≤ t, δk j = 1) and Yk(t) =∑nk
j=1 1(Xkj ≥ t) as the event and at-risk processes of group k, respectively. Let

Y·(t) = Y0(t) + Y1(t), N·(t) = N0(t) + N1(t), and W (t) = wĩ , where ĩ = max{i :
ti ≤ t} and {ti : i = 1, . . . ,m} are the distinct failure times in the pooled sample.
Define

Z(t) = n−1/2
∫

(0,t]
W (s)

{
Y1(t)

Y·(t)
dN0(s) − Y0(t)

Y·(t)
dN1(s)

}
,

σ̂ (t) = n−1
∫

(0,t]
W 2(s)

Y0(s)Y1(s)

Y·(s)

{
1 − �N·(s) − 1

Y·(s) − 1

}
dN·(s)
Y·(s)

,

and �N·(s) = N·(s) − N·(s−). It follows that Dl(t) = n1/2Z(t), Du(t) =
n1/2{Z(∞) − Z(t)}, Vl(t) = nσ̂ (t) and Vu(t) = n{σ̂ (∞) − σ̂ (t)}.
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3.2 Limiting distribution under H0

Suppose that nk/n = ρk+o(1)with ρk ∈ (0, 1). Let�c(t) be the common cumulative
hazard function of the twogroups under the null hypothesis H0 : S0(t) = S1(t). Define

σ(t) =
∫

(0,t]
W 2

0 (s)
ρ0ρ1π0(s)π1(s)

π·(s)
{1 − ��c(s)}d�c(s),

where π·(s) = ρ0π0(s) + ρ1π1(s), ��c(s) = �c(s) − �c(s−) is the jump of �(s)
at s and d�c(s) = �c(s + ds) − �c(s) is the differential of �c(s).

The limiting distribution of the proposed partitioned log-rank test under the null
hypothesis is given as follows.

Theorem 1 Suppose that Assumptions 2, 3 and 4 in the Appendix hold for p = 1,
and that the failure time Tk is independent of the censoring time Ck for each k. If the
null hypothesis H0 : S0(t) = S1(t) is true, then as n goes to infinity, it holds that

(a) σ̂ (t) converges in probability to σ(t) for any t ∈ [0,∞),

(b) T̃ (t)
d−→ χ2

2 , the chi-squared distribution with two degrees of freedom, for each

t ∈ 
 = {t : 0 < σ(t) < σ(∞)}, where d−→ means convergence in distribution,
and

(c) T
d−→ sup0<t<1

[{B(t)}2/t + {B(1) − B(t)}2/(1 − t)
]
, where B(t) is a Brown-

ian motion.

Let Ŝ(t) be the Kaplan–Meier estimator in the pooled sample and π̂(s) = Y (s)/n.
If f (s) is a nonnegative bounded continuous functionwith bounded variation on [0, 1],
then W (s) = f (Ŝ(s−)) and W (s) = f (π̂(s)) satisfy Assumptions 2, 3 and 4. See
the proof of Theorem 7.2.1 of Fleming and Harrington (1991). Theorem 1 holds for
the log-rank, Gehan–Wilcoxon, and Peto–Peto tests, because their weight functions
are respectively f (s) = 1, f (π̂(s)) and f (Ŝ(s−)) with f (s) = s, and both f (s) = 1
and f (s) = s are bounded variation functions on [0, 1].

Due to its complicated form, the limiting distribution of T under H0, i.e., the
distribution of sup0<t<1

[{B(t)}2/t + {B(1) − B(t)}2/(1 − t)
]
, is not easy to use to

calculate the p value of T . Nevertheless, the limiting distribution does not depend on
any parameter of the underlying population survival function or censoring function,
which implies that the proposed partitioned log-rank test T is asymptotically pivotal.
We may determine the p value for the proposed test by simulations and generating
data from any distribution. Unfortunately, our simulation experience indicates that the
distribution of T converges so slowly that its limiting distribution is generally a poor
approximation for small and moderate sample sizes. Instead, we propose a bootstrap
method to determine the p value of T as follows.

1. Let T denote the partitioned log-rank test based on the two groups of original data,
{(Zkj , δk j ) : j = 1, . . . , nk} (k = 0, 1).

2. Denote the pooled data set by {(Z j , δ j ) : j = 1, . . . , n}. Let {(Z∗
k j , δ

∗
k j ) : j =

1, . . . , nk} (k = 0, 1) be two random bootstrap samples with sample sizes n0 and
n1 sampled from the pooled data set with replacement. Denote the partitioned
log-rank test based on these two samples by T ∗.
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3. Repeating step 2 for a large number of times, say, B times, we obtain B partitioned
log-rank test statistics, denoted by T ∗

1 , . . . , T ∗
B . We have two ways to conduct

hypothesis testing based on the partitioned log-rank test given the significance
level α.
(a) The p value of the partitioned log-rank test is defined as the proportion of T ∗

i ’s
greater than T . We reject the null hypothesis if the p value is less than α.

(b) Let cα be the B × α largest value of T ∗
i ’s, and we reject the null hypothesis if

T > cα .

3.3 Power under local alternatives

To investigate the testing capability of the proposed partitioned log-rank test, we
consider a series of local alternatives, where we allow Sk(t), the survivor function
of the failure time in group k, to vary as the sample size n increases. Let �k(t) =
− ∫

(0,t] dSk(s)/{1 − Sk(s)}.
Assumption 1 For both k = 0 and 1, the following conditions hold as n → ∞.

(i) sup0≤t≤∞ |Sk(t)− Sc(t)| → 0 for a survival function Sc(t)with respect to which
each Sk(t) is absolutely continuous.

(ii) Let�c(t)be the cumulative hazard functionof Sc(t).
√
n {d�k(t)/d�c(t) − 1} →

γk(t) uniformly on each closed subinterval of {t : Sc(t+) > 0}, where γk(t) is a
real-valued function.

(iii) sup0≤t≤∞ |Yk(t)/n − ρkπk(t)| → 0, where we redefine πk(t) = Sc(t)Lk(t)
under (i),

(iv)
∫
(0,t] W0(s)πk(s)|γk(s)|d�c(s) < ∞ for t ∈ [0,∞).

Assumption 1, adopted fromTheorem7.4.1 of Fleming andHarrington (1991), defines
a series of local alternatives. The next theorem gives the local power of the proposed
test under such local alternatives.

Theorem 2 Assume the conditions in Theorem 1 with Assumption 1 in place of the
null hypothesis H0. As n goes to infinity, we have

(a) σ̂ (t) converges in probability to σ(t) for any t ∈ [0,∞), and

(b) T
d−→ supt∈
 A(t), where 
 is defined in Theorem 1 and

A(t) =
[
B{σ(t)} + R(t)

]2
σ(t)

+
[
B{σ(∞)} − B{σ(t)} + R(∞) − R(t)

]2
σ(∞) − σ(t)

with B(t) a Brownian motion and

R(t) =
∫ t

0
W0(s)

ρ0ρ1π0(s)π1(s)

π·(s)
{γ0(s) − γ1(s)}d�c(s).

Under the conditions of Theorem 1, the limiting distribution of T is a proper distri-
bution, and theoretically the critical value is a bounded constant given a significance
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level. Roughly speaking, Theorem 2 implies that the proposed partitioned log-rank test
can detect alternatives departing from H0 at a rate n−1/2 if there exists an open interval
G such that R(t) �= 0 for all t ∈ G. In comparison, the usual weighted log-rank test
can detect alternatives at the same rate only if R(∞) �= 0. See, for example, Theo-
rem 7.4.1 of Fleming and Harrington (1991). Clearly the set of detectable alternatives
under the usual weighted log-rank test is only a proper subset of that of the proposed
partitioned log-rank test. We consequently expect that whenever the weighted log-
rank test have desirable power, the proposed partitioned log-rank test would also have
desirable power, while the opposite is not true, particularly when the underlying two
hazard rate functions cross once or multiple times.

4 Extension to multiple groups

The proposed testing procedure can be easily extended to compare the hazard rates
of multiple groups, which is an obvious advantage over Qiu and Sheng (2008)’s two-
stage test. Suppose that we compare p+1 (p > 1) groups of survival data, and define
the same notation as in Sect. 3, while allowing k to range from 0 to p. The problem
of interest is to test H0 : S0(t) = S1(t) = · · · = Sp(t) versus H1 : at least one of the
equalities fail to hold for some t .

We still use t1 < t2 < · · · < tm to denote the distinct death times across all the
p + 1 samples. Let di = ∑p

k=0 dki and ri = ∑p
k=0 rki . Define

Dl(t) =
m∑
i=1

wi

(
d1i − r1i di

ri
, d2i − r2i di

ri
, . . . , dpi − rpi di

ri

)T

1(ti < t),

Du(t) =
m∑
i=1

wi

(
d1i − r1i di

ri
, d2i − r2i di

ri
, . . . , dpi − rpi di

ri

)T

1(ti ≥ t),

where “T” denotes the vector transpose. Let Vi = (vi, jk)1≤ j,k≤p be a p× pmatrixwith
vi, jk = r ji {ri1( j = k) − rki }di (ri − di )/{r2i (ri − 1)}. The lower and upper variance–
covariance matrices accompanying the partition time point t are respectively given
by

Vl(t) =
m∑
i=1

Vi1(ti < t) and Vu(t) =
m∑
i=1

Vi1(ti ≥ t).

As a result, the proposed partitioned log-rank test in the multiple group case is

T = sup
t∈[0,∞]

T̃ (t),

where T̃ (t) = {Dl(t)}T{Vl(t)}−1Dl(t) + {Du(t)}T{Vu(t)}−1Du(t).
To extend Theorem 1 from p = 1 to p ≥ 1, we define more notation as follows.

Let Y·(t) = ∑p
k=0 Yk(t), N·(t) = ∑p

k=0 Nk(t), Y (t) = (Y0(t), . . . , Yp(t))T and
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N (t) = (N0(t), . . . , Np(t))T. Furthermore, let

Z(t) = n−1/2
∫

(0,t]
W (s)

{
Ip+1 − Y (s)JT/Y (s)

}
dN·(s),

�̂(t) = n−1
∫

(0,t]
W 2(s)

{
Y∗(s) − Y (s)Y T(s)/Y·(s)

} {
1 − �N·(s) − 1

Y·(s) − 1

}
dN·(s)
Y·(s)

,

where Ip+1 is the (p+1)×(p+1) identitymatrix and J a (p+1)-variate vectorwith all
elements being one andY∗(t) = diag{Y (t)}. Hereafterwe useY∗ to denote the diagonal
matrix diag{Y } for any vector Y . It can be shown that Dl(t) = n1/2Z[−1](t), Du(t) =
n1/2{Z[−1](∞) − Z[−1](t)}, Vl(t) = n�̂[−1,−1](t) and Vu(t) = n{�̂[−1,−1](∞) −
�̂[−1,−1](t)}, where and in what follows for a generic vector Z , Z[−1] denotes Z with
its first row removed, and for a generic matrix �, �[−1,−1] denotes � with both its
first row and first column removed.

Theorem 3 Suppose Assumptions 2, 3 and 4 in the Appendix hold, that the failure
time Tk is independent of the censoring time Ck for each k. Under H0 : S0(t) =
S1(t) = · · · = Sp(t), as n goes to infinity, it holds that

(a) �̂[−1,−1](t) converges in probability to �[−1,−1](t) for �(t) given in (2) in the
Appendix and any t ∈ [0,∞),

(b) T̃ (t)
d−→ χ2

2p for each t ∈ 
, a set consisting of t values such that both
�[−1,−1](t) and �[−1,−1](∞) − �[−1,−1](t) are nonsingular, and

(c) T
d−→ supt∈
 A1(t), where the stochastic process A1(t) is defined in (3).

Similar to the case with p = 1, the limiting distribution of the partitioned log-
rank test in Theorem 3 is also too complicated to use in practice. We again adopt the
bootstrap method (with slight modification) to calculate the p value of the partitioned
log-rank test for general p.

In parallel to Theorem2, the next theoremexplores the local power of the partitioned
log-rank test test for general p.

Theorem 4 Assume the conditions in Theorem 2 hold for k = 0, 1, . . . , p. As n goes
to infinity, we have

(a) �̂[−1,−1](t) converges in probability to �[−1,−1](t) for any t ∈ [0,∞), and

(b) T
d−→ supt∈
 A2(t), where the stochastic process A2(t) is defined in (5).

Although both the partitioned and weighted log-rank tests can detect alternatives
departing from H0 at a rate of n−1/2, the sets of their detectable alternatives are
different. The partitioned log-rank tests can detect the alternatives in Assumption 1
if there exists an open interval G such that R(t) �= 0 for all t ∈ G, where R(t) is
defined in (4). However, the weighted log-rank test can detect the alternatives only if
R(∞) �= 0. The conclusion for multiple group comparison remains the same that the
partitioned log-rank test generally performs better than the weighted log-rank test.

123



Partitioned log-rank tests for the overall homogeneity... 409

5 Simulation studies

To evaluate the finite-sample performance of the proposed tests, we conduct extensive
simulations and make thorough comparisons with existing methods. Let SUP-LR,
SUP-GW and SUP-PP denote the partitioned log-rank tests corresponding to wi =
1, ri and nŜ(ti ). We compare these three new tests with the usual log-rank test (LR for
short), the Gehan–Wilcoxon test (GW), Peto and Peto (1972)’s test (PP) and Qiu and
Sheng (2008)’s test (QS). The significance level is set to be 5%, and the type I error and
power for each configuration are calculated based on 2000 replications. The p values
of the LR, GW and PP tests are determined by their limiting chi-squared distributions.
We employ the proposed bootstrap procedure with 1000 bootstrap samples to calculate
the p values for both the proposed tests and the QS test.

We consider four simulation examples: All except the third example compare two
groups of survival times (p = 1), and the third compares three groups (p = 2).
In each scenario, we chose the sample sizes across the p + 1 groups of data to be
equal, nk = 50 or 100, and we examined both censoring and non-censoring cases. In
the case of censoring, the censoring times for Examples 1, 2 and 3 were generated
from the uniform distribution Unif(0, 2), which led to censoring rates between 24
and 54 % for different scenarios. The censoring times in Examples 4 were generated
from Unif(1, 3) or Unif(5, 7), which led to censoring rates between 10 and 55% for
different scenarios.

Example 1 (Qiu and Sheng 2008) Consider four hazard rate functions h0(t) = 1,
h1(t) = 2, h2(t) = 0.3 + t and h4(t) = 1.2 + 0.6t . We generate data from the
following four cases: (a) {h0, h0}, (b) {h0, h1}, (c) {h0, h2} and (d) {h0, h3} for two-
sample comparison.

Example 1 is adopted fromQiu andSheng (2008) and in this example both censoring
and non-censoring cases are considered.Among the four different pairs of hazard rates,
the two hazard rate functions under comparison coincide in case (a), parallel and also
proportional in case (b), cross only one time in case (c) and neither parallel nor cross
in case (d). As shown in Fig. 1, the plots represent four common patterns between two
hazard rate functions that cross at most one time.

The simulated rejection probabilities in percentage are tabulated in Table 1 for
the four scenarios of Example 1. Case (a) is the null hypothesis and thus the rejection
probability corresponds to the type I error rate, while the rest are the power of the tests.
We observe that all the methods control the type I error rates around the nominal level,
which implies that the proposed bootstrap method performs well in calculating the p
values for the proposed tests and the QS test. When the null hypothesis does not hold
in cases (b), (c) and (d), the proposed tests and the QS test behave similarly. When
the two underlying hazard rate functions cross and no censoring is accommodated
such as in case (c), the new tests and the QS test have remarkable power gain over the
weighted log-rank tests (LR, GW and PP). In cases (b) and (d), all the test results are
comparable, although the LR test has slight advantages. As expected, the power of all
the tests increases as the sample size increases.

We also examine the performance of the partitioned log-rank test calibrated by
its limiting distribution, which, denoted by Q, is defined in result (c) of Theorem 1.
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Partitioned log-rank tests for the overall homogeneity... 411

Specifically, we take the upper 5% quantile of Q as the critical value of the partitioned
log-rank test. Since the upper 5%quantile of Q has no closed form,we use a numerical
procedure to approximate it.

(1) Generate M = 10, 000 observations x1, . . . , xM from the standard normal dis-
tribution N (0, 1);

(2) For i = 1, . . . , M − 1, calculate Bi = M−1/2 ∑i
j=1 x j and yi = B2

i /(i/M) +
(BM − Bi )2/{1 − (i/M)};

(3) Calculate t = max1≤i≤M−1 yi ;
(4) Repeat steps (1), (2) and (3) N = 10, 000 times. Denote the resulting t values as

t1, . . . , tN . The upper 5 % quantile of Q can be approximated by the upper 5 %
quantile of {t1, t2, . . . , tN }.

We use SUP-LR∗, SUP-GW∗ and SUP-PP∗ to denote the partitioned log-rank tests
LR, GW and PP calibrated by the limiting distribution Q. Their simulated sizes and

Table 1 Simulated sizes (%) in column (a) and powers (%) in columns (b), (c) and (d) of the tests under
comparison for Example 1 with two groups of survival data

nk Log-rank methods Non-censoring Censoring

(a) (b) (c) (d) (a) (b) (c) (d)

50 LR 5.70 91.65 4.00 61.05 4.90 79.70 16.35 31.10

GW 4.65 83.85 19.65 34.10 4.40 70.00 37.25 18.70

PP 4.60 83.75 20.15 33.95 4.05 73.00 31.50 22.25

QS1 4.60 86.40 58.05 52.00 4.75 70.25 33.65 26.35

SUP-LR 5.15 83.05 59.60 57.85 5.40 66.25 35.85 25.70

SUP-GW 5.05 83.25 53.30 54.20 5.00 67.40 33.70 24.35

SUP-PP 5.05 83.15 52.50 54.10 4.90 66.90 34.50 25.20

SUP-LR∗ 1.83 71.56 38.81 40.72 1.04 45.30 13.70 11.15

SUP-GW∗ 1.54 72.14 31.64 35.81 0.83 46.76 12.29 9.96

SUP-PP∗ 1.50 71.99 30.93 35.44 0.94 46.73 12.52 10.66

100 LR 4.45 99.75 3.95 90.65 4.30 98.15 27.40 54.70

GW 4.00 98.75 36.50 59.25 4.15 94.20 62.70 31.70

PP 4.00 98.70 37.05 59.10 4.65 95.60 51.95 38.00

QS1 4.35 99.35 89.50 86.25 5.25 96.05 57.75 47.05

SUP-LR 5.35 98.70 91.45 88.10 5.20 92.55 63.40 46.00

SUP-GW 4.40 98.70 86.55 84.95 5.35 92.40 61.00 44.00

SUP-PP 4.30 98.80 86.30 84.90 5.20 92.50 62.05 44.80

SUP-LR∗ 2.05 97.29 82.03 80.19 1.32 84.46 41.39 28.57

SUP-GW∗ 2.02 97.57 76.52 76.05 1.41 85.88 40.42 26.81

SUP-PP∗ 2.04 97.56 76.12 75.82 1.41 85.68 40.72 28.38

LR the usual log-rank test,GW theGehan–Wilcoxon test,PP the Peto–Peto test,QS1 Qiu andSheng (2008)’s
test designed for at most one crossing point, SUP-LR, SUP-GW, SUP-PP are the corresponding partitioned
log-rank tests based on bootstrap, SUP-LR∗, SUP-GW∗, and SUP-PP∗ are the partitioned log-rank tests
calibrated by their limiting distributions
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Table 2 Power (%) of the tests under comparison for Example 2 with two groups of survival data subject
to censoring

Log-rank methods nk = 50 nk = 100

(e) (f) (g) (h) (e) (f) (g) (h)

LR 6.90 11.70 46.05 53.60 9.40 17.45 75.80 82.20

GW 5.75 26.00 28.65 72.25 5.60 46.50 47.65 95.55

PP 4.65 21.90 36.45 67.60 4.70 38.15 61.90 93.05

QS2 48.70 20.70 64.35 53.20 83.95 38.15 92.30 85.05

SUP-LR 44.20 32.30 64.00 65.15 79.10 55.10 92.35 92.45

SUP-GW 51.35 30.90 69.45 64.90 84.20 53.90 94.45 93.40

SUP-PP 49.05 31.30 67.85 64.30 83.30 54.40 93.80 92.85

LR the usual log-rank test, GW the Gehan–Wilcoxon test, PP the Peto–Peto test, QS2 Qiu and Sheng
(2008)’s test designed for two crossing points, and SUP-LR, SUP-GW and SUP-PP are the corresponding
partitioned log-rank tests

powers based on 10,000 repetitions are also reported in Table 1. It can be seen that
the test sizes are substantially less than the significance level, which leads to severely
lower powers than those of the bootstrap calibrated SUP-LR, SUP-GWand SUP-PP.
As the sample size increases, the limiting distribution Q provides a more reasonable
approximation for the finite-sample distribution of the partitioned log-rank test. Hence,
we recommend using the bootstrap method to calibrate the partitioned log-rank test.

Example 2 Define another three hazard rate functions, h4(t) = 0.6 + 0.15t ,

h5(t) =
⎧⎨
⎩
4t, t ∈ [0, 0.7]
8.4 − 8t, t ∈ (0.7, 1]
0.4, t ∈ (1, ∞)

and h6(t) =
{
2 − 2t, t ∈ [0, 0.8]
0.5t, t ∈ (0.8, ∞)

.

Consider comparisons of the following four pairs of hazard functions: (e) {h0, h5}, (f)
{h0, h6}, (g) {h4, h5} and (h) {h4, h6}, where h0(t) = 1 is defined in Example 1.

For both Examples 2 and 3, we focus on cases subject to censoring. As shown in Fig.
1, the four pairs of hazard rates in Example 2 are designed to have exactly two crosses.
All the cases of (e)–(h) are constructed under the alternatives of the hypothesis tests,
and the simulated power values are presented in Table 2. In case (e), the weighted log-
rank tests completely fail to detect the survival difference between the two groups,
because the hazard rate functions under comparison cross twice that may result in
much cancellation in the numerator of the test statistic,

∑
i wi (di1 − ri1di/ri ). In

comparison, the QS2 test succeeds in overcoming such a weakness of the weighted
log-rank tests and attains desirable power, since it is specially designed to detect such
an alternative where there are two crossing points in the two hazard rate functions. On
the other hand, all the proposed tests are very competitive with the QS2 test for both
sample sizes nk = 50 and 100. In cases (f) and (h), the proposed tests have about 10
% power gain over the QS2 test and even the GW and PP tests are also more powerful,
for which a possible explanation is that the two crossing points (t = 2 and 1.714) are
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Table 3 Simulated sizes (%) in column (a) and powers (%) in columns (b), (c) and (d) of the tests under
comparison for Example 3 with three groups of survival data subject to censoring.

Log-rank methods nk = 50 nk = 100

(a) (b) (c) (d) (a) (b) (c) (d)

LR 5.30 40.05 24.70 27.35 5.57 65.90 44.85 48.62

GW 5.80 28.55 32.70 36.90 5.62 49.52 60.53 67.25

PP 5.85 33.80 29.60 36.00 5.50 57.27 55.25 65.27

SUP-LR 6.00 61.85 37.65 59.55 6.45 91.62 69.03 90.92

SUP-GW 7.00 68.85 37.40 67.25 5.55 94.72 66.35 93.30

SUP-PP 6.65 66.95 37.85 65.05 5.60 93.80 68.23 92.95

LR the usual log-rank test, GW the Gehan–Wilcoxon test, PP the Peto–Peto test, SUP-LR, SUP-GW and
SUP-PP are the corresponding partitioned log-rank tests

much larger and there are very few observations around these points. If we ignore the
observations larger than t = 1.7, the two hazard rate functions in both cases (f) and (h)
cross only one time. This may downplay the power of the QS2 test, as it is specially
designed for situations with two crosses.

Example 3 Given the hazard rate functions defined in Examples 1 and 2, con-
sider the following four combinations of hazard rate functions: (A) {h0, h0, h0}, (B)
{h0, h4, h5}, (C) {h0, h2, h4} and (D) {h0, h2, h6}.

Example 3 is designed to compare three groups of survival data, for which the
proposed tests are readily applicable while the QS test is not. As a result, for the
data generated from Example 3, we only compare the proposed tests with the three
weighted log-rank tests.

The null hypothesis H0 : h0(t) = h1(t) = h2(t) holds in case (A) and is violated
in the other three cases. In particular, the hazard rate functions in each of cases (B),
(C) and (D) cross at least once. From Table 3, we observe that the type I error rates
of the proposed tests in case (A) are slightly inflated while still acceptable. With a
larger sample size, the sizes of our tests would be close to the nominal level. For
power comparison, the proposed tests are uniformly more powerful than the weighted
log-rank tests in the three cases of (B), (C) and (D). For example, in cases (B) and
(D), the proposed tests have around 30 % gain in power over the weighted log-rank
tests for both nk = 50 and 100. In several extreme cases, the power of our partitioned
log-rank tests even double that of the counterparts.

Example 4 From each of the Weibull, Gamma and Lognormal distribution families,
we choose three distributions in a way that the hazards of any two of themwould cross.
To be specific, let the density functions of a Weibull distribution (WB), a Gamma
distribution (GM) and a Lognormal distribution (LN) be

fWB(x;α, β) = αβxα−1 exp(−βxα),

fGM(x;α, β) = βαxα−1 exp(−βx)/�(α),

fLN(x;α, β) = x−1(2πβ2)−1/2 exp[−{ln(x) − α}2/(2β2)],
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Table 4 Parameters of the distributions in Example 4 and censoring rates

Distribution parameters Weibull Gamma Lognormal

WB1 WB2 WB3 GM1 GM2 GM3 LN1 LN2 LN3

α 0.5 1 3 1 2 4 0 0.1 0

β 0.2633 0.1 0.0021 0.5 0.6667 1 0.5 1 2

Censoring rate (%) 42.0 33.6 10.0 24.3 40.0 55.7 10.7 20.3 30.6

respectively, where �(·) is the Gamma function. If censoring is considered, we set
the censoring distribution accompanying the Weibull and Gamma distributions to
be Unif(1, 3), and that accompanying the Lognormal distribution to be Unif(5, 7).
The distribution parameters and censoring rates are presented in Table 4; and their
hazard functions and survival functions are displayed in Fig. 2. Under two-sample
comparisons, we generate data from nine cases: (1) WB2 and WB2, (2) WB2 and
WB1, (3)WB2 andWB3, (4) GM2 and GM2, (5) GM2 and GM1, (6) GM2 and GM3,
(7) LN2 and LN2, (8) LN2 and LN1, (9) LN2 and LN3.

The simulation results based on 2000 repetitions at the 5 % significance level are
tabulated in Table 5. The two hazard functions cross in all the nine cases, and the
partitioned log-rank tests always produce the largest power. As expected, the log-rank
tests including LR, GW and PP have little power in cases (2), (3), (8) and (9). Their
unexpected high power values in cases (5) and (6) may be due to the fact that the
involved hazard functions cross at a later time. The crossing points are around 5, and
the populations GM2 and GM3 have at least 80 % probability between 0 and 5, as
shown by the survival functions of the Gamma distributions in Fig. 2.

Overall, the proposed partitioned log-rank tests are able to maintain the type I
error rates for testing the homogeneity of hazard or survivor functions. Whether the
hazard functions under comparison cross or not, our methods are well adapted to
all kinds of alternatives and thus can always attain desirable testing power. Both the
proposed tests and the weighted log-rank tests are applicable to the general cases of
comparing multiple groups of survival data. The proposed tests display comparable
testing capability wherever the weighted log-rank tests performwell. When the hazard
rate functions under study cross at least once, the weighted log-rank tests tend to lose
much power and even possibly fail to detect the differences. Remarkably, the proposed
tests work well regardless of whether the hazard rate functions cross once or twice, or
two- or multi-group comparisons. The QS test is specially developed for two-group
comparison. and is thus not applicable for general multi-group comparison. With two
groups, the proposed tests tend to have very close performance to the QS test when the
two hazard rate functions cross atmost once, while the proposed tests often outperform
the QS test when there are two crosses.

As pointed out by an anonymous referee, it would be instructive to quantify the
difference of the two survival curves in the cases where the null hypothesis is violated,
so that it is generally known which scenario is more difficult and which is easier to
detect. We take the Integral of the Squared Difference of two Survival functions (ISDS
for short) as a measure of the survival difference of two populations. The ISDS values
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Table 5 Rejection probabilities (%) of the tests under comparison with data generated from Example 4

Methods (1) (2) (3) (4) (5) (6) (7) (8) (9)

(n0, n1) = (50, 50), Non-censoring

LR 5.35 47.05 68.75 5.20 62.65 52.95 5.90 59.50 26.35

GW 4.55 6.45 7.65 5.65 87.60 81.80 4.70 11.15 6.50

PP 4.60 6.25 7.80 5.70 87.70 82.05 4.70 10.85 6.70

QS1 4.90 92.75 100.00 5.90 74.55 72.00 5.70 91.90 91.95

SUP-LR 7.05 97.70 100.00 5.85 78.00 75.35 6.05 97.00 94.50

SUP-GW 5.50 95.00 100.00 6.20 78.60 76.05 6.40 93.70 91.65

SUP-PP 5.40 94.85 100.00 6.15 78.70 75.85 6.40 93.55 91.55

(n0, n1) = (50, 50), Censoring

LR 4.10 9.35 25.20 5.45 66.95 59.90 5.20 32.70 4.60

GW 4.80 16.60 48.15 5.90 87.90 82.50 4.60 6.65 14.60

PP 4.55 15.35 41.30 5.85 88.05 82.55 4.35 7.60 12.20

QS1 6.10 46.35 81.35 5.95 75.10 71.70 6.75 85.40 80.80

SUP-LR 5.80 47.90 85.20 5.90 78.65 76.55 6.50 89.60 81.50

SUP-GW 5.60 47.40 84.40 6.20 78.70 76.85 6.85 85.40 78.95

SUP-PP 5.65 47.65 85.15 6.20 78.65 76.40 6.75 87.05 80.55

(n0, n1) = (100, 100), Non-censoring

LR 5.30 79.50 94.60 6.15 89.30 79.80 6.00 89.65 49.05

GW 5.45 7.65 8.75 4.95 99.15 98.30 5.60 15.35 8.70

PP 5.55 7.60 8.80 4.95 99.15 98.30 5.55 15.05 9.35

QS1 6.55 99.95 100.00 6.05 96.95 96.65 6.40 99.90 99.95

SUP-LR 6.45 100.00 100.00 6.45 98.40 98.30 6.35 99.95 100.00

SUP-GW 6.35 99.95 100.00 6.65 98.60 98.05 6.40 99.90 99.90

SUP-PP 5.95 99.95 100.00 6.50 98.60 98.10 6.55 99.90 99.85

(n0, n1) = (100, 100), Censoring

LR 5.20 14.80 47.10 5.85 92.00 88.00 5.45 59.60 5.40

GW 5.25 30.75 78.30 4.85 99.20 98.40 5.45 6.75 25.60

PP 5.35 28.60 69.40 4.85 99.20 98.40 5.65 8.55 20.90

QS1 6.55 77.30 98.70 5.85 97.20 96.85 6.05 99.00 98.75

SUP-LR 6.60 81.40 99.60 6.30 98.85 98.45 7.10 99.75 98.95

SUP-GW 6.85 80.85 99.40 6.40 98.75 98.50 6.50 99.05 98.50

SUP-PP 6.90 81.30 99.60 6.50 98.75 98.45 6.60 99.40 98.70

ISDS 0 1.9715 0.8097 0 0.1811 0.1809 0 0.0890 0.3017

Columns (1), (4) and (7) are sizes and the rest are powers
LR the usual log-rank test,GW theGehan–Wilcoxon test,PP the Peto–Peto test,QS1 Qiu andSheng (2008)’s
test designed for one crossing point, SUP-LR, SUP-GW, SUP-PP are the corresponding partitioned log-rank
tests, ISDS the Integral of the Squared Difference of two Survival functions

of cases (a)–(h) in Examples 1 and 2 are 0, 0.0833, 0.0213, 0.0353, 0.0235, 0.0120,
0.0462, and 0.0390, respectively; and those for cases (2), (3), (5), (6), (8) and (9) in
Example 4 are 1.9715, 0.8097, 0.1811, 0.1809, 0.0890, and 0.3017, respectively. It
can be seen from Tables 1, 2 and 5 that roughly speaking, the larger the ISDS, the
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larger the power of the partitioned log-rank test. Hence, ISDS does shed light on the
difficulty of detecting the inequality of two survival functions: the case with a smaller
ISDS value is more difficult to detect. On the other hand, censoring may interplay
between ISDS and power. For example, the partitioned log-rank tests have similar
power in cases (c) and (d) with no censoring, while the power in case (c) is larger
than that in case (d) when there is censoring. In addition, the tests under consideration
are based on hazard differences, while ISDS measures the difference of two survival
functions. As a result, there is no deterministic relationship between ISDS and power,
which can be complicated in the presence of censoring. For example, the partitioned
log-rank tests give larger power values in case (3) than in case (2), although case (3)
(ISDS = 0.8097) has a smaller ISDS value than case (2) (ISDS = 1.9715).

6 Real data analysis

As illustrations, we apply the proposed partitioned log-rank tests to three real data sets:
the rats data, the kidney data, and the gastric cancer data, which are detailed below. For
each data, the Kaplan–Meier survival curves and the smoothed hazard rate function
estimates are displayed in Fig. 3. For comparison, Table 6 shows the test statistics and
the accompanying p values of the weighted log-rank tests, the proposed tests and the
QS test.

6.1 Rats data

The rats data set (Mantel et al. 1977) was obtained from a study on the tumorigenesis
of an experimental drug. This study involved a total of 300 rats, with half male and
half female. Following Qiu and Sheng (2008), we focused on the female half. The 150
female rats were divided into 50 litters of size 3. For each litter, one rat was randomly
selected and treated with the experimental drug, and the other two were administered
a placebo. There are 29 censored observations for the times to tumor in the treatment
group, and 81 censored observations in the control group.

Although the two Kaplan–Meier survival curves in Fig. 3 appear to cross at around
60 weeks, their hazard rate functions do not have an obvious crossing point. It is not
surprising to observe in Table 6 that all the tests produce highly significant results. In
particular, the proposed tests result in the smallest p values, the QS and LR tests follow
the second, and the two weighted log-rank tests yield the largest p values. According
to the definition of the QS p-value, if the LR p value is smaller than 1− (1−0.05)1/2,
the QS p value is defined to be the same as the LR p value.

6.2 Kidney data

Nahman et al. (1992) reported a study to assess times to the first exit-site infection
(in months) in patients with renal insufficiency. The study involved 43 patients who
utilized a surgically placed catheter (group 1) and 76 patients who utilized a percuta-
neous placement of their catheter (group 2). Censoring was mainly caused by catheter
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Table 6 Test statistics and accompanying p values of the tests under comparison applied to three real data
sets

Data Test LR GW PP SUP-LR SUP-GW SUP-PP QS

Rats Statistic 8.5945 4.9284 6.9018 20.5099 20.6351 20.3868 11.8105

p value 0.0034 0.0264 0.0086 0.0000 0.0000 0.0000 0.0034

Kidney Statistic 2.5295 0.0021 1.3618 10.2389 9.0278 9.9972 7.7821

p value 0.1117 0.9636 0.2432 0.0050 0.0080 0.0080 0.0260

Gastric Statistic 0.2252 3.9637 4.0939 17.3028 15.3378 15.3065 17.1130

p value 0.6351 0.0465 0.0430 0.0030 0.0060 0.0058 0.0257

LR the usual log-rank test, GW the Gehan–Wilcoxon test, PP the Peto–Peto test, SUP-LR, SUP-GW,
SUP-PP are the corresponding partitioned log-rank tests, QS Qiu and Sheng (2008)’s test

failure, and as a result, there were 27 censored observations in group 1 and 65 censored
observations in group 2. The data set can be found in Klein and Moeschberger (2003),
and has been analyzed by Lin and Wang (2004) and Qiu and Sheng (2008).

As shown in Fig. 3, the survival curves and the hazard rate functions are very
different between the two groups and both cross at one time point. The survival curves
cross at roughly 6 months, while the hazard rate functions cross at roughly 4 months.
All the weighted log-rank tests yield nonsignificant results and, in particular, the GW
test (with a p value of 0.9636), completely fails to detect the survival difference. The
partitioned log-rank tests (with p values of between 0.0050 and 0.0080) and the QS
test (with a p value of 0.0260) achieve very desirable results, while the former have
much smaller p values than the latter. As a further comparison, the test statistic in Lin
andWang (2004) is 2.2516, and the accompanying p value is 0.0242 with a two-sided
test. As a conclusion, our approaches produce the most powerful test for this data set,
which can be also confirmed by the enormous differences between the two survival
curves in Fig. 3.

6.3 Gastric cancer data

The third example was a study reported by the Gastrointestinal Tumor Study Group
(1982) to compare chemotherapy with combined chemotherapy and radiation therapy
in the treatment of locally unresectable gastric cancer. A total of 90 patients were
admitted into this clinical trial and they were randomly divided into two groups. Each
treatment group had 45 patients, with two observations in the chemotherapy group
and six in the combination therapy group censored. The data set is available in the R
package YPmodel, and the improved log-rank test in Yang and Prentice (2010) gives
a p value of 0.0304.

Similar to the kidney data, both the survival curves and the hazard rate functions
of the gastric cancer data cross at one time point. The crossing points are roughly 2.8
and 1.6 years, respectively. The survival curves seems to be close to each other with
a switch leading to roughly equal areas between the two curves, while the hazard rate
functions are very different, especially at the early follow-up times. All the tests except
for the LR test produce significant results, as with equal weights the LR test cancels
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out the differences before and after the crossing point. Once again the partitioned log-
rank tests produce the smallest p values between 0.0030 and 0.0060, which are much
smaller than those of the Yang and Prentice (2010) test, the QS test, the GW and PP
tests. This indicates that the proposed tests usually provide the strongest evidence for
the heterogeneity of the survival or hazard rate functions under comparison.

7 Discussion

We have proposed the partitioned log-rank test for the homogeneity of two or multiple
hazard rates by partitioning the weighted log-rank test at a certain time point. We
investigate the asymptotic properties of the new test under the null hypothesis and
a series of local alternatives. Despite a concise form, the limiting distribution of the
proposed test is not reliable to use. Instead, we propose to calculate the p value via
a bootstrap method. Our simulation study indicates that the proposed tests are as
powerful as the usual weighted log-rank tests if the hazard rate functions do not cross,
and are much more powerful than the latter otherwise. In addition, the proposed tests
outperform Qiu and Sheng (2008)’s two-stage procedure if the hazard rate functions
have two crosses, although they are generally as powerful if the hazard rate functions
have at most one cross.

In the definition of T̃ (u), survival times are partitioned into two exclusive intervals,
while we may partition them into more exclusive intervals based on multiple cutting
points and define new tests accordingly. However, based on our simulation experience,
the power gain is very limited if we partition the time points into more than two
intervals, which however complicates the computation immensely.

Although introduced in the context of right censoring, the partitioned log rank test
also applies to survival data subject to other censoring schemes such as left censoring
and interval censoring (Klein and Moeschberger 2003; Sun 2006; Chen et al. 2012).
Through partitioning, the log rank test tailored for left or interval censoring can be
first conducted in each time segment and then combined for overall inference.

Acknowledgements We would like to thank the Associate Editor and two anonymous referees for their
careful reading and many insightful suggestions, which strengthened the work immensely. Liu’s research
was supported by grants from the National Natural Science Foundation of China (11371142), the Program
of Shanghai Subject Chief Scientist (14XD1401600), and the 111 Project (B14019); and Yin’s research by
a grant (17125814) from the Research Grants Council of Hong Kong.

Appendix: Assumptions and Proofs

Assumptions and Lemma

We impose the following three assumptions, which correspond respectively to condi-
tion (1) of Corollary 7.2.1, and conditions (2) and (3) of Theorem 6.2.1 in Fleming
and Harrington (1991). Let ξ = sup{t : ∏p

k=0 πk(t) > 0}.
Assumption 2 Assume that W (s) converges in probability to W0(s) uniformly on
[0, t] for any t ∈ [0, ξ ], where W0(s) is a nonnegative, left-continuous function with
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right-hand limits such that W0(s) < ∞ for any s ≤ ξ , W0(s) = 0 for s > ξ , and
W0(s+) ≡ limu↓s W0(u) has bounded variation on each closed subinterval of [0, ξ ].

Assumption 3 When ξ /∈ {t : ∏p
k=0 πk(t) > 0}, it holds for k = 0, 1, . . . , p that

(a)
∫
(0,t] W

2
0 (s)πk(s){1 − ��k(s)}d�k(s) < ∞, and

(b) lim
t↑ξ

lim sup
n→∞

P
{∫

(t,ξ ] n
−1W 2(s)Yk(s)d�k(s) > ε

}
= 0 for any ε > 0.

Assumption 4 When ξ < ∞, it holds for k = 0, 1, . . . , p that

lim
n→∞ P

{∫ ∞

ξ

n−1W 2(s)Yk(s)d�k(s) > ε

}
= 0

for any ε > 0.

Under the above assumptions,we present a lemmabelowwhich plays a fundamental
role in the proofs of all theorems in this paper. For group k (k = 0, 1, . . . , p), recall
that Sk(t) and Lk(t) denote the respective survival functions of Tk and Ck , �k(t) =
− ∫

(0,t] dSk(s)/{1− Sk(s)}, and π·(t) = ∑p
k=0 ρkπk(t), where ρk ≡ limn→∞ nk/n ∈

(0, 1) and πk(t) = Sk(t)Lk(t). Let M(t) = N (t) − ∫
(0,t] Y∗(s)d�(s) with �(t) =

(�0(t), . . . , �p(t))T and

Z̃(t) = n−1/2
∫

(0,t]
W (s)

{
Ip+1 − Y (s)JT/Y·(s)

}
dM(s). (1)

Define �̃(t) ≡ (σ̃kl(t))0≤k,l≤p as

�̃(t) =
∫

(0,t]

[{
I − π(s)JT

π·(s)

}
W 2

0 (s)π∗(s) {I − ��∗(s)} d�∗(s)
{
I − JπT(s)

π·(s)

}]
,

where π(s) = (ρ0π0(s), . . . , ρpπp(s))T.

Lemma 1 Let Q = (Q0, Q1, . . . , Qp)
T be a (p + 1)-variate Gaussian process.

Suppose that all the components Q have independent increments, Qk(0) = 0 almost
surely, for any 0 ≤ s ≤ t , E{Qk(t)} = 0 and E{Qk(t)Ql(s)} = σ̃kl(s ∧ t), where
σ̃kl(t)’s are continuous functions. Under Assumptions 2–4, as n goes to infinity, Z̃
defined in (1) converges weakly to Q in (D[0,∞])p+1, where D[0,∞] is the space
of functions on [0,∞] that are right-continuous with finite left-hand limits.

Proof of Lemma 1 Along the lines of the proof of Theorem 6.2.1 in Fleming and
Harrington (1991), the lemma can be proved by showing that under Assumptions 2,
3 and 4, the components of Z̃(t) satisfy both (3.17) and (3.18) of Theorem 5.3.5 in
Fleming and Harrington (1991). ��
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Proofs of Theorems 1, 2, 3 and 4

We first prove Theorems 3 and 4. Theorems 1 and 2 follows immediately as they are
the special cases of Theorems 3 and 4 with p = 1.

Proof of Theorem 3. When the p + 1 survivor functions are all equal, let �c be the
common cumulative hazard function. Then �̃(t) reduces to

�(t) ≡ (σkl(t))0≤k,l≤p

=
∫

(0,t]
W 2

0 (s)

{
π∗(s) − π(s)πT(s)

π·(s)

}
{1 − ��c(s)} d�c(s). (2)

Thus, part (a) follows from Lemma 7.2.1 in Fleming and Harrington (1991).
It follows from Lemma 1 that under H0, as n → ∞, the multivariate stochas-

tic process Z[−1] converges weakly to Q[−1] which has independent increments and
variance–covariance matrix �[−1,−1](t). This implies that under H0, as n → ∞,

n−1/2Dl(t) = Z[−1](t) converges in distribution to N (0, �[−1,−1](t)),
n−1/2Du(t) = Z[−1](∞) − Z[−1](t) converges in distribution to N (0, �[−1,−1](∞)

−�[−1,−1](t)),

and that n−1/2Dl(t) and n−1/2Du(t) are asymptotically independent. Therefore, part
(b) holds.

Accordingly, the stochastic process T̃ converges weakly to A1(t) with

A1(t) = QT[−1](t)�
−1
[−1,−1](t)Q[−1](t)

+
{
Q[−1](∞) − Q[−1](t)

}T{
�[−1,−1](∞) − �[−1,−1](t)

}−1{Q[−1](∞)

−Q[−1](t)}, (3)

which implies part (c). ��
Proof of Theorem 4. Under Assumptions 1 and 2,W (t), Yk(t)/n, Y·(t)/n converge in
probability to W0(s), ρkπ·(s) and π·(s) uniformly on [0, ξ), respectively. Under (iv)
of Assumption 1, each element of �(t) is finite, which means �(t) is well defined.
Consequently, �̂(t) converges in probability to �(t), which implies part (a).

To prove part (b), we recall that Z(t) = Z̃(t)+ R̃(t), where Z̃ is defined in (1) and

R̃(t) = n−1/2
∫

(0,t]
W (s)

{
Y∗(s) − Y (s)Y T(s)/Y·(s)

}
d�c(s).

Clearly, Z̃ satisfies the conditions of Lemma 1 and converges weakly to Q, which is
defined in Lemma 1. Meanwhile, by the same arguments as those in proving (a),

R̃(t) =
∫

(0,t]
W (s)

n

{
Y∗(s) − Y (s)Y T(s)

Y·(s)

}
· n1/2

{
d�(s)

d�c(s)
− J

}
d�c(s)
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converges in probability to

R(t) =
∫

(0,t]
W0(s)

{
π∗(s) − π(s)πT(s)

π·(s)

}
γ (s)d�c(s), (4)

where γ (s) = (γ0(s), . . . , γp(s))T. This in conjunction with the weak convergence
of Z̃ implies that Z converges weakly to Q + R. Combining the weak convergence
of Z[−1] and �̂[−1,−1], we conclude that T̃ converges weakly to A2(t) over t ∈ 
,
where

A2(t) = (Q + R)T[−1](t)�
−1
[−1,−1](t)(Q + R)[−1](t)

+{(Q + R)[−1](∞) − (Q + R)[−1](t)}T{�[−1,−1](∞) − �[−1,−1](t)}−1

×{(Q + R)[−1](∞) − (Q + R)[−1](t)}. (5)

Consequently, T converges in distribution to supt∈
 A2(t). ��

Proof of Theorem 1. This theorem is a special case of Theorem 3 with p = 1. It can
be verified that �[−1,−1](t) = σ(t) when p = 1, therefore results (a) and (b) follow
immediately.

We need only prove result (c). When p = 1, part (c) of Theorem 3 implies that T
converges in distribution to the supremum of

{Q1(t)}2
σ(t)

+ {Q1(∞) − Q1(t)}2
σ(∞) − σ(t)

, (6)

where Q1 is a Gaussian process with independent increments and variance σ .
Let {B(t) : t ∈ [0,∞)} denote a Brownian motion, then the supremum of (6) has

the same distribution as

sup
t∈


{ [B{σ(t)}]2
σ(t)

+ [B{σ(∞)} − B{σ(t)}]2
σ(∞) − σ(t)

}

= sup
0<s<σ(∞)

{ {B(s)}2
s

+ [B{σ(∞)} − B(s)]2
σ(∞) − s

}

= sup
0<t<1

[ {B ′(t)}2
t

+ {B ′(1) − B ′(t)}2
1 − t

]

with B ′(t) = B{σ(∞)s}/{σ(∞)}1/2. Since B ′(t) is still a Brownianmotion, this leads
to result (c). ��

Proof of Theorem 2. This theorem is a special case of Theorem 4 with p = 1. It can
be verified that �[−1,−1](t), R[−1](t) and A2(s) reduce respectively to the σ(t), R(t)
and A(s) defined in Theorem 2. This completes the proof. ��
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