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Abstract: Mixture models are widely used to explain excessive variation in observations that is not captured
by standard parametric models, and they lead to suggestive latent structures. The hypothetical latent structure
often needs critical examination based on experimental data. It is therefore important to know the sample
size needed to ensure a reasonable chance of success. We investigate this issue for the EM-test and the C(α)
test. They are shown to be asymptotically equivalent and have simple limiting distributions under two sets
of local alternatives for commonly used mixture models. We obtain a simple sample-size formula and an
associated simulation-based calibration procedure, and we demonstrate via data examples and simulation
studies that they provide useful guidance for several common mixture models. The Canadian Journal of
Statistics 44: 82–101; 2016 © 2016 Statistical Society of Canada

Résumé: Les modèles de mélange sont largement utilisés pour expliquer des variations que les modèles
paramétriques habituels n’arrivent pas à capturer, et ils suggèrent ainsi une structure latente qui doit souvent
faire l’objet d’un examen critique basé sur des données. Il importe donc de connaı̂tre la taille d’échantillon
nécessaire afin de garantir une probabilité de succès raisonnable pour un tel examen. Les auteurs étudient
ce problème pour les tests EM et C(α). Ils montrent que ces deux tests sont asymptotiquement équivalents
et qu’ils présentent une distribution limite simple sous des hypothèses locales pour des modèles de mélange
fréquemment utilisés. Les auteurs obtiennent une formule simple pour la taille d’échantillon pourvue d’une
procédure de calibration basée sur la simulation. Ils démontrent à l’aide d’exemples de données et de
simulations que leur approche s’avère utile pour de nombreux modèles de mélange communs. La revue
canadienne de statistique 44: 82–101; 2016 © 2016 Société statistique du Canada

1. INTRODUCTION

Mixture models are widely used to explain excessive variation in observations that is not captured
by parametric models, and they therefore reveal potential latent structures. In genetic applica-
tions, for instance, the presence of a latent structure is indicative of some disease-causing genes.
Detecting the presence of a latent structure, usually through a homogeneity test, is often the first
step in data analysis. A scientific claim, such as a latent structure, must be critically examined
based on experimental data. It is therefore important to know the sample size needed to ensure
a reasonable chance of success. There is an abundant literature on sample-size calculation for
the two-sample test and for case-control studies. Sample-size calculation for the homogeneity
test has not been investigated, and it is the focus of this paper. Clearly sample-size calculation is
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test-specific. The less efficient a method, the larger the sample required to achieve a given power.
Hence our investigation starts by screening homogeneity test methods.

The likelihood ratio test for homogeneity has received the most attention in the literature.
The results in Hartigan (1985), Dacunha-Castelle & Gassiat (1999), Chen & Chen (2001), and
Liu & Shao (2003) are insightful but arguably hard to implement in applications. The paper of
Chernoff & Lander (1995) on binomial mixtures lacks generality. We therefore do not consider
the likelihood ratio test for sample-size calculation.

The C(α) test of Neyman & Scott (1966) is convenient for homogeneity testing. The method
has a simple limiting distribution and possesses local optimality within this class. In addition some
over-dispersion testing methods coincide with this C(α) test. The modified likelihood ratio test
proposed in Chen (1998) and Chen, Chen, & Kalbfleisch (2001) is another potential candidate.
However it has been overshadowed by the EM-test developed more recently by Chen & Li (2009)
and Li, Chen, & Marriott (2009). Although the modified likelihood ratio test precedes the EM-test
and provides important insight for its development, the latter has several advantages: it is more
generic and valid under weaker conditions on the mixture models. In addition the issue of the
tuning parameter selection has been addressed by Chen & Li (2011) via computer experiments.
In summary we take the C(α) test and the EM-test as the basis for the sample-size calculation.

If the data are generated from an alternative model, any sensible test will reject the null
hypothesis with probability one as the sample size increases to infinity. At what intermediate
sample size will the power attain a specific target? Extensive computer simulations may be able
to provide an answer, but an answer based on one set of simulations may be applicable to only one
setting. A more general approach is to determine a formula for the sample size and to support it via
a follow-up simulation study. In this paper we provide a simple sample-size formula based on the
concept of power calculation under local alternative models. We find that the EM-test and the C(α)
test are asymptotically equivalent under two sets of local alternative models of interest. Given a
potential alternative model we insert it into the sequence of local alternative models to determine
the sample size needed. Simulation studies indicate that our sample-size formulas lead to tests with
powers close to the targets under the commonly used normal, binomial, and Poisson mixtures. In
applications, simulation should be used to examine the finite-sample power. If the deviation from
the target power is too large, a calibration formula can be used to refine the sample size.

The organization of the paper is as follows. In Section 2 we review the EM-test and the
C(α) homogeneity test. In Section 3 we obtain the limiting distributions of these tests for local
alternative models under simple conditions. In Section 4 we determine a sample-size formula for
commonly used exponential family distributions, together with an explicit form of the C(α) test
statistic. We also develop a calibration formula. In Section 5 we apply the formula to several real
examples and examine its validity via simulations. In Section 6 we summarize our results and
discuss potential future topics. The proofs are given in the Appendix.

2. EM-TEST AND C(α) TEST FOR HOMOGENEITY

A two-component mixture model is defined through its density function

f (x; �) =
∫

f (x; θ)d�(θ) = (1 − γ)f (x; θ1) + γf (x; θ2), (1)

where f (x; θ1) and f (x; θ2) are kernel densities from some parametric family, 1 − γ and γ are the
mixing proportions, and θ1 and θ2 are the component parameters. We consider only the case where
θ is one-dimensional. We use the mixing distribution �(θ) = (1 − γ)I(θ1 ≤ θ) + γI(θ2 ≤ θ) with
0 ≤ γ ≤ 1 to record the mixture structure. The null hypothesis under the homogeneity test is

H0 : γ(1 − γ)(θ1 − θ2) = 0,
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i.e., the mixture structure degenerates. We consider the sample-size calculation problem for the
EM-test and the C(α) test.

2.1. EM-Test
The EM-test is a likelihood-based method. Given a random sample X1, X2, . . . , Xn from (1), the
log-likelihood function is given by

ln(γ, θ1, θ2) =
n∑

i=1

log{(1 − γ)f (Xi; θ1) + γf (Xi; θ2)}.

To partially restore the regularity of the likelihood under mixture models, a penalized log-
likelihood function is used to construct the EM-test:

pln(γ, θ1, θ2) = ln(γ, θ1, θ2) + p(γ),

for some penalty function p(γ) on γ to be specified later. The EM-test for the homogeneity
hypothesis (Li, Chen, & Marriott, 2009) is best described via its calculation procedure:

Step 1. Select a number of initial values γ1, . . . , γJ , and a number of iterations K.
Step 2. For j = 1, . . . , J , do the following:

Step 2.1. Let k = 1 and γ
(k)
j = γj , and compute (θ(k)

j1 , θ
(k)
j2 ) = arg max

θ1,θ2
pln(γ (k)

j ,

θ1, θ2).
Step 2.2. For i = 1, . . . , n, compute the conditional expectations:

w
(k)
ij = γ

(k)
j f (Xi; θ

(k)
j2 )

(1 − γ
(k)
j )f (Xi; θ

(k)
j1 ) + γ

(k)
j f (Xi; θ

(k)
j2 )

.

Then compute

γ
(k+1)
j = arg max

γ

{(
n −

n∑
i=1

w
(k)
ij

)
log(1 − γ)

+
n∑

i=1

w
(k)
ij log(γ) + p(γ)

}
,

θ
(k+1)
j1 = arg max

θ1

{ n∑
i=1

(1 − w
(k)
ij ) log f (Xi; θ1)

}
,

θ
(k+1)
j2 = arg max

θ2

{ n∑
i=1

w
(k)
ij log f (Xi; θ2)

}
.

Step 2.3. Let k = k + 1. Repeat Step 2.2 until k > K.
Step 3. Calculate

M(K)
n (γj) = 2{pln(γ (K)

j , θ
(K)
j1 , θ

(K)
j2 ) − pln(0.5, θ̂, θ̂)},

with θ̂ = arg maxθpln(0.5, θ, θ), and export the value of the EM-test statistic as

EM(K)
n = max{M(K)

n (γj), j = 1, . . . , J}.
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The limiting distribution of EM(K)
n under H0 is 0.5χ2

0 + 0.5χ2
1 under some regularity con-

ditions that will be given in the Appendix. Here 0.5χ2
0 + 0.5χ2

1 denotes an equal mixture of a
distribution with point mass at zero and a χ2

1 distribution. Given a significance level α < 0.5, the
EM-test rejects H0 when EM(K)

n > z2
α where zα is the (1 − α)th quantile of the standard normal dis-

tribution. Li, Chen, & Marriott (2009) further recommend K = 3, {γ1, . . . , γJ } = {0.1, 0.3, 0.5},
and p(γ) = C log(1 − |1 − 2γ|). Based on computer experiments, Chen & Li (2011) recommend
C = 0.54 for normal, Poisson, and binomial kernels and

C = exp(0.74 + 82n−1)
1 + exp(0.74 + 82n−1)

,

for the exponential kernel to achieve accurate sizes for the EM-test.

2.2. C(α) Test
The general C(α) test is designed to test a specific null value of a parameter of interest in the
presence of nuisance parameters. In addition the test statistic is derived from a class of zero-mean
functions with some regularity properties. Within this class, the function based on the projected
score function is optimal: it has the highest asymptotic power against local alternatives. Neyman &
Scott (1966) regard the variance of the mixing distribution � as the parameter of interest, and the
mean of � as a nuisance parameter, when C(α) is applied to test for homogeneity. Furthermore the
resulting statistic is the same for any � under some conditions. Hence the test is also model-robust
in some sense.

The C(α) test for homogeneity can be motivated from several angles that will not be covered
here. Under the null model f (x; θ), define

Yi(θ) = f ′(Xi; θ)
f (Xi; θ)

, Zi(θ) = f ′′(Xi; θ)
2f (Xi; θ)

. (2)

The mean θ of � is a nuisance parameter. It can be argued that
∑n

i=1 Yi(θ) and
∑n

i=1 Zi(θ) are
score functions for the mean and variance of �, respectively. Projecting Zi(θ) into the space
of Yi(θ) we have the residual Wi(θ) = Zi(θ) − β(θ)Yi(θ) with β(θ) = E{Y1(θ)Z1(θ)}/E{Y2

1 (θ)}.
Unless otherwise specified, throughout this paper, E andVar denote the expectation and variance
operators, respectively under f (x; θ0), the true or the perceived null distribution. We will clarify
the notion of the perceived null distribution later. The projection makes Wi(θ) uncorrelated with
Yi(θ). If the true value θ0 of θ is known, a test statistic would be the standardized

∑n
i=1 Wi(θ0),

in which the standard error also involves θ0. If θ0 is replaced by a root-n consistent estimator θ̂

under the null model, this test statistic is still available. Under mild conditions, the replacement
does not change the limiting distribution.

When θ̂ is the maximum-likelihood estimator under f (x, θ), the C(α) statistic has a simpler
form:

Tn =
∑n

i=1 Wi(θ̂)√
nν(θ̂)

=
∑n

i=1 Zi(θ̂)√
nν(θ̂)

,

with ν(θ) = E∗{W2
1 (θ)}, where E∗ indicates that the expectation is taken with respect to the

homogeneous f (x; θ) distribution.
It is found that Tn is asymptotically standard normal under the null distribution. At a given

significance level α we reject H0 when Tn > zα.
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3. LOCAL ALTERNATIVE MODELS AND ASYMPTOTIC POWER

The power function of a test for a finite sample size does not have a simple analytical form except
in a few special cases. The power function of any sensible test at n = ∞ is typically constant
1: the null model will be rejected 100% if the alternative is true and the sample size is infinite.
Consequently, power calculations are feasible only via computer simulation, but even extensive
simulations have a limited scope. One may instead investigate the local power, the limit of the
power function at a sequence of alternative models approaching the null model when n → ∞.
We use the term local alternative for such an alternative model sequence that approaches a null
model as the sample size increases. Local asymptotic results are useful for power comparisons of
competing tests or for sample-size calculation.

In the context of the homogeneity test, the local alternative models are mixtures with mixing
distributions approaching a point mass. In this paper we focus on two-component mixture models.
Thus our local alternatives have the following two forms:

Hn
A1 : γ = γ0, θ1 = θ0 − n−1/4{γ0/(1 − γ0)}1/2τ, θ2 = θ0 + n−1/4{(1 − γ0)/γ0}1/2τ

Hn
A2 : γ = n−1/2η, θ1 = θ0 − n−1/4{γ/(1 − γ)}1/2τ, θ2 = θ0 + {(1 − γ)/η}1/2τ.

Hereafter, unless otherwise stated, γ0, η, and τ are assumed to be constants not depending on n. As
n → ∞, both θ1 and θ2 in Hn

A1 tend to θ0 at the rate n−1/4 while the mixing proportion is stationary.
In comparison, in Hn

A2 the mixing proportion γ → 0, but θ1 → θ0 and θ2 → θ0 + τ/
√

η �= θ0 all
at the rate n−1/2. The dynamics in θ1 and θ2 of Hn

A2 are not intrinsic to the local alternative but
embedded to fix the means of the mixing distribution at θ0. As a consequence, both alternative
distribution sequences converge to f (x; θ0), which is regarded as the perceived null distribution
under which E and Var are computed.

These two sequences of local alternatives represent two types of loss-of-identifiability. The
first corresponds to the case in which the two-component distributions are nearly identical, and the
second to the case in which the second component is barely present in the mixture. Chen, Chen,
& Kalbfleisch (2001) investigated the limiting distribution of the modified likelihood ratio test
under Hn

A1. There has been no investigation under Hn
A2. Under both local alternative sequences,

the mean and variance of � are θ0 and δ2 = n−1/2τ2, respectively. Neyman & Scott (1966) also
choose δ = O(n−1/4) for their local alternatives. Chen (1995) showed that the best possible rate
for estimating � is n−1/4, which explains why we work on the local asymptotic in the n−1/4

neighbourhood.
The next theorem gives the limiting distributions of EM(K)

n and Tn under Hn
A1 and Hn

A2. As
notational preparation we define another Z function,

Z∗
i (θ) = f (Xi; θ) − f (Xi; θ0) − f ′(Xi; θ0)(θ − θ0)

(θ − θ0)2f (Xi; θ0)
. (3)

Taking the continuous limit we have Z∗
i (θ0) = Zi(θ0), which was defined earlier in (2). We use

d−→ for convergence in distribution and, if there is no possibility of confusion we use � for both
a standard normal random variable and its cumulative distribution function.

Theorem 1. Suppose p(γ) and f (x; θ) satisfy the regularity conditions specified in the Ap-

pendix. For any finite K we have EM(K)
n = (T+

n )2 + op(1) under Hn
A1. As n → ∞, Tn

d−→� + 1
and hence

EM(K)
n

d−→{(� + 1)+}2,

where 1 = τ2
E{W1(θ0)Z1(θ0)}/

√
E{W2

1 (θ0)}.
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Assume further that E[{Z∗
i (θ)}2] < ∞ for θ in a neighbourhood of θ0 + τ/η1/2. We also have

EM(K)
n = (T+

n )2 + op(1) under Hn
A2. As n → ∞, Tn

d−→� + 2 and hence

EM(K)
n

d−→{(� + 2)+}2,

where 2 = τ2
E{W1(θ0)Z∗

1(θ0 + τ/η1/2)}/
√
E{W2

1 (θ0)}.

The additional finite second moment condition under Hn
A2 deserves attention. Under expo-

nential mixtures, this condition is not satisfied for some θ0 + τ/η1/2. The effectiveness of the
first-order asymptotic deteriorates when this value gets closer to the region where this condition
is not satisfied. The sample-size formula under an exponential mixture thus has poorer precision,
as will be seen.

The EM-test is essentially a likelihood ratio test with some modifications. Thus it should
possess the same local power as the optimal likelihood ratio test. The C(α) homogeneity test
is locally the most powerful within its class (Neyman & Scott, 1966). It is not surprising that
these test statistics are closely linked under local alternatives. When the alternative model is some
distance from the closest null model, the EM-test is superior, as observed in many simulation
studies.

Suppose a potential alternative model (with a fixed δ2) is specified in an application, and we
insert this model into the local sequence of either Hn

A1 or Hn
A2 (with τ2 = n1/2δ2 dependent on n).

The power of the two tests for detecting this alternative model can then be assessed based on the
limiting distribution under the local alternative given any potential n. A larger n leads to a larger
1 or 2. Hence we need a minimum sample size n to attain a target probability of rejection.

In conclusion, the above theorem has already provided a simple recipe for sample-size cal-
culation. Given a target alternative model, one first decides to have it embedded into either Hn

A1
or Hn

A2. Subsequently, the user can obtain the value of either 1 or 2 given n and therefore the
asymptotic power via, for j = 1 or j = 2,

P{(� + j) > zα}.

The sample size needed to achieve the target power is therefore obtained, for instance, by a grid
search. In applications, it is desirable to conduct a simulation study to be absolutely sure. If the
simulated power deviates from the target more than can be tolerated, a calibration formula can be
used to refine the sample-size calculation. The exact formula will be given later.

In many applications, the kernel of the mixture model belongs to a natural exponential family
with a quadratic variance function (NEF-QVF; Morris, 1982). For these mixture models we find
straightforward analytical sample-size formulas. We present the results in the next section.

4. EXPLICIT FORMULAS UNDER NEF-QVF

The NEF-QVF, first investigated by Morris (1982), covers most commonly used distribution
families, such as normal, Poisson, binomial, and exponential. The density function in the one-
parameter natural exponential family has a unified analytical form,

f (x; θ) = h(x) exp{xφ − A(φ)},

where θ = A′(φ) represents the mean parameter. Let σ2 = A′′(φ) be the variance under f (x; θ).
For a member of the natural exponential family with a quadratic variance function, there must
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exist constants a, b, and c such that

σ2 = A′′(φ) = a{A′(φ)}2 + bA′(φ) + c = aθ2 + bθ + c. (4)

Thus the variance is a quadratic function of the mean.
The following theorem presents the simple forms of the C(α) test statistic, 1, and 2 when

f (x; θ) is a member of the natural exponential family with a quadratic variance function.

Theorem 2. If the kernel f (x; θ) is a member of the natural exponential family with a quadratic
variance function, then

Tn =
∑n

i=1(Xi − X̄)2 − nσ̂2
√

2n(a + 1)σ̂2 ,

where X̄ = ∑n
i=1 Xi/n and σ̂2 = aX̄2 + bX̄ + c with coefficients given by (4) are the maximum-

likelihood estimators of θ and σ2, respectively.
In addition the noncentrality parameters defined in Theorem 1 are given by

1 = 2 =
√

0.5(1 + a)τ2σ−2
0 ,

where σ2
0 is the variance under f (x; θ0).

The analytical form of theC(α) test statistics for the normal, Poisson, binomial, and exponential
kernels is included in Table 1 for easy reference.

We are now ready to work on the sample-size calculation. Given an alternative model with
density function (1 − γ)f (x; θ1) + γf (x; θ2), we insert it into the local alternative sequence with
τ2 = n1/2δ2 = n1/2γ(1 − γ)(θ1 − θ2)2. We here fix δ2 and allow τ2 to be dependent on n. For n

such that τ2 is of moderate size, the local powers of the EM-test and the C(α) test are approximated
by

�(1 − zα) = �
(√

0.5n(1 + a)δ2σ−2
0 − zα

)
.

Table 1: Tn and nα,β under the normal, Poisson, binomial, and exponential kernels.

Kernel θ φ a σ2 Tn nα,β

N(θ, 1) θ θ 0 1

∑n

i=1(Xi − X̄)2 − n√
2n

2(zα + zβ)2

δ4

Poi(θ) θ log θ 0 θ

∑n

i=1(Xi − X̄)2 − nX̄√
2nX̄

2(zα + zβ)2θ2
0

δ4

Bin(m, p) mp log
p

(1 − p)
− 1

m
θ − θ2

m

∑n

i=1(Xi − X̄)2 − nX̄(m − X̄)/m√
2n(1 − 1/m)X̄(m − X̄)/m

2(zα + zβ)2m3(1 − p0)2p2
0

(m − 1)δ4

exp(θ) θ -1/θ 1 θ2

∑n

i=1(Xi − X̄)2 − nX̄2

√
4nX̄2

(zα + zβ)2θ4
0

δ4

Here δ2 = γ(1 − γ)(θ1 − θ2)2.
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Therefore if the target power is 1 − β at a significance level α, the required sample size for
both tests approximately satisfies

√
0.5n(1 + a)δ2σ−2

0 − zα = zβ.

In other words, the minimum sample size is

nα,β =
{

(zα + zβ)σ2
0

δ2
√

0.5(1 + a)

}2

.

To use this formula, one needs to find the value of σ2
0 from θ0 = (1 − γ)θ1 + γθ2. For easy

reference, the explicit expressions for nα,β under the normal, Poisson, binomial, and exponential
kernels are given in the last column of Table 1.

4.1. Calibration of the Sample-Size Formula
As will be seen in the next section, the sample-size formula works well for the normal, binomial,
and Poisson mixtures. For these models, the average simulated power is 78% with standard
deviation 4.7%. There are a few cases in which the simulated powers differ from the target by as
much as 10%.

It is always good practice to conduct a simulation at the suggested sample size before one
fully commits to this size. If the deviation from the target is not acceptable, one may calibrate the
sample size as follows, based on a suggestion from the associate editor.

Under the null model and asymptotically, the EM-test rejects the null model when �+ > zα,
where zα is the upper α quantile of the standard normal. With noncentrality parameter (n) =
D

√
n, the asymptotic power of the test is

P{(� + (n))+ > zα} = P(� > zα − (n)),

when α < 0.5. If the target power is 1 − β > α we look for nα,β such that

zα − (nα,β) = z1−β.

When the asymptotic does not work precisely, a correction may help. Suppose

P(� > zα − (nα,β)) = 1 − β′ �= 1 − β.

If so we must have (nα,β) = zβ′ + zα. Suppose ncal is such that (ncal) = zβ + zα, then we get

ncal = nα,β

(
zα + zβ

zα + zβ′

)2

. (5)

Consider, for example, α = 0.05, β′ = 0.75, β = 0.8, δ2 = 0.155, σ2
0 = 1, and a = 0 so that

n = 514. The calibrated sample size is 590. As will be seen, the power at the calibrated sample
size is very accurate.

5. EXAMPLES AND SIMULATION

The sample-size formula is based on local asymptotic results under either Hn
A1 or Hn

A2. In this
section we use simulations to examine its accuracy for three examples.
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5.1. Example 1: Children’s Nutritional Status
Standardized anthropometric scores based on an international reference population are recom-
mended for the evaluation of the nutritional status of children in developing countries. One such
score, HE/AGE, is computed as (HEIGHT−M)/SD, where HEIGHT is the child’s height, M is
the median height, and SD is the standard deviation in the reference population according to the
age and sex class of the children.

To detect subclinical malnourishment, Böhning, Schlattmann, & Lindsay (1992) suggest mod-
elling these scores by a two-component normal mixture with equal component variances 1. In
applications, the doctor would like to ascertain the pattern of malnourishment to gauge the nu-
tritional status of an individual child. Böhning, Schlattmann, & Lindsay (1992) analyzed the
anthropometric measurements of 708 preschool children in northeast Thailand. They suggested
that the following two-component normal mixture

0.995N(−1.63, 1) + 0.005N(−6.19, 1),

is suitable for the HE/AGE scores. The children in the second group should be carefully considered.
Is the evidence strong enough to reject the homogenous model? The answer is no because

the P-value based on the EM-test for homogeneity is 1. Note that the nonhomogeneous model
fits well into the Hn

A2 local alternative sequence with θ0 = −1.6528 and δ2 = 0.1034. From the
formula in Table 1 for the normal kernel, the minimum sample size is n0.05,0.20 = 1, 155 to detect a
departure of this magnitude with probability 80%. The current sample size has a power of 62%. If
the original researchers had access to this paper, they would be able to make an informed decision
on the cost of collecting more data and the scientific significance of establishing the potentially
highly valued alternative model.

According to Kim & Lindsay (2015), there typically exists a limited range of confidence levels
where the likelihood region has a natural partition into identifiable subsets for any given data set
and mixture model. The identifiable region generally expands with the sample size. Therefore the
information helps to determine the size of the additional sample needed to confirm the suggested
departure.

How accurate is this sample size? We generated 10,000 random samples of size 1,155 from
the above normal mixture model, based on which the simulated powers of EM(3)

n and the C(α) test
are 83.6 and 69.2%, respectively. Clearly our sample-size formula works well for the EM-test.

How accurate is this formula more generally? We conducted additional simulations under
a number of mixture models. We choose three sets of mixing distributions with mean θ0 =
−1.6528. For the first set we choose γ from {0.1, 0.25, 0.4} and δ2 from {0.1034, 1.5 × 0.1034}.
In this set, the mixing proportions are distant from zero and the sizes of δ2 are moderate. Hence
they fit well into Hn

A1. For the second set we choose γ from {0.01, 0.02, 0.03} and δ2 from
{0.1034, 1.5 × 0.1034}. For this set of alternatives, the γ values are close to 0, and they fit well
into Hn

A2. For the third set, the γ value is chosen from {0.1, 0.25, 0.4} and δ2 = 3 × 0.1034. Both
the mixing proportions are distant from zero, and the value of δ2 is large for this set of alternatives.
Hence neither Hn

A1 nor Hn
A2 fit well. They may be loosely referred to as “nonlocal.”

There are 15 alternative models in the three sets. From each we generated 10,000 random
samples of size n0.05,0.2 according to the sample-size formula for the normal mixture from Table 1.
The model parameters, the sample sizes, and the simulated powers of the EM-test and the C(α)
test are given in Table 2.

The simulation results indicate that the sample-size formula is slightly liberal but reasonable
for both tests when the data are generated from models that fit Hn

A1 well. The formula from
Table 1 provides a good starting point. When the data are generated from models that fit Hn

A2
well, the sample-size formula is conservative for the EM-test but slightly liberal for the C(α)
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Table 2: Simulated powers of the EM-test and C(α) test with the calculated sample size n0.05,0.20 under 15
normal mixture models.

Alternative model n0.05,0.2 EM(1)
n EM(2)

n EM(3)
n C(α) test

0.90N(−1.521, 1) + 0.10N(−2.835, 1) 514 0.765 0.765 0.765 0.749

0.75N(−1.425, 1) + 0.25N(−2.335, 1) 514 0.752 0.752 0.752 0.755

0.60N(−1.331, 1) + 0.40N(−2.135, 1) 514 0.745 0.745 0.745 0.750

0.90N(−1.546, 1) + 0.10N(−2.618, 1) 1,155 0.781 0.781 0.781 0.770

0.75N(−1.467, 1) + 0.25N(−2.210, 1) 1,155 0.768 0.768 0.768 0.769

0.60N(−1.390, 1) + 0.40N(−2.047, 1) 1,155 0.763 0.763 0.763 0.763

0.99N(−1.630, 1) + 0.01N(−5.572, 1) 514 0.805 0.807 0.810 0.682

0.98N(−1.597, 1) + 0.02N(−4.410, 1) 514 0.824 0.826 0.827 0.717

0.97N(−1.584, 1) + 0.03N(−3.893, 1) 514 0.806 0.808 0.809 0.731

0.99N(−1.620, 1) + 0.01N(−4.853, 1) 1,155 0.855 0.856 0.857 0.724

0.98N(−1.607, 1) + 0.02N(−3.904, 1) 1,155 0.834 0.835 0.836 0.748

0.97N(−1.596, 1) + 0.03N(−3.482, 1) 1,155 0.823 0.823 0.824 0.758

0.90N(−1.467, 1) + 0.10N(−3.324, 1) 128 0.721 0.722 0.722 0.695

0.75N(−1.331, 1) + 0.25N(−2.618, 1) 128 0.716 0.716 0.716 0.719

0.60N(−1.198, 1) + 0.40N(−2.335, 1) 128 0.707 0.707 0.708 0.716

test. The simulation results show that the EM-test is generally more efficient in this situation.
When the data are generated from models that do not fit into either local alternative setting,
the sample-size formula is an underestimate. In this case the above confirmation simulation can
be used with the calibration formula to obtain a more accurate sample size. We will report the
performance of the calibration formula shortly.

5.2. Example 2: Sex Ratios in German Families
Geissler (1889) compiled a vast record of sex ratios for German families. Sokal & Rohlf (1973)
analyzed a portion of the data, consisting of the number of males among the first 12 children
in sibships of size 13 for 6,115 families from Saxony, Germany, 1876–1885. The 13th child was
ignored in an effort to discount the effects of stopping rules. One may consider sex determination
to be a sequence of Bernoulli trials with some constant probability p of having a male child. If
so, the number of male children in a family with 12 children would be distributed as Bin(12, p).
However most analyses have found that a single Bin(12, p) is not suitable for the data because
there is a substantial overdispersion. There are a number of possible explanations, and the most
plausible is that the value of p varies among families. Hence a binomial mixture is a good choice
for modelling this data set. Lindsay & Roeder (1992) and Lindsay (1995) applied geometric
diagnostic methods to determine the appropriate order of the mixture model. They found that a
binomial mixture of order two gave an adequate fit to the data.

We obtained the maximum-likelihood estimate based on a two-component binomial mixture;
the fitted model is given by

0.72Bin(12, 0.48) + 0.28Bin(12, 0.62).
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Table 3: Simulated powers of the EM-test and C(α) test with the calculated sample size n0.05,0.20 under 13
binomial mixture models.

Alternative model n0.05,0.2 EM(1)
n EM(2)

n EM(3)
n C(α) test

0.90Bin(12, 0.498) + 0.10Bin(12, 0.708) 374 0.777 0.777 0.777 0.751

0.75Bin(12, 0.483) + 0.25Bin(12, 0.628) 374 0.755 0.755 0.755 0.754

0.60Bin(12, 0.468) + 0.40Bin(12, 0.596) 374 0.744 0.744 0.744 0.748

0.90Bin(12, 0.502) + 0.10Bin(12, 0.673) 841 0.774 0.774 0.774 0.760

0.75Bin(12, 0.490) + 0.25Bin(12, 0.608) 841 0.768 0.768 0.768 0.769

0.60Bin(12, 0.477) + 0.40Bin(12, 0.582) 841 0.760 0.760 0.760 0.762

0.98Bin(12, 0.510) + 0.02Bin(12, 0.959) 374 0.862 0.865 0.868 0.722

0.97Bin(12, 0.508) + 0.03Bin(12, 0.877) 374 0.841 0.843 0.845 0.728

0.98Bin(12, 0.512) + 0.02Bin(12, 0.878) 841 0.865 0.867 0.868 0.755

0.97Bin(12, 0.510) + 0.03Bin(12, 0.811) 841 0.837 0.838 0.838 0.758

0.90Bin(12, 0.494) + 0.10Bin(12, 0.750) 166 0.764 0.764 0.765 0.726

0.75Bin(12, 0.475) + 0.25Bin(12, 0.653) 166 0.735 0.735 0.735 0.731

0.60Bin(12, 0.456) + 0.40Bin(12, 0.613) 166 0.727 0.727 0.728 0.733

Note that the component parameters are close to each other, which fits well into the local alternative
sequence Hn

A1. Suppose our interest is to detect the above heterogeneous model with 80% power
at the 5% level. With (γ, p1, p2) = (0.28, 0.48, 0.62) and m = 12, the formula in Table 1 shows
that the required sample size for the EM-test or C(α) test is n0.05,0.20 ≈ 374. Is n = 374 large
enough? We generated 10,000 data sets of this size from the above binomial mixture model, and
the rate of rejection of the homogeneous model was 74.4% for EM(3)

n and 75.4% for the C(α) test.
Both rates are slightly lower than but close to the 80% target. We conclude that the sample-size
formula is reasonably accurate.

We also conducted a simulation study under three sets of mixing models. The imaginary null
model is binomial with m = 12 and p0 = 0.72 × 0.48 + 0.28 × 0.62 = 0.5192. We fix m = 12
and γp1 + (1 − γ)p2 = 0.5192. In the first set we select three γ values, 0.1, 0.25, and 0.4, and two
γ(1 − γ)(p1 − p2)2 values from {0.00395, 0.00395/1.5} with 0.00395 = 0.72 × 0.28 × (0.48 −
0.62)2. In the second set we select two γ values 0.02 and 0.03, and two γ(1 − γ)(p1 − p2)2 values
from {0.00395, 0.00395/1.5} . In the third set, γ takes values 0.1, 0.25, and 0.4, and γ(1 − γ)(p1 −
p2)2 = 1.5 × 0.00395. In total we obtain 13 alternative models and the corresponding n0.05,0.2
values. The simulated powers of the EM-test and the C(α) test based on 10,000 repetitions together
with other details are given in Table 3.

The simulation results in Table 3 are similar to those for the normal mixture models. For the
Hn

A1 alternatives, the sample-size formula is liberal yet reasonable; for the Hn
A2 alternatives, it is

mildly conservative for the EM-test but liberal for the C(α) test; for less local alternatives, it is
rather liberal.

Simulations were also done on Poisson mixture models, and the results are similar. They are
therefore omitted. The performance of the calibration formula will be reported shortly.

5.3. Example 3: Failure Times of Air Conditioning Systems
We now consider the data studied in Proschan (1963). They consist of the times of successive
failures for the air conditioning system of each plane in a fleet of 13 Boeing 720 jet aircraft. After
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Table 4: Simulated powers of the EM-test and C(α) test with the calculated sample size n0.05,0.20 under 12
exponential mixture models.

Alternative model n0.05,0.2 EM(1)
n EM(2)

n EM(3)
n C(α) test

0.80exp(107.444) + 0.20exp(35.854) 692 0.834 0.834 0.834 0.726

0.65exp(114.139) + 0.35exp(54.102) 692 0.758 0.758 0.758 0.718

0.50exp(121.762) + 0.50exp(64.490) 692 0.722 0.722 0.723 0.709

0.80exp(103.250) + 0.20exp(52.629) 2,766 0.800 0.801 0.801 0.766

0.65exp(107.984) + 0.35exp(65.532) 2,766 0.758 0.758 0.758 0.748

0.50exp(113.375) + 0.50exp(72.877) 2,766 0.745 0.745 0.745 0.748

0.80exp(113.369) + 0.20exp(12.126) 173 0.964 0.965 0.966 0.687

0.65exp(122.843) + 0.35exp(37.938) 173 0.765 0.766 0.767 0.660

0.50exp(133.623) + 0.50exp(52.629) 173 0.676 0.677 0.678 0.639

0.95exp(97.771) + 0.05exp(4.864) 2,766 0.991 0.992 0.993 0.777

0.95exp(97.281) + 0.05exp(14.182) 4,322 0.933 0.933 0.934 0.776

0.95exp(96.919) + 0.05exp(21.061) 6,244 0.900 0.901 0.901 0.786

careful analysis, Proschan (1963) concluded that the failure time distribution for each aircraft was
exponential, but the rate varied. A mixture of exponential distributions is therefore a reasonable
model for the data. Li, Chen, & Marriott (2009) applied the EM-test for homogeneity to the aircraft
data and found significant evidence for heterogeneity. The evidence for the order of the mixture
being 3 or higher based on the EM-test (Li & Chen, 2010) is insignificant with a P-value of
0.6.

The fitted two-component exponential mixture model via the maximum-likelihood method is
given by

0.43exp(46.5) + 0.57exp(128.3).

Suppose our interest is to detect the above heterogeneous model with 80% power at the 5%
level. Setting (γ, θ1, θ2) = (0.57, 128.3, 46.5) and applying the sample-size formula in Table 1,
we get the required sample size for the EM-test and the C(α) test: n0.05,0.20 ≈ 173. A subsequent
simulation study in the spirit of Examples 1 and 2 found that the powers of EM(3)

n and C(α) are
71.3 and 64.8%. This unsatisfactory outcome should clearly be investigated more thoroughly.

We start with more simulations. We fix (1 − γ)θ1 + γθ2 = 0.43 × 46.5 + 0.57 × 128.3 and
construct three sets of alternative models similarly. In the first three sets, γ takes values 0.2, 0.35,
and 0.5. We then let δ2 = γ(1 − γ)(θ1 − θ2)2 take values in {1/2, 1/4, 1} × 1,640, where the last
number is from 1,640 = 0.43 × 0.57 × (46.5 − 128.3)2. In the fourth and the last set, γ = 0.05
and δ2 takes three values in {1/4, 1/5, 1/6} × 1,640. For each alternative model we generated
10,000 random samples of size n0.05,0.2 from the model and computed the simulated powers of
the EM-test and the C(α) test. The results are in Table 4.

We find that the performance of the sample-size formula under the exponential kernel is quite
different. The formula is satisfactory for the first six models but poor for the rest. Consider the
extra condition in Theorem 1 under Hn

A2. This condition is irrelevant under normal, binomial, and
Poisson mixtures. However under exponential mixtures, it translates into −2(1/θ − 1/θ0) < 1/θ0
or θ < 2θ0 for all component parameter values. None of the models in Table 4 violate this condition.
However a small 2θ0 − θ value leads to a slower rate of the op(1) term in (A2) for �n2 and therefore
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Table 5: Simulated powers of the EM-test at calibrated sample sizes.

Model n Power ncal Powercal

0.90N(−1.521, 1) + 0.10N(−2.835, 1) 514 0.765 565 0.805

0.75N(−1.425, 1) + 0.25N(−2.335, 1) 514 0.752 586 0.804

0.60N(−1.331, 1) + 0.40N(−2.135, 1) 514 0.745 599 0.807

0.90N(−1.546, 1) + 0.10N(−2.618, 1) 1,155 0.781 1,220 0.794

0.75N(−1.467, 1) + 0.25N(−2.210, 1) 1,155 0.768 1,263 0.796

0.60N(−1.390, 1) + 0.40N(−2.047, 1) 1,155 0.763 1,278 0.806

0.99N(−1.630, 1) + 0.01N(−5.572, 1) 514 0.805 508 0.796

0.98N(−1.597, 1) + 0.02N(−4.410, 1) 514 0.824 475 0.800

0.97N(−1.584, 1) + 0.03N(−3.893, 1) 514 0.806 500 0.800

0.99N(−1.620, 1) + 0.01N(−4.853, 1) 1,155 0.855 971 0.802

0.98N(−1.607, 1) + 0.02N(−3.904, 1) 1,155 0.834 1,039 0.806

0.97N(−1.596, 1) + 0.03N(−3.482, 1) 1,155 0.823 1,076 0.790

0.90N(−1.467, 1) + 0.10N(−3.324, 1) 128 0.721 159 0.798

0.75N(−1.331, 1) + 0.25N(−2.618, 1) 128 0.716 161 0.788

0.60N(−1.198, 1) + 0.40N(−2.335, 1) 128 0.707 165 0.792

less effective first-order asymptotics. Interestingly, the exponential mixture has always been an
aberration, as pointed out in Li, Chen, & Marriott (2009).

A new theory is the best solution for exponential mixtures with unbalanced mixing proportions.
Fortunately the calibration formula seems to give a satisfactory solution.

5.4. Calibration
We maintain that the sample-size formula has satisfactory precision for normal, binomial, and
Poisson mixtures. In many applications, there are many factors influencing the eventual outcome.
A deviation of around 5% is likely tolerable, but it never hurts to simulate the power at the sample
size suggested by a formula. We always perform confirmation simulations in our consulting
projects regardless of the reliability of a sample-size formula.

If the deviation from the target power is unacceptable, the calibration formula given in (5)
may be used. In this section we examine the effectiveness of the calibration. Table 5 contains
information on the calibrated sample sizes and resulting simulated power based on the results
in Table 2. In the table the sample size and power of the EM-test (EM(3)

n ) are denoted by n and
power; the calibrated sample size and power are denoted by ncal and powercal.

Clearly after the calibration, the simulated power of the EM-test is extremely close to the
target 80%. The average simulated power in the table is 79.9% with standard deviation 0.6%.

How accurate are the sample-size formula and its calibration formula when the target power is
90 or 95%? We avoid presenting an excessive number of tables. When the target is 90%, without
calibration the average simulated power is 87.9% with standard error 3.5%. After calibration,
these numbers are 90.0 and 0.4%. When the target is 95%, these two numbers are 93.4 and 2.4%
before calibration and 94.9 and 0.4% after calibration. Clearly the formulas have satisfactory
precision both before and after calibration.
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We do not give detailed results for binomial models here. After calibration, the average
simulated powers and corresponding standard deviations are 80.0 and 0.6%, 90.2 and 0.4%, and
94.9 and 0.2% for the targeted powers 80, 90, and 95%, respectively.

Finally does calibration work for the unruly exponential mixture? After calibration, the average
power becomes 80.3% with standard deviation 1.9% when the target power is 80%. However the
power for 0.95exp(97.77) + 0.05exp(4.86) is still as high as 86.1%. If we calibrate this size once
more, the power becomes 80.7%, and the overall average becomes 80.0% with standard deviation
0.7%. Clearly although the original sample-size formula is not satisfactory, calibration works well
even for exponential mixtures. When the target power is 90%, the average simulated power is
90.5% with standard deviation 1.3%. When the target power is 95%, the average simulated power
after calibration is 95.0% with standard deviation 1.2%. In both cases, the model 0.95exp(97.77) +
0.05exp(4.86) contributes large shares of the standard deviations. If it is calibrated twice, the
standard deviations would be 0.6% in both cases.

6. DISCUSSION AND FUTURE TOPICS

We successfully utilized Le Cam’s contiguity theory to determine the limiting distributions of
the EM-test and C(α) statistics under local alternative models. The result enabled us to derive a
sample-size formula for the homogeneity test. The formula has respectable precision in achieving
the target powers. Furthermore it can be refined via a calibration formula. Simulation shows
that the power at the calibrated sample size is very close to the target in all the mixture models
investigated.

The need for a sample-size formula does not stop at homogeneity tests with a one-dimensional
mixing parameter. The sample-size problems related to testing for the order of a mixture model
and to multidimensional mixing parameters are important and challenging. We plan to make
meaningful progress in that direction in the future.

APPENDIX
The proofs are based on the following regularity conditions on the kernel density function and
the penalty function p(γ). In our proofs we work on the asymptotic properties of the likelihood
ratio under local alternatives. This is a simpler task than proving a general result for the EM-test.
Therefore many of the following conditions may appear unnecessary. However if these conditions
are violated, the general conclusions for the EM-test are endangered.

Assumption 1 The penalty function p(γ) is a continuous function such that it is maximized at
γ = 0.5 and goes to negative infinity as γ goes to 0 or 1. Further, p(0.5) = 0.

Assumption 2 (Wald’s integrability conditions) (i) E| log f (X; θ0)| < ∞. (ii) For sufficiently
small ρ and for sufficiently large r, the expected valuesE log{1 + f (X; θ, ρ)} < ∞ for θ ∈ � and
E log{1 + ϕ(X, r)} < ∞, where f (x; θ, ρ) = sup|θ′−θ|≤ρ f (x; θ′) and ϕ(x; r) = sup|θ|≥r f (x; θ).
(iii) lim|θ|→∞ f (x; θ) = 0 for all x except on a set with probability zero.

Assumption 3 (Smoothness) The kernel function f (x; θ) has common support and is three times
continuously differentiable with respect to θ. The first two derivatives are denoted by f ′(x; θ) and
f ′′(x; θ).

Assumption 4 (Identifiability) For any two mixing distribution functions �1 and �2 with two
supporting points such that

∫
f (x; θ)d�1(θ) = ∫

f (x; θ)d�2(θ), for all x, we must have �1 =
�2.
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Assumption 5 (Uniform boundedness) Let

Y∗
i (θ) = f (Xi; θ) − f (Xi; θ0)

(θ − θ0)f (Xi; θ0)
, θ �= θ0; Y∗

i (θ0) = f ′(Xi; θ0)
f (Xi; θ0)

. (A1)

For some neighbourhood of θ0, there exists a g with finite expectation such that |Y∗
i (θ)|3 ≤

g(Xi), |Z∗
i (θ)|3 ≤ g(Xi), and |Z∗′′

i (θ)|2 ≤ g(Xi), where Z∗
i (θ) is defined in (3).

Assumption 6 (Positive definite) The covariance matrix of {Y∗
i (θ0), Z∗

i (θ0)} is positive definite.

We finally require that for the EM-test the initial values of the mixing probability include
γ = 0.5. Together with Assumption 1, this requirement allows the limiting distribution of the
EM-test for homogeneity to have the simplest expression.

We begin with two results from Le Cam’s contiguity theory (Le Cam, 1953), which are the
basis of our proof of Theorem 1.

Lemma 1. Let X1, X2, . . . , Xn be a random sample and define �n = ∑n
i=1 log{fn(Xi)/

f0(Xi)}, where f0(x), f1(x), f2(x), . . . is a series of density functions with respect to some sigma

finite measure. If �n
d−→N(−h2/2, h2) for some h2 > 0 under f0(x), where

d−→ denotes con-
vergence in distribution, then for a statistic Tn ≡ Tn(X1, X2, . . . , Xn), Tn = op(1) under f0(x)
implies that Tn = op(1) under fn(x).

Remark: By “under fn(x),” we mean that X1, . . . , Xn is a random sample from fn(x).

Lemma 2. Assume the same conditions as in Lemma 1. For a statisticSn ≡ Sn(X1, X2, . . . , Xn),
if (

Sn

�n

)
d−→N

((
μ

−h22/2

)
,

(
h11 h12

h12 h22

))
,

under f0(x), then Sn
d−→N(μ + h12, h11) under fn(x).

Lemma 1 is an application of Example 6.5 of van der Vaart (2000) (p. 89) and Le Cam’s
first lemma on contiguity theory (van der Vaart, 2000; p. 90). This result facilitates quadratic
approximations of the EM-test statistics under local alternative models. Lemma 2 is an application
of Le Cam’s third lemma on contiguity theory (van der Vaart, 2000; p. 90), based on which we
derive the asymptotic distribution of the EM-test statistics under local alternative models.

Proof of Theorem 1. We now prove Theorem 1 under the local alternative Hn
A1. Let

�n1 =
n∑

i=1

log
(1 − γ0)f (Xi; θ0 − n−1/4τ11) + γ0f (Xi; θ0 + n−1/4τ12)

f (Xi; θ0)
,

with τ11 = {γ0/(1 − γ0)}1/2τ and τ12 = {(1 − γ0)/γ0}1/2τ. Under the regularity conditions on
f (x; θ0) we easily find the quadratic approximation

�n1 = τ2n−1/2
n∑

i=1

Zi − 0.5τ4n−1
n∑

i=1

Z2
i + op(1),
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under f (x; θ). Therefore �n1
d−→N(−h2/2, h2) where h2 = τ4

E{Z2
1(θ0)}. This result lays the

foundation for applying Lemmas 1 and 2 under the local alternative Hn
A1.

Let Vn(θ) = ∑n
i=1 Wi(θ)/

√
nν(θ) and Vn = Vn(θ0), where ν(θ) = E∗{W2

1 (θ)} with the expec-
tation taken under f (x; θ). It can be seen that under f (x; θ0) we have

(
Vn

�n1

)
d−→N

((
0

−h2/2

)
,

(
1 1

1 h2

))
,

where 1 is the noncentrality parameter defined in Theorem 1. By Lemma 2 we find

Vn
d−→N(1, 1) under Hn

A1.
According to Li, Chen, & Marriot (2009), the EM-test statistic has the following expansion

under f (x; θ0):

EM(K)
n = [{∑n

i=1 Wi(θ0)}+]2

nE{W2
1 (θ0)} + op(1) = (V+

n )2 + op(1).

From Lemma 1, this approximation or the order assessment of the remainder is also valid under
the alternative model Hn

A1. Therefore the distribution of EM(K)
n is that of (V+

n )2 under Hn
A1. This

result suffices for the conclusion on the limiting distribution of the EM-test.
The conclusion for the C(α) test is proved using Theorem 1 of Neyman (1959). We first highlight

this result explicitly. Note that Tn = Vn(θ̂). Neyman (1959) proved that Vn(θ̂) − Vn(θ0) = op(1)
when

∑n
i=1 Wi(θ) is uncorrelated with

∑n
i=1 Yi(θ), the score function for the nuisance parameter

θ, and θ̂ is root-n consistent with θ0. The lack of correlation is true by the definition of Wi(θ), and
the root-n consistency is due to the choice of MLE and the regularity of the kernel distribution.
Therefore the C(α) test statistic Tn = Vn + op(1), and it has the claimed limiting distribution.

Under the alternative model Hn
A2, the log likelihood ratio becomes

�n2 =
n∑

i=1

log
(1 − n−1/2η)f (Xi; θ1n) + n−1/2ηf (Xi; θ2n)

f (Xi; θ0)
,

with

θ1n = θ0 − n−1/2τ
( η

1 − n−1/2η

)1/2
, θ2n = θ0 + τ

(1 − n−1/2η

η

)1/2
.

When n → ∞ we have θ1n → θ0 and θ2n → θ0 + τη−1/2 at the rate n−1/2. The mixing pro-
portions also approach 1 and 0 at this rate. Using the regularity conditions on f (x; θ) we can then
easily show that

�n2 = n−1/2τ2
n∑

i=1

Z∗
i (θ2) − (1/2)n−1τ4

n∑
i=1

{
Z∗

i (θ2)
}2 + op(1). (A2)

Therefore under f (x; θ0),

�n2
d−→N(−h̃2/2, h̃2),
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with h̃2 = τ4
E[{Z∗

1(θ0 + τη−1/2)}2]. This establishes contiguity and implies that under the alter-
native model Hn

A2,

EM(K)
n = (V+

n )2 + op(1).

Note that under f (x; θ0),(
Vn

�n2

)
d−→N

((
0

−h̃2/2

)
,

(
1 2

2 h̃2

))
.

Therefore under Hn
A2, Vn

d−→N(2, 1). Hence under Hn
A2,

EM(K)
n = (V+

n )2 + op(1)
d−→{(� + 2)+}2.

The proof of the result for the C(α) test is identical to that under Hn
A1. �

Proof of Theorem 2. Form of C(α) test statistic. The quadratic variance function under the
natural exponential family is characterized by its density function f (x; θ) = h(x) exp{xφ − A(φ)}
and A′′(φ) = a{A′(φ)}2 + bA′(φ) + c for some constants a, b, and c. Recall also that the mean
and variance are given by θ = A′(φ) and σ2 = A′′(φ). More moment relationships can easily be
obtained. Taking derivatives with respect to φ on the quadratic relationship we find that

A′′′(φ) = {2aA′(φ) + b}A′′(φ) = (2aθ + b)σ2,

A(4)(φ) = 2a{A′′(φ)}2 + {2aA′(φ) + b}A′′′(φ) = 2aσ4 + (2aθ + b)2σ2.

Because of the regularity of the exponential family we have

E

{
dkf (X; θ0)/dφk

f (X; θ0)

}
= 0,

for k = 1, 2, 3, 4. This implies

E{(X − θ0)3} = A′′′(φ0) = (2aθ0 + b)σ2
0 ,

E{(X − θ0)4} = 3{A′′(φ0)}2 + A(4)(φ0) = (2a + 3)σ4
0 + (2aθ0 + b)2σ2

0 ,

where φ0 is the value of the natural parameter corresponding to θ0.
The ingredients of the C(α) statistics are

Yi(θ0) = f ′(X; θ0)
f (Xi; θ0)

= (Xi − θ0)
σ2

0
,

Zi(θ0) = f ′′(X; θ0)
2f (Xi; θ0)

= (Xi − θ0)2 − (2aθ0 + b)(Xi − θ0) − σ2
0

2σ4
0

.

We then have

E{Yi(θ0)Zi(θ0)} = E{(Xi − θ0)3} − (2aθ0 + b)E{(Xi − θ0)2} − σ2
0E(Xi − θ0)

2σ6
0

= 0.
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Therefore the regression coefficient of Zi(θ0) against Yi(θ0) is β(θ0) = 0. This leads to the pro-
jection Wi(θ0) = Zi(θ0) − β(θ0)Yi(β0) = Zi(θ0) and

4σ8
0Var{Wi(θ0)} = Var{(Xi − θ0)2} − 2(2aθ0 + b)E{(Xi − θ0)3}

+ (2aθ0 + b)2
E{(Xi − θ0)2}

= (2a + 3)σ4
0 + (2aθ0 + b)2σ2

0 − σ4
0

− 2(2aθ0 + b)2σ2
0 + (2aθ0 + b)2σ2

0

= (2a + 2)σ4
0 .

Hence ν(θ0) = Var{Wi(θ0)} = 0.5(a + 1)σ−4
0 .

Because the maximum-likelihood estimator θ̂ = X̄ we find that

n∑
i=1

Wi(θ̂) =
n∑

i=1

Zi(θ̂) =
∑n

i=1(Xi − X̄)2 − σ̂2

2σ̂4 ,

with σ̂2 = aX̄2 + bX̄ + c due to invariance. The C(α) test statistic, Tn = ∑n
i=1 Wi(θ̂)/

√
nν(θ̂),

is therefore given by the simplified expression in Theorem 2.

Form of 1. Theorem 1 implies 1 = τ2
E{W1(θ0)Z1(θ0)}/

√
E{W2

1 (θ0)}. We have just
shown that W1(θ0) = Z1(θ0). Therefore

1 = τ2
√
E{W2

1 (θ0)} = τ2
√

ν(θ0) = τ2
√

0.5(a + 1)σ−2
0 .

Form of 2. Recall that

2 = τ2
E{W1(θ0)Z∗

1(θ0 + τ/η1/2)}√
E{W1(θ0)2}

= τ2
E{Z1(θ0)Z∗

1(θ0 + τ/η1/2)}√
ν(θ0)

.

According to the definitions of Y∗
i (θ) and Z∗

i (θ) in (A1) and (3), respectively, we have

Z∗
i (θ) = Y∗

i (θ) − Y∗
i (θ0)

θ − θ0
.

In the following we first calculate E{Z1(θ0)Y∗
1 (θ)}, which can be rewritten as

E{Z1(θ0)Y∗
1 (θ)} = E

{
Z1(θ0)

f (X1; θ) − f (X1; θ0)
(θ − θ0)f (X1; θ0)

}
= E∗{Z1(θ0)} − E{Z1(θ0)}

θ − θ0
.

Here E∗ means that the expectation is taken under the density f (x; θ). Note that E{Z1(θ0)} = 0.
Hence

E{Z1(θ0)Y∗
1 (θ)} = E∗{Z1(θ0)}

θ − θ0

= E∗{(Xi − θ0)2 − (2aθ0 + b)(Xi − θ0) − σ2
0 }

2σ4
0 (θ − θ0)

= σ2 + (θ − θ0)2 − (2aθ0 + b)(θ − θ0) − σ2
0

2σ4
0 (θ − θ0)

.
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With σ2 = aθ2 + bθ + c and σ2
0 = aθ2

0 + bθ0 + c, we can simplify E{Z1(θ0)Y∗
1 (θ)} to

E{Z1(θ0)Y∗
1 (θ)} = (a + 1)(θ − θ0)

2σ4
0

.

Hence

E{Z1(θ0)Z∗
1(θ)} = E

{
Z1(θ0)

Y∗
1 (θ) − Y∗

1 (θ0)
θ − θ0

}
= a + 1

2σ4
0

.

With ν(θ0) = 0.5(a + 1)σ−4
0 as shown before, we have

2 = τ2
E{Z1(θ0)Z∗

1(θ0 + τ/η1/2)}√
ν(θ0)

= τ2
√

0.5(a + 1)σ−2
0 .

This completes the proof. �
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