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1. Introduction

Suppose we have an independent and identically distributed (i.i.d.) sample X1, . .., X, from the following finite mixture
model:
m
£ v.0)= 3 of (g ) = [ S0 ), M)

Here f(x; u, o), the component density function, is assumed to come from a location-scale distribution family, namely,
fx;n,0) = o71f (x —u)/0;0,1) with u € Rand o € RT being the location and scale parameters, respectively. The
positive integer m is called the order of the mixture model, (a1, ..., an) with @; > 0 and Z}’;laj = 1 are called the mixing
proportions, and ¥(u) = Zj";ajl(uj < ) is called the cumulative distribution function of the mixing distribution. The
parameter o, appearing in all m component density functions, is called a structural parameter, and Model (1) is called a finite
mixture of location-scale distributions with a structural parameter. Note that ¥(-) includes unknown p; and «; parameters.
Hence, (¥, o) covers all the unknown parameters in (1). In this paper, we investigate the strong consistency of the maximum
likelihood estimator (MLE) of (¥, o) under Model (1).

Finite mixtures of location-scale distributions with a structural parameter have many applications. They play an
important role in medical studies and genetics. For example, Roeder (1994) applied the finite normal mixture model with
a structural parameter to analyze sodium-lithium countertransport activity in red blood cells. Finite mixtures of logistic
distributions and of extreme value distributions with a structural parameter are widely used to analyze failure-time data.
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For instance, a finite mixture of logistic distributions with a structural parameter was used by Naya et al. (2006) to study
the thermogravimetric analysis trace. A finite mixture of extreme value distributions with a structural parameter was found
to provide an adequate fit to the logarithm of the number of cycles to failure for a group of 60 electrical appliances (Lawless,
2003; Example 4.4.2). More applications can be found in McLachlan and Peel (2000) and (Lawless, 2003).

The maximum likelihood method has been widely used to estimate the unknown parameters in finite mixture models
(McLachlan and Peel, 2000; Chen, 2017). The consistency of the MLE under finite mixture models has been studied by Kiefer
and Wolfowitz (1956), Redner (1981), and Chen (2017). As pointed out by Chen (2017), the results in Kiefer and Wolfowitz
(1956) require that g(x; ¥, o) can be continuously extended to a compact space of (¥, o). This turns out to be impossible
because f(x; u, o) is not well defined at o = 0. To make the results in Kiefer and Wolfowitz (1956) applicable to our current
setup, we must constrain the parameter o to be in a compact subset of R*. The consistency results in Redner (1981) require
even more restrictive conditions: the parameter space for (i, o) must be a compact subset of R x R™; see Chen (2017) for
more discussion. It is worth mentioning that Bryant (1991) established the strong consistency of the estimators obtained
by the linear-optimization-based method. His result can be viewed as a generalization of the classical consistency result for
MLE. However, it requires that the parameter space be closed and that m be equal to the true order of the mixture model. By
utilizing the properties of the normal distribution, Chen (2017) proved the strong consistency of the MLE under finite normal
mixture models with a structural parameter without imposing the compactness assumption on the parameter space. To the
best of our knowledge, general consistency results for the MLE of (¥, o) under Model (1) are not available in the literature
except for the normal mixture model.

Because of the importance of finite mixtures of location-scale distributions with a structural parameter, it is necessary to
study the consistency of the MLE of the underlying parameters, (¥, o ), under Model (1). The goal of this paper is to provide a
general and rigorous proof of this consistency. In Section 2, we present the main consistency results. We emphasize that we
do not require the parameter space of (u, o) to be compact. The detailed proofs are given in Section 3. Section 4 illustrates
the consistency results by applying them to Model (1) with f(x; «, o) being one of the commonly used component density
functions: normal, logistic, extreme-value, or t. An extension of the consistency results to finite mixtures of multivariate
elliptical distributions is discussed in Section 5.

2. Main results

With the i.i.d. sample Xy, ..., X, from (1), the log-likelihood function of (¥, o) is given by

G o) = log(g(X;; ¥, o).

i=1
The MLE of (¥, o) is defined as
(,6)=arg max £,(¥,0),

eW¥n, 0>0

where

m m
Wy =1 iy <p)ie5=0, Y oj=1, MjGR]
j=1 j=1

In this section, we establish the consistency property of (¥, &) without imposing compactness on the parameter space
of (u, o). To discuss the consistency of ¥, we define

D (¥, ) = / () — Wa(40)] exp(— |1 ). @)
R

We show that D (¥4, ¥,) is a distance on ¥y, in the Appendix. Suppose ¥ € ¥y, is the true cumulative distribution function
of the mixing distribution. We say that ¥ is strongly consistent if D(¥, ¥,) — 0 almost surely as n — oo.
The strong consistency of (¥, ¢ ) depends on the following regularity conditions.

C1. The finite mixture model in (1) is identifiable. That is, if (¥, o¢) and (¥,, 0») with ¥, € ¥, ¥, € ¥, 01 > 0,and
0y > 0 satisfy

/ F s o)A (1) = f £ 1 02)d¥n(u)
R R

for all x, then ¥; = ¥, and o1 = o>.
C2. fR|log{g(x; Yy, 00)} g(x; W, 0g)dx < oo, where (¥, o) is the true value of (¥, o).
C3. There exist positive constants vy, vq, and 8 with 8 > 1 such that for all x

f(x;0,1) < min {vo, vy|x|7#} .

C4. The function f(x; 0, 1) is continuous with respect to x.
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Theorem 1. Assume Conditions C1-C4 and that the true density is g(x; o, o). If an estimator (¥, &) of (¥, o) satisfies

(¥, 6) — £a(W, 00) = € > —00 (3)
for some constant c, then & — W, with respect to the metric D(-, -)in (2) and & — o almost surely as n — oo.

We comment that Conditions C1 and C2 are the standard regularity conditions for the consistency of the MLE. Condition
C2 implies Wald’s integrability condition (Wald, 1949). Conditions C3 and C4 ensure that Lemma 1 in Section 3 is correct
and the mixture density g(x; ¥, o) can be continuously extended to a compact space for (¥, o). Conditions C2-C4 together
guarantee that & is away from 0 and bounded above almost surely asn — oo. Then the MLE consistency results in Kiefer and
Wolfowitz (1956) can be applied; more discussion is given in Section 3. In Section 4, we show that Model (1) with f(x; i, o)
being one of the four commonly used component density functions (normal, logistic, extreme-value, or t) satisfies these
conditions. R A

It can be seen that the MLE (¥, &) satisfies (3) with ¢ = 0. Therefore, by Theorem 1, both ¥ and 6 are strongly consistent
under Conditions C1-C4.

Corollary 1. Assume Conditions C1-C4 and that the true density is g(x; ¥y, o). Then ¥ — Wy with respect to the metric D(-, -)
in(2)and 6 — og almost surely as n — oo.

3. Proofs
3.1. Some useful lemmas

As discussed in Chen (2017), except for Conditions C1 and C2, a key regularity condition for the MLE consistency results
in Kiefer and Wolfowitz (1956) is that the definition of g(x; ¥, o) can be continuously extended to a compact space of (¥, o).
This extension could fail under our current setup because f(x; i, o) is not well defined at = 0. To make the consistency
results in Kiefer and Wolfowitz (1956) applicable, a key step is to show that there exist positive constants € and A such that
as n — oo, the event sequence {¢ < & < A} occurs almost surely.

We first present a technical lemma that gives a uniform upper bound for the number of observations in the o=¢
neighborhood of . Here a = (1 4+ 8)/(28), where 8 is given in Condition C3. With the condition that 8 > 1 in Condition
C3,wehave0 <a < 1.

For convenience of presentation, we let b = 2(8 + 1)/(8 — 1) and €y = (3mbuo/00)~ V1=, Further, let

n
=n" ) IX <x)
i=1

be the empirical cumulative distribution function, and let G(x) be the cumulative distribution function of the X;’s. Define

E_llmmf{supz (1% — u|<e )§n/(mb)}.

n—o0 weR

Lemma 1. Suppose {Xi, ..., Xy} is ani.i.d. sample from Model (1). Further, assume Conditions C3 and C4 are satisfied. Then we
have

P(E) =1,
and therefore almost surely there exists an ng such that when n > ng, we have

supZ (1Xi — | < € ) < n/(mb).

MER

Proof. Since

SUDZ (X — nul < €5~ )fitelg[n{G(qué& 9 — Galp — € Y],

MER

it suffices to show that

(llm mf{sup{Gn(,u +€7") = Gl — g M)} < ]/(mb)}) . (4)
n—>00 | ueR
Note that

sup {Ga(ie + €)= Galie — €} < supIGul(i + €~ — Gl + €5~ )|
HER HER
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+ sup|G(u + € %) — Gl — €5~ %)

HER
+ sup|Ga(pt — €;™%) — Gl — €5 7).
HER

Under Conditions C3 and C4,

sup|G(u + €)%) — Gl — €)™ *)| < 2vo€y~*/00.
HeER

Let

A = { lim sup|Ga(pt + €4 ") — Gl + €5 %) = 0}

n—00 ) eR

and

A, = { lim sup|Gp(u — eg’“) —G(u — e(}*“)| = 0} .

n—>00 ; eR
By the Glivenko-Cantelli theorem,
P (A1) =P(A) =1.
Hence, P(A1 N Ay) = 1. Then almost surely there exists an ng such that when n > n,

sup {Galie + €)= Galie — €5™")} < 3voeg /00 = 1/(mb),
ne

which implies (4). This completes the proof. O
The next lemma helps us to show that asymptotically we can restrict o to be in a bounded interval away from 0 and oco.

To formally present the result, we define some notation. Let Ky = jR log{g(x; W, 00)}g(x; Wy, 0g)dx. Condition C2 ensures
that |Ky| < oo. Further, define A = vg/exp(Ko — 1). We choose a positive number € that satisfies the following conditions:

D1. € < g = (3mbug /o)~ /9;
D2. € < (vi/vo) 2/ *1);
D3. b~'logve + (1 — b ")logvs + (B — 1)loge < Ko — 1.

Clearly, an € satisfying the above conditions exists, since 8 > 1 as assumed in Condition C3.

Lemma 2. Suppose {X1, ..., Xy} is ani.i.d. sample from Model (1). Further, assume Conditions C1-C4 are satisfied. Then we have
P{ lim sup bo(W,0) —Ln(Wo,00)p = —00 ]| =1 (5)
=00 | ye¥p,0e[A,00)

and

=0 | yeWy,0e(0,¢]

P <lim sup (¥, 0) — La(¥, (70)} = —oo) =1. (6)

Proof. We start with (5). Recall that f(x; i, 0) = o ~'f((x — i)/0; 0, 1). By Condition C3, we have

n m
oj X,‘— i
W, 0) =Y log} 3" s (T"’;o, 1)

i=1 j=1
n m O
]
E log E —vp
- o
j=1

i=1

IA

IA

n(logvg —logo), (7)

where vy is given in Condition C3.
Hence, with A = vy/exp(Kp — 1), we have

sup  Lu(¥, o) — €Yo, 00) < n(Kg — 1) — £,(¥o, 00).
VeWn, o>A

By the strong law of large numbers and the definition of K, we have (5).
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We next consider (6). Let A = {i : minj<j<m|X; — wj| < 017} and n(A) be the number of indices in set A. For an index set
S, define £,(¥, 0;S) = Y ;s logg(Xi; ¥, o). Similarly to (7), it can be shown that

£y(¥, 0;A) < n(A)logvo — logo). (8)
By Condition C3, we have

N A
(.o A) < Y log 1S —fv1<'7“’)
o o

ieAC j=1

m
= Z logvy 4+ (8 — 1)logo + log Zaj|xi—ﬂj|7ﬂ

ieAC j=1
Since min<j<m|X; — pj| > o7 for alli € A%, it follows that

(¥, 03 A) < ) " {logvy + (Ba — 1)log o)

ieAc
= n(AC){logm—i—;(ﬁ—l)loga}, (9)

where the equality holds because fa = (8 + 1)/2 > 1.
Combining (8) and (9) gives

(W, 0)=L,(¥,0;A)+ £(¥, 0 A%)

< n(log vy — log o) + n(A°) {logm —logvo + %(ﬂ + 1)10g0} .

= n(log vy — log o) + n(1 —b]){logvl —logvo—i—](ﬂ—i-l)loga}
+ (n(A°) —n(1—=b"1) {logvl log vo + (ﬂ—i—l)loga}

=n{b—l logv0+(1—b‘1)logv1+l(ﬁ—l)loga}

4 (n/b — n(A)) {logvl ~loguy + (8 + 1>loga} ,

where in the last step we have used the fact thatb = 2(8 + 1)/(8 — 1). Then, for o € (0, €], since 8 > 1 and € satisfies D3,
we have

La(W, o) — €n(¥o, 00)

1
=n {b] log vy + (1 — b~ ") log vy + yiGhe 1)10g6} — £a(¥0, 00)

+ {n/b — n(A)} {10gv1 log vy + (ﬂ + l)logo}
n(Ko — 1) — £n(¥o, 00) (10)
—i—{n/b—n(A)}{logv] log vp + (ﬂ+1)loga} (11)
By the strong law of large numbers and the definition of Ky, we have
p (nli)rgo (Ko — 1) — £,(Wo, 00)} = —oo) =1, (12)
Again for o € (0, €], since € satisfies D2, it follows that
log vy — logvo + (ﬁ+l)logcr < logv; —logvy + (/3+1)loge <0. (13)

Since for eachi € {1,2,...,n},

m
H L . 1-a
I(min X; =yl < o'~ 2;‘1 X — 1yl < o7,
=
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we have

Because o € (0, €] and € satisfies D1, it follows from Lemma 1 that

n

n(A) <m-su (1X; — <e <n/b.
(A) ME£Z| pl<e ) <n/

This together with (13) implies that for large enough n,
1
{n/b — n(A)} {log vy — log vy + 5(;‘3 + 1)loga} <0,

almost surely. Combining (10)-(13) leads to (6). This completes the proof. O

3.2. Proof of Theorem 1

The results in (5) and (6) imply that
P(liminf{e <5< A}) =1
n—oo

Hence, we can confine ¢ to [€, A] asymptotically, and the results of Kiefer and Wolfowitz (1956) apply. For completeness,
we outline the key steps of the proof of Theorem 1 by following Kiefer and Wolfowitz (1956).
In the first step, we compactify the parameter space ¥,,. Let

Uy ={y +p¥ : We W y>0,p>0,0=<y+p=1}.

We extend the definition of D(-, -) to ¥,,, without modifications. Then ¥, is a compact metric space with respect to D(-, -).
See the Appendix for a proof of its compactness. Let § = (¥, o) and define

D(61, 6;) = D(¥, W) + |0y — 02 ).

Since D(-, -) is a distance and

D, ws) < 2/ exp(—|ul)dp = 4
R

we can verify that D(-, -) is a bounded distance on ¥, x [€, A]. Hence, ¥, x [€, A] is compact with respect to D(-, -).
In the second step, we argue that g(x; ¥, o) is continuous for all x on W,, x [e, A] under the distance D(-, -). That is, for
any 0 = (¥,0) € ¥, x [, Al,if D, §) — 0, then we have

g ¥,6) > glx; ¥, 0).
For the given (¥, o), we define

H(p, 0*)=w()l(o < 0¥)

and define H to be H with (lf/, o) in place of (¥, o). Then the mixture density can be written as
gx; ¥, 0) =/ fx; p, o)dH(u, o).
RxRT
We further define

B(Hy. H) = f e 0%) = Halpe, 0] xpl— 1] — lo* ddo”
RxR

Lemma 2.4 of Chen (2017) implies that if f(x; u, o) is continuous for (i, 0°), limy|4jo|—o0af (X; ., 0) = 0, and D(H,H) — 0,
then we have g(x; ¥,6) — g(x; ¥, 0).
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Condition C4 ensures that f(x; u, o) is continuous for (u, o); Condition C3 ensures that lim,|4|s|—o0af (X; 1, 0) = 0.
Hence, to argue that g(x; ¥, o) is continuous for all x, we need to show only that if D(0 #) — 0, then we must have

D(H H) — 0. Note that

D(H,H) = / TG < o*) — W (wi(o < o) exp{—|u| — lo*|}dpdo™
RxRT
< / & () — W ()l exp{—|u| — |o*[}dpdo*
RxRT

+/ (6 <o) —1(0c <o) exp{—|u| — |o*|}dudo*
RxRt

< [ 1800wl expi=ulidy
+2/ |I(& —I(o < o*)| exp{—|o*|}do*
< D(¥,¥)+2|6 —o|exp{—min(G, o)}. (14)

Further, when D(0, ) — 0, we must have DglI/, ¥) — 0and 6 — o, which, together with (14), implies that D(fi, H) — 0.
Hence, g(x; ¥, o) is continuous for all x on ¥, x [e, A] under the distance D(, -).
In the third step, we show that forany 8§ = (¥, 0) € ¥, x [€, A] such that (¥, o) # (¥, 0p), we can find a § such that
E {logg(X; Bs(9))} — E {logg(X; W, 00)} <O, (15)
where
Bs(0) = {0* = (W*,0%): D(0",0) < 5, 0* € By x [e, A]}
and

g(x: B5(0)) = sup g(x;¥*, o%).
6% Bs(8)

By Kiefer and Wolfowitz (1956) and Chen (2017) and because of Conditions C1, C2, and C4, we can obtain (15) by arguing

that
(X:B5(®) |
w5t Hlogm} ] R (16)
§—0t g(X, ‘1’0, Uo)
Here x* = max(x, 0). By Condition C3,
g(X: Bs(9))
%8 (X ¥ 00) 0g(vo/€o) — log g (X: Yo, o0)
Hence,
+
2(X: By(9))
108 = (X: 7. 00) l logg(X: W
i Ogg(X; Wy, o) ] < llog(vo/€0)| + llog g(X; Wo, a0)l,

which, together with Condition C2, implies (16). Hence, (15) is proved.
In the last step, we combine the above results to complete the proof of Theorem 1. For any § > 0, let

B = B;(6y).

The result in (15) leads to a finite open cover of the compact set { U, x [e, Al} \ B©. Then by the finite covering theorem,
we can find 04, ..., O from ¥, x [e, A] and positive &1, . . ., 5k for some positive integer K such that

K
[ x [e, AN\ B C ) Bsy(6)
k=1

and
E {logg(X; Bs,(6x))} — E {logg(X; o, 00)} < O. (17)
Define

BY =By (6), k=1,....K, BV = (&, x (0, ]} |_J{ @ x [4, 00)}.
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Then the whole parameter space of @ = (¥, o) can be written as

K+1

@y, x (0,00) = _J BY.
k=0

Note that it can be easily verified that

sup  L(P,0)=  sup (¥, 0)
VeWn,oe(0,€] we @m,ge(gve]
and
sup Ly(W,0)= sup Lo(W, o).
Ve Wn,0€e[A,00) We Wy, oe[A,00)

Hence, by the strong law of large numbers, (5)-(6), and (17), we havefork =1, ..., K + 1

P < lim { sup £,(¥, o) —En(llfo,ao)} = —o<>> =1.

10 LgeBh)
Therefore, for any estimator (¥, &) of (¥, &) such that
(W, 5) — Ly(Wo, 00) = € > —00
for some constant ¢, we must have for any § > 0

P(liminf{é c B<°>}) = P(liminf{b(é, 0o) < 5}) -1

n—oo n—oo

This implies that D(6, ) — 0 almost surely. Equivalently, D(¥, ¥,) — 0 and & — o almost surely. This completes the

proof of Theorem 1.

4. Examples

In this section, we illustrate the consistency results of Section 2 by showing that the four commonly used component
density functions satisfy Conditions C1-C4. Consequently, by Corollary 1, the MLE of (¥, o) is strongly consistentif f (x; i, o)
is one of these four functions. As preparation, we present a sufficient condition for verifying Condition C2.

Proposition 1. If fR{logf(x; w, DIf(x; 0, 1)dx > —oo forany given u and Condition C3is satisfied, then Condition C2 is satisfied.

Proof. Let

mo
Yo(u) = Zaoﬂ(ﬂoj‘ < u).
=1

Without loss of generality, we assume oy = 1. Otherwise, we can take the transformation t = x/oy.

Note that

/ llog{8(x; o, o)} £(x; Yo, 0)dx
R

mo mo
= / log Zaojf(X; Hojs 1) Zaojf(X; toj, 1)dx
R =

j=1
mo mo
f(X: pgjs 1)
= | |log agi——— ¢ +1ogwp aoif (%; oy, 1)dx
[ o) e D et o

o fng D (| 5
< Ilogvo|+f log { > e ———= 1S " agif (x: o, Dix
R =1 Vo =
m

mo
(x5 poj, 1)
= |log vg| —/log Zaoj+ Zaoj‘f(xi toj, 1)dx,
R 5 0
j=1

j=1
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where in the last step we have used the fact that f(x; 0, 1) < v in Condition C3. Hence, to verify Condition C2, it suffices to
show that

mo mo
[ 108} > st g 0 Y aof o . > —ox. (18)
R j=1 j=1

By Jensen’s inequality,

mgp mgp
f log { > aoif (% p1oj, 1) ¢ D eroif (x; paoj, 1)ddx
R =1 j=1

mo mo
> f 3 agylogf(x: oy 1)} S agf (% ey, 1dx
R . N
Jj=1 j=1

mg Mg

= Z ZOleOth /{Ing(X; wojs DI (x; pon, 1dx
j=1 h=1 R
mg mg

= 303 oo [ Hogf(t s — o ;0. 1)t
R

j=1 h=1
By the condition fR{logf(x; w, DIf(x; 0, 1)dx > —oo for any given u, we have (18). This completes the proof. 0O

Note that it is easy to verify that the four commonly used component density functions all satisfy Condition C4. We now
verify that they all satisfy Conditions C1-C3.

Example 1 (Normal Distribution). Let f(x; 0,1) = (2)~"/? exp(—x?/2), the probability density function of the standard
normal distribution.

(a) Theidentifiability of Model (1) with the normal component density function follows from Teicher (1963)and Yakowitz
and Spragins (1968). Hence, Condition C1 is satisfied.

(b) Condition C3 is satisfied if we choose vy = v; = (27)~"? and 8 = 2.

(c) Forany given w,

f{logf(x; w, DI (x; 0, 1)dx = —0.5log(27) — 0.5(u® + 1) > —o0.
R
Thus, Condition C2 is also satisfied by Proposition 1.

Example 2 (Logistic Distribution). Let f(x; 0, 1) = &*/(1 + €*)?, the probability density function of the standard logistic
distribution.

(a) Following Theorem 2.1 of Holzmann et al. (2004), Model (1) with a logistic component density function is identifiable.
Hence, Condition C1 is satisfied.

(b) It can be verified that Condition C3 is satisfied with vo = v{ = 1and 8 = 2.

(c) Since log(1+ €*) < log2 + |x| < log2 + 0.5(1 + x?) for any , it follows that

/{logf(x; w, DIf(x; 0, 1)dx = —p — 2/ {log (14 ")} f(x; 0, 1)dx
R R

v

—p—2log2 — /{1 +(x — wP)f(x; 0, 1)dx
R

—pu—2log2 — (14 u? +n%/3) > —co.

Thus, Condition C2 is also satisfied by Proposition 1.

Example 3 (Extreme-Value Distribution). Let f(x; 0, 1) = exp{—x —exp(—x)}, the probability density function of the standard
extreme value type I distribution or the Gumbel distribution.

(a) The identifiability of Model (1) with the component density function being the probability density function of the
Gumbel distribution follows from Ahmad et al. (2010). Hence, Condition C1 is satisfied.
(b) It can be verified that Condition C3 is satisfied with vo = vy = 1and 8 = 2.
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(c) Note that

f (log (x: 1. }f(x: 0, 1)dx
R

f (—(x— 1) — e M) exp(—x — e)dx
R
=pu—y—e'>—o0.

Here y is the Euler-Mascheroni constant. Hence, Condition C2 is satisfied by Proposition 1.

Example 4 (Student’s t Distribution). Let f(x; 0, 1) = (1 + x?/v)~+1/2C,, the probability density function of Student’s t
distribution with v degrees of freedom. Here v is a given positive integer, C, = I'{(v + 1)/2}{/va '(v/2)}~ !, and I'(-) is
the Gamma function.

(a) The identifiability of Model (1) with the component density function being the probability density function of the
t-distribution follows from Holzmann et al. (2006). Hence, Condition C1 is satisfied.

(b) It can be verified that Condition C3 is satisfied with vy = 1, vy = v,and 8 = 2.

(c) Note that

f (logf(x: 1. 1)} (x: 0, 1)dx
R

1 X — )
= IOgCu—%Cv/ 10g{1+(‘)“)}(1+x Ju)y" D2y,
R

By the comparison test for improper integrals,
X —
0< /log{l + (,u)}(] +x2 /vy D 26x < o0
R v

for any given w. Hence, fR logf(x; i, 1)f(x; 0, 1)dx > —oo and Condition C2 is satisfied by Proposition 1.

5. Extension to multivariate case

In this section, we extend the results in Corollary 1 to finite mixtures of multivariate elliptical distributions, a special class
of finite mixtures of multivariate location-scale distributions. The identifiability of this special class of models has been well
studied in Holzmann et al. (2006).

Suppose we have i.i.d. p-dimensional random vectors X1, .. ., X;, from the following finite mixture model:

)= af e wy ¥) = / £ . Zdw (). (19)
j=1 R

Here f(x; ., X'), the component density function, is assumed to take the form
[, ) =127 (x—pn) 2 (x—p),

where x, u € RP, X' is a p x p positive definite matrix, andfo(x) is a density generator, i.e., a non-negative function on [0, o)
such that fy(x"x) is a probability density function. The MLE (l1/ b ) of (W, X) is defined as for the univariate case. Next we
extend the distance D(-, -) from the univariate to the multivariate case:

D0, 0s) = / (1) — W) exp(— |l (20)

Here for u = (p1, ..., up)7, |p] is interpreted as Z 11]. Similarly to the proof for D(-, -) in the Appendix, we can verify
that D*(-, -)is a distancq .
The consistency of (¥, X') relies on the following regularity conditions:

C1*. The finite mixture model in (19) is identifiable.
c2%, pr|log{g(x; Yy, o)} g(x; ¥y, Xp)dx < oo, where (¥, X)) is the true value of (¥, X).

C3*. There exist positive constants vg, v, and 8 with 8 > p such that forallx > 0
fo(x) < min {Uo, lefﬁ/z} .
C4*. Forx > 0, fo(x) is continuous in x.

Under the regularity conditions C1*-C4*, we have the strong consistency of (@, x ) in the following theorem.

Theorem 2. Assume Conditions C1*-C4* and that the true density is g(x; ¥, X). Then U — W, with respect to the metric
D*(-,-)in (20) and X — X almost surely as n — oc.
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One of the key steps of the proof of Theorem 2 is to establish a similar result to Lemma 1 for the multivariate case. This
result can be obtained by combining the proof of Corollary 3 in Alexandrovich (2014)with that of Lemma 1. See the Appendix
for a proof of Theorem 2.

As an illustration, we consider finite mixtures of multivariate normal distributions with a common and unknown
variance-covariance matrix X.

Example 5 (Multivariate Normal Distribution). Let fy(x) = (2 )~ /2 exp(—x/2), the density generator for the multivariate
normal density function. Clearly, fo(x) satisfies Condition C4*.

(a) The identifiability of finite mixtures of multivariate normal distributions is covered by Holzmann et al. (2006). Hence,
Condition C1* is satisfied.
(b) It can be verified that Condition C3* is satisfied with vy = (27)77/2,

v = (zn)—P/Z(p + 1)(P+1)/2’

andg=p—+ 1.
(c) Following the proof of Proposition 1, to verify Condition C2%, it suffices to show that

f (logf(x; 1, So)}f(x; 0, To)dx > —o0
RP

for all p. Note that

/ {logf(x: 1. Zo)}f (x: 0, Zo)d
RP

= —0.5plog(27) — 0.5l0g|Xs| — 2p — n* X '

> —00.
Hence, Condition C2* is satisfied.

Since finite mixtures of multivariate normal di:itributions with a common and unknown variance-covariance matrix
satisfy regularity conditions C1*~C4*, the MLE (¥, X') under this model is strongly consistent.

6. Summary and discussion

In this paper, we establish the strong consistency of the cumulative distribution function of the mixing distribution and
the structural parameter in finite mixtures of location-scale distributions with a structural parameter in both the univariate
and multivariate cases. We further demonstrate that some commonly used finite mixtures of location-scale distributions
satisfy the regularity conditions.

For the model setups in (1) and (19), ¥ is assumed to have finite support, and the scale parameter o or X' is assumed
to be the same in all the component density functions. Two considerations underlie these assumptions. First, if ¥ is fully
nonparametric, then the mixture model may not be identifiable. For example, the normal mixture model is not identifiable if
¥ is fully nonparametric (Chen, 2017). Assuming that ¥ has finite support ensures that finite mixtures of some commonly
used location-scale distributions are identifiable. Second, if the o or X' can vary in different component density functions,
then the log-likelihood is unbounded (Chen et al., 2008; Chen and Tan, 2009). Hence, the usual MLEs of the unknown
parameters are not well defined. We may need to consider other estimation methods such as the penalized MLE considered
in Chenetal.(2008), Chenand Tan(2009),and Alexandrovich (2014). We leave the consistency properties of such estimators
to future research.

We next discuss the applicability of Corollary 1 and Theorem 2. The results in Corollary 1 and Theorem 2 are applicable
only to the MLE, i.e., the global maximum point of the log-likelihood function. Commonly used algorithms such as the EM-
algorithm may lead to a local maximum point of the log-likelihood, which is not guaranteed by our result to be consistent.
In practice, we suggest trying multiple initial values to increase the chance of locating the global maximum point.
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Appendix A
A.1. Proof that D (-, -) is a distance

To show that D (-, -) is a distance.,, it suffices to show

) D(¥1,¥,) > 0;

) D(¥1,¥3) <D (W1, ¥,) + D (¥, ¥s) forany ¥, ¥y, W3 € Wy,
) D(¥, %) =D (¥, ),

) D (¥, ¥;) = 0ifand only if ¥1(u) = ¥, () forall u € R.

(a
(b
(c
(d

Based on the definition of D(-, -) in (2), it is easy to verify that (a)—(c) are satisfied. Next we discuss (d). If ¥;(u) = ¥,(u)
for all u € R, then obviously

D, W) = fww) — W) exp(— ||}y = 0.
R

We now argue that if D (¥, ¥,) = 0, we must have ¥;(u) = W,(u) for all © € R. We denote the distinct values of the
supports of ¥(u) and ¥y(u) as {t; < t; < - -+ < ty+} and define tp« 1 = +00. We write ¥;(u) and ¥,(u) as

m* m*
V() =Y opul(ty < p)and Wo(u) = " apl(ty < ).
j=1 j=1

If ¥1() # Y5() for some u, then we can find a jo such that
oj1 = Qjp forj<jo—1 and o1 #+ Ujy2-

This implies that
pwwy = [ 18 (1) — W) exp(— | e

KEltjg tig+1)
Gig+1
= s~ ol [ expl—luld = .
o
Hence, if D (¥, ¥,) = 0, we must have ¥;(u) = ¥,(u) for all u € R. This completes the proof.
A.2. Proof of the compactness of Wy,

We prove that ¥, is compact with respect to the distance D(-, -) according to the following equivalent definition of
compactness of a metric space. A metric space is compact if and only if every sequence in this space has a convergent
subsequence whose limit is also in this space.

In the proof of the compactness of ¥,,, we need the following results from real analysis.

Result (i). If {c,, n = 1,2, ...} is a bounded real sequence, then {c,, n = 1,2, ...} has a convergent subsequence
{cn» k=1,2,...}, and its limit is finite.

Result (ii). If {c,, n = 1,2, ...} is a unbounded real sequence, then {c,, n = 1, 2, ...} has a subsequence {c,,, k =
1,2, ...} that diverges to oo or —oo.

Result (i) is just the classic Bolzano-Weierstrass theorem from real analysis. Hence, we give only the proof for Result (ii).
Suppose {c;, n =1, 2, ...} has no upper bound. Then for any given positive integer k, there exists n, such that c,, > k.Then
limy, oo Cn, = 00. Hence, Result (ii) holds. ) B

Next we return to the proof of the compactness of ¥,,. Let {¥;,L = 1,2, ...} be a sequence in ¥,,, where

m
Vi) =i+ oY ol < )
=1

<+ <lag>0>"ap=1and —00 < iy < po <+ < U < 00

withy, > 0,p. > 0,0
i)-(ii) and G. Cantor’s “diagonai method”, we can find a subsequence {L;, k = 1, 2, ...} such that

Using Results (
Yo = lim Yigs Po = lim PL,s Qjo = lim ., Mjo = lim MjLy s
k—o00 k— 00 k—o00 k—o00

where Yo = 0,0 >0,0< Yo+ po =< l,Oljo >0, ij:]oljo = 1,and —o0 < Mmoo < Moo < -+ < Umo < 00. We define
m

WYo(i) = o + po Zajol(ﬂjo <u).
=1
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Further, we define two index sets S; and S; as S; = {j : pjo = —oo}and S, = {j : ujo = oo}, respectively. Let S = S; U S,.
Then ¥y(u) can be rewritten as
Wo(i) = 5+ Py Y ejol (1o < 1),
Jgs
where y; = yo + pOZjeslajO. Py = p02j¢5aj0, and oy = ajo/z,gsalo forj ¢ S. This implies that ¥, € W,,.
Let Wi, = vy, + o )iy @i (i, < w). To finish the proof, we need to argue that as k — oo,
D(II/]_k, '1/0) — 0.
Note that
DOt 00) = [ 108,00) = oy expl— )
R
m
= / i — vo + Y { eI, < 18) = pocol (1o < )}l exp(—pel)dp
R N
j=1
sf i — 7o exp(—Ipul)dn 1)
R
m
3 [ 1, = 1)~ poeol( = 0 expt (22)
j=1"F
Since yp = limy—. )1, we have that as k — oo,
/|n,< — ol exp(—|uhdp = 2 |y, — vo| = 0. (23)
R
By the triangular inequality and the facts that 0 < pp < 1and 0 < jp < 1, we have
[ 1prcattion, = 10— posol = ) ex— i
R
< / | oL @it — Poctjo| €xp(—|ul)dp (24)
R
+ [ M, = )= g0 <l expl=lul)du (25)
R
Similarly to (23), as k — oo we have
[ 101, = ol expt= )i — o (26)
R
For (25), we have that if o is finite,
[ 01, = 100~ K = ) exl— 1l < s, = a0l > 0 (27)
R
as k — oo, and if pjp = oo or —oo,
101, = 100~ K = ) exo(— e = exp(lpg ) — 0 (28)
R

as k — oo.
Combining (24)-(28) leads to

lim / lona (i, < 1) — poarol(uio < )] exp(—|l)dp = O,
R

k—o00
which, together with (21)-(23), implies that
lim D(¥,, Yo) = 0.

k— o0

This completes the proof.

A.3. Proof of Theorem 2

Our proof of Theorem 2 is similar to that of Theorem 1. Hence, we simply outline the key steps.
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In the first step, we establish a result similar to Lemma 1. Let a* = (8 + p)/(28) and b* = 2(8 — p + 2)/(B — p), where
B > pis given in Condition C3*. Hence, 0 < a* < 1and b* > 1. We choose ¢ such that
von"/z
|30l (p/2 +1)
For the matrix X, “X > 0” means that X' is a positive definite matrix.

(€)% = 1/(2mb*).

Lemma 3. Suppose {X1, ..., Xy} isani.i.d. sample from g(x; ¥y, Xy). Further, assume Condition C3*, Let
n
E* = liminf sup sup Z {(xi —uWE x—p) < IEI_“*/"} < n/(mb*)} .
1700 | {Z>0,|Z|<ed} neRP T

Then P(E*) = 1.

Proof. Following the proof of Corollary 3in Alexandrovich (2014), we can show that

P(liminf: sup sup I! — )X (X —p) < |E|"’*/"] san}) =1,

=00 | (Z>0,1¥ |26} neRP 2

where

n nvomP/?
| 302 (p/2+1) ° 2m b*

When n is large enough, a, < n/(mb*). Hence, P (E*) = 1. This completes the proof. O

3 3
=7 nloglogn (e5)1=02 = 2 nloglogn +

In the second step, we establish a result similar to Lemma 2. We first define some notation. Based oni.i.d. p-dimensional
random vectors X1, ..., X, from g(x; ¥, '), the log-likelihood of (¥, X') is

(¥, o) = log(g(X; ¥, 2)).

i=1

LetK; = pr log{g(x; Yo, Xo)}g(x; Yo, Xo)dx. Condition C2* ensures that |[Kj| < oo. Further, define A* = {vy/exp(Kj — 1)}%.
We choose a positive number ¢* that satisfies the following conditions:

D1* €* < ¢
D2* €* < (v1/v0) /(B=p+2),
D3* (1/b*)logvg + (1 — 1/b*)logv1 + (,8 —p)loge* <Kj — 1.

Clearly, an €* satisfying the above conditions exists, since 8 > p as assumed in Condition C3*.

Lemma 4. Suppose {X1, ..., X,}isani.i.d. sample from g(x; ¥y, Xo). Further, assume Conditions C1*-C4* are satisfied. Then we
have
lim sup Lo(W, X)) —La(W, o)y = —0c0 ] =1 (29)
=00 | e, ¥>0,|%|>A*
and
P{ lim sup LW, X)) — La(W, o)y = —0c0 ) =1. (30)
=0 ye Wy, >0, X |<e*
Proof. We start with (29). By Condition C3*, we have
n m o
(¥, 2) =) logi )" Wfo (X — ) 271X — my))
i=1 j=1
< n(logvy — 0.510g| X)), (31)

where vy is given in Condition C3*.
Hence, with A* = {vg/exp(K§ — 1)}2, we have

sup (¥, X) — £y(W, Xo) < n(KG — 1) — £a(Po, Xo).
Ve Wy, 550, 5|>A%

By the strong law of large numbers and the definition of K, we have (29).
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We next consider (30). Let

A* = {i: min (X; — u;)" X 1(Xi—ILj)S |Z|a*/p}'
1<j<m

Similarly to (31), it can be shown that
(W, 35 A%) < n(A*)(log vg — 0.5log| X|). (32)

By Condition C3*, we have

m

G, B (A) < Y log Zw/zvl [ — ) 270 — )}
ie(A*)C

IA

n((A*)) {log vy + 0.5(a*B/p — 1)log| ¥|}
= n((A*)) {logv; 4 0.25(8 — p)log| X}, (33)

where in the last step we have used the fact that a*8 = (8 + p)/2.
Combining (32) and (33) gives

(¥, X) = (¥, Z5A%) + Ly(W, X5 (A7))
<n(logvg — 0.51log| X|) + n((A*)‘) {log vy — log vy + 0.25(8 — p + 2) log| X'|}
=n(log vy — 0.51og|X|) + n(1 — 1/b*) {log v1 — log v + 0.25(8 — p + 2)log| ¥'|}
+ {n((A*)) — n(1 = 1/b*)} {log vy — log vy + 0.25(8 — p + 2)log| X'}

{(1/b*)10gvo+(1—1/b*)10gv1+ 2B - p)logIEI}

+ {n/b* — n(A*)} {logvs — logvg + 0.25(8 — p + 2)log| X} ,

where in the last step we have used the fact that b* = 2(8 —p+2)/(8 —p). Then, for X satisfying | ¥'| < €*, since €* satisfies
D3* we have

(W, X)) — (¥, X0)

<n(Ky — 1) — €a(¥, Xo) (34)
+ {n/b* — n(A*)} {log vy — log v + 0.25(8 — p + 2)log| X} . (35)
By the strong law of large numbers and the definition of K, we have
p ( lim {n(K; — 1) — £a(%, Zo)} = —oo) -1 (36)
n—oo

Again for X satisfying | X| < €*, since €* satisfies D2*, we have

logv; —logvg + 0.25(8 — p + 2)log| X| < logv; — logvy + 0.25(8 — p + 2)loge™ < 0, (37)
which together with Lemma 3 implies that, for large enough n,
{n/b* — n(A*)} {log v; — logvo + 0.25(8 — p + 2)log| X} < 0,

almost surely. Combining (34)-(37) leads to (30). This completes the proof. [

Lemma 4 implies that asymptotically we can confine (¥, 3)to ©,where @ = ¥, x {¥ : ¥ > 0, | ¥| € [¢*, A*]}. Note
that @ is completely regular (Chen and Tan, 2009), so the techniques in Wald (1949) and Kiefer and Wolfowitz (1956) can
be applied to establish the strong consistency of &, b ). This completes the proof of Theorem 2.
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