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ABSTRACT
Competing models arise naturally in many research fields, such as
survival analysis and economics, when the same phenomenon of
interest is explained by different researcher using different theories
or according to different experiences. The model selection problem
is therefore remarkably important because of its great importance
to the subsequent inference; Inference under a misspecified or inap-
propriate model will be risky. Existing model selection tests such as
Vuong’s tests [26] and Shi’s non-degenerate tests [21] suffer from the
variance estimation and the departure of the normality of the likeli-
hood ratios. To circumvent these dilemmas, we propose in this paper
an empirical likelihood ratio (ELR) tests for model selection. Follow-
ing Shi [21], a bias correctionmethod is proposed for the ELR tests to
enhance its performance. A simulation study and a real-data analysis
are provided to illustrate the performance of the proposed ELR tests.
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1. Introduction

Competing models arise naturally in many research fields, such as economics and survival
analysis, when the same phenomenon of interest is explained by different researcher using
different theories or according to different experiences. For example, lognormal modeling
and exponential modeling for a lifetime data in survival analysis [6], and Keynesian and
new classical explanations of unemployment in economics [18]. The comparison of com-
peting models or model selection is therefore remarkably important because of its great
importance to the subsequent inference; Inference under a misspecified or inappropriate
model will be risky. Since Cox [6,7] first formulated this problem in terms of hypothesis
testing rather than discrimination, it has attracted considerable attention in the literature.
See [5,9,16,21,23,26] and references therein.

A natural way to achieve model selection is to first introduce a statistical mea-
sure of the closeness between two models, and then recommend the one closer to the
underlying true model. The most popular closeness measure in model selection is Kull-
back–Leibler information criterion (KLIC; [1,2]). Cox ’s [6] centered log-likelihood ratio
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test, proposed under the assumption that one of the competing models is true, is in
fact a KLIC of the alternative model from the null model. This test has been applied to
the testing of linear and nonlinear regression models [3,17] and more-than-one alter-
natives [22]. However it will lose power if neither model is true, which is often the
case.

Without any model assumption on data, Vuong [26] proposed Studentized tests based
on log-likelihood ratios, which in essence compares the KLIC of the two models from
the underlying true model. When constructing his tests, Vuong [26] differentiated non-
overlapping and overlapping models for the competing models under test. For non-
overlapping models, Vuong test [26] is a Student’s t-test based on log-likelihood ratios,
calibrated by the standard normal distribution. In the case of overlapping models, Vuong
[26] proposed a two-step test: (1) test whether the log-likelihood ratio has variance zero;
(2) if the decision of (1) is rejected, then apply the test proposed for non-overlapping mod-
els. The null hypothesis that the competingmodels are the same close to the truth is rejected
only if both (1) and (2) are rejected.

In general, Vuong test has good power if the variance of the log-likelihood ratio is away
from zero or the two competing models have clearly different KLICs from the true model.
Otherwise, it may have severe size distortion in finite samples in both the overlapping case
and the non-overlapping case [21]. By studying the asymptotic performance of Vuong test
at a series of local alternatives, Shi [21] found that the size distortion is mainly due to the
asymptotic bias in both the denominator and nominator of Vuong test. A modified Vuong
test is consequently proposed by correcting both the biases, and is further enhanced with
a simulation-intensive calibration method.

Vuong test and Shi’s modified Vuong test are both Student-type tests, which necessitates
a variance estimation of the likelihood ratio and has good performance if the likelihood
ratio follows a normal distribution. When the variance is rather small, it is difficult to
estimate it accurately, which will increase the variation of these tests, and therefore may
increases both types I and II errors. Also they will lose power if the distribution of the
likelihood ratio is far away from a normal distribution.

We propose in this paper a model selection test based on empirical likelihood (EL;
[13,14]), which is a popular non-parametric tool for statistical inference [11,12,19]. Com-
paring the KLIC of the two competing models is equivalent to test whether the mean of
the likelihood ratio is zero. This motivates our proposed EL ratio test for model selection.
Further, similar to Shi’s modification strategy, a bias-correction method is also proposed
for the EL ratio test to enhance its finite-sample performances. A significance advantage of
the proposed test over Student-type tests is that it neither involves a variance estimation,
nor depends on the normality of the likelihood ratio, and is therefore expected to have
better performance in more general situations. Our simulation results confirm this point.
We found that Vuong test often inflates its type I error substantially, therefore its power
is questionable. The proposed bias-corrected EL ratio test not only has the most accurate
type I errors, but also is uniformlymore powerful than Shi’s test; The latter restrictively con-
trols its type I error, but is somewhat conservative, and therefore may lose certain power.
Another significant advantage of the proposed test is that since calibrated by its limiting
χ2
1 distribution, its critical values or p values are available anytime and anywhere; while in

comparison, Shi’s test is calibrated by a computation-intensive searching method, which is
rather time-consuming.
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We remark that the problem considered in this paper is to test the null hypothesis that
two competing models under consideration have the same appropriateness for modeling
given data. Even under the null hypothesis, we still have no idea whether one of the two
models is true. This is an essential difference from the well-known goodness-of-fit testing
problem, which assumes that the true model is contained in either the null or the alterna-
tive hypothesis. The goodness-of-fit testing problem is a fundamental research problem in
statistics and has been extensively investigated by the means of divergence measure (see,
e.g. [15]). If a non-parametric assumption is imposed on the alternative, non-parametric
goodness-of-fit methods, such as density-based EL techniques, Kolmogorov-Smirnov type
procedures, and kernel-based approaches, have been proposed in the literature [8,24].
However, these approaches generally do not apply to the problem considered in this paper
where in generally none of the models under consideration is true.

The rest of the paper is organized as follows. We define notation and review Vuong and
Shi’s tests in Section 2. The proposed EL ratio test is presented in Section 3, together with its
asymptotical properties. The size and power of the proposed test is investigated in Section 4
by comparing with existing tests. In Section 5, we analyze a real data-set to illustrate the
usefulness of the EL ratio test. All proofs are postponed to the supplemental data for clarity.

2. EL ratio test

2.1. Problem formulation

Suppose we have n independent and identically distributed (iid) copies {(Yi,Xi) : i =
1, 2 . . . , n} of a random vector (Y ,X) and two competing parametric probability models
F = {f (y|x;α) : α ∈ A} and G = {g(y|x;β) : β ∈ B}. Given the data, we wish to know
which model fits the conditional density function of Y given X better.

Following [1,2,26], we take the KLIC as a measure of distance between a candidate
model and the true model or a goodness measure of a candidate model. Suppose the true
conditional density function of Y given X is q(y|x)with distributionQ(y|x). We define the
distance between a given distribution family and the true distribution to be the minimum
KLIC,

d(q,F ) = inf
α∈A

E0[ln{q(Y|X)} − ln{f (Y|X;α)}]

= E0[ln{q(Y|X)} − ln{f (Y|X;α∗)}],

whereα∗ = argmaxα∈A E0[ln{f (Y|X;α)}], andE0 denotes expectationwith respect to the
true joint distribution of (Y ,X). The value α∗ is called the pseudo-true value of α. Similarly
we have

d(q,G ) = E0[ln{q(Y|X)} − ln{g(Y|X;β∗)}],
where β∗ = argmaxβ∈B E0[ln{g(Y|X;β)}] is the pseudo-true value of β .

In terms of hypothesis testing, the model selection problem is to test whether the two
models have the same distance from the underlying true model, that is, H0 : d(q,F ) =
d(q,G ), or to testing

H0 : E0{�i(φ
∗)} = 0, (1)
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where�i(φ
∗) = d(q,G )− d(q,F ) = ln{f (Yi|Xi;α∗)} − ln{g(Yi|Xi;β∗)} andφ∗ = (α∗τ ,

β∗τ )τ . When H0 is rejected, a positive �i(φ
∗) supports F since positive �i(φ

∗) implies
that d(q,F ) < d(q,G ), that is, F is closer to the true than G ; Otherwise, we conclude
that G provides better fit for the data.

2.2. EL ratio test

Under the hypothesis testing formulation in Equation (1), any hypothesis test for mean is
applicable to the model selection problem by taking {�i(φ)} as observations if φ is known.
This strategy still works in the case of unknownφ if an appropriate estimate φ̂ is plugged in.

Let α̂ = argmaxα∈A
∑n

i=1[ln{f (Yi|Xi;α)}] and β̂ = argmaxβ∈B
∑n

i=1[ln{g(Yi|Xi;β)}]
be the pseudo maximum likelihood estimators of α and β . We propose to test (1) by the
empirical likelihood ratio test (ELR; [13,14])

ELR = −2 sup
{ n∑

i=1
log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,
n∑

i=1
piZi = 0

}
, (2)

whereZi = �i(φ̂) and φ̂τ = (α̂τ , β̂τ ). In determining the accompanying critical values, we
find that the ELR test has two totally different limiting behaviors for two exclusive cases of
the null hypothesisH0: (a)H0 is true andω2 = Var(�(φ∗)) > 0 or f (y|x,α∗) �= g(y|x,β∗)
in a set with positive Q(y, x) probability, and (b) H0 is true and ω2 = 0 or f (y|x,α∗) =
g(y|x,β∗) Q(y, x)-almost surely.

For ease of presentation, we define

A(φ) = E{∇2�i(φ
∗)}, B(φ) = E[∇�i(φ

∗){∇�i(φ
∗)}τ ],

where ∇ is the differentiation operator ∂/∂φ with φτ = (ατ ,βτ ). Parallelling to Assump-
tions 1–5 of [26], we make the following assumptions on the competing models under
consideration.

(C1) The parameter spacesA ⊂ Rd1 and B ⊂ Rd2 are both compact.
(C2) (Differentiability and integrability)

(i) For all (y, x) on their supports, f (y|x,α) and g(y|x,β) are three times differen-
tiable with respect to α and β , respectively.

(ii) There exists a non-negative function H(y, x) satisfying E{H(Y ,X)} <∞ such
that | log f (y|x,α)|, | log g(y|x,β)| and all their first three orders of derivatives
with respect to α and β are controlled by H(y, x).

(C3) As a function of α, E[log{f (Y|X,α)}] has a unique maximum on A at an interior
point α∗; And as a function of β , E[log{g(Y|X,β)}] has a unique maximum on B at
an interior point β∗.

(C4) A(φ∗) is non-singular.

Let 
 = A−1BA−1 and � = −
1/2A
1/2 with A = A(φ∗) and B = B(φ∗). The next
theorem presents the limiting distributions of the ELR test.

Theorem 2.1: Assume the conditions in (C1–C4). If case (a) is true, [ELR d−→χ2
1 where

d−→ denotes convergence in distribution. If case (b) is true, ELR d−→(ξ τ�ξ)2/(ξτ�2ξ),
where ξ , of the same length as (ατ ,βτ ), is a standard multivariate normal random vector.
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The relationship of the two competing models generally divides into three cases: (1)
non-nested, that is, F ∩ G = Ø, (2) nested, that is, F ⊂ G or G ⊂F , (3) overlapping,
that is,F ∩ G �= Ø.When the twomodels are nested or overlapping and q(y|x) ∈F ∩ G ,
H0 is equivalent to case (b).We need a complicated rejection principle to test (1) according
to the second part of Theorem2.1.When the twomodels are non-nested or overlapping but
q(y|x) �∈F ∩ G , H0 is equivalent to case (a). The first part of Theorem 2.1 recommends
rejecting (1) if ELR > χ2

1 (1− α), the 1− α quantile of χ2
1 . We may adopt this method

for all cases although it may increase type I error in case (b). When H0 is rejected, we
recommend model F if

R = sgn(Z̄) · √ELR < 0

and model G otherwise.
Instead of ELR, Vuong [26] proposed to test (1) using Student’s t-test statistic

VT = √nZ̄/ω̂n, (3)

where Z̄ = (1/n)
∑n

i=1 Zi and ω̂2
n = (1/(n− 1))

∑n
i=1(Zi − Z̄)2.UnderH0,VT

d−→N(0, 1)

when case (a) is true; when case (b) is true, nω̂2
n

d−→ξτ�2ξ and (nZ̄)2
d−→ξτ�ξ . The

totally different two limiting behaviors of Vuong test leads to two testing strategies: (1) one-
step test, reject H0 if |VT| > z1−α/2 where zα is the α quantile of N(0, 1) and α ∈ (0, 0.5);
(2) two-step test, reject H0 if both nω̂2

n > c(α; �̂) and |VT| > z1−α/2, where c(α;�) is the
α quantile of ξτ�2ξ and �̂ is a root-n consistent estimator of � given later.

The variance estimation may render the Vuong test to vibrate dramatically if the two
models are quite competing and the correspondingω2 and ω̂2

n is very close to zero. This will
result in size distortion, that is, the resulting type I errors are at a distance from the signif-
icance level. Vuong’s two-step test also has such a problem. This calls for a bias-correction
technique to improve the efficiency of Vuong test.

2.3. Bias-corrected ELR

By local asymptotical theory, Shi [21] found that the size distortion of Vuong’s tests is
mainly caused by the biases in both the numerator and the denominator of Vuong test
statistic VT. A bias-corrected numerator is given by

Z̆ = Z̄ + tr(�̂)/(2n).

where tr(�̂) = tr(Â−1B̂) and Â and B̂ are the estimates of A and B respectively.. The bias
in the denominator can not be eliminated but diminished or adjusted. Shi [21] proposed
to modify the denominator to be

ω̆2
n = ω̂2

n + c · tr(�̂2)/n.

where c is a tuning parameter. With these preparations, Shi [21] propose to test (1) by her
non-degenerate test (NDT) statistic

NDT = √nZ̆/

√
ω̆2
n.

Both the constant c and accompanying critical values are determined by a computation-
intensive critical value determining procedure. We refer the reader to Shi [21] for details.
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In our theoretical analysis, we find that the ELR is equivalent to squared Vuong test up
to an ignorable term. This implies that the ELR may also suffer from the size distortion
problem, which is mainly due to the biases in the numerator and the denominator. We
can tell clearly where the biases come from, because Vuong test statistic VT has a specific
fraction form and both the denominator and the nominator have closed forms. However
neither the ELR nor its signed root R has a closed form, therefore Shi [21]’s bias correction
method does not apply to the ELR or its signed root R, because the source of bias is unclear.
To be simple, we ignore the bias in the numerator and define a bias-corrected ELR test

Rc = R+ 0.5 · tr(Â−1B̂)/

√
nω̂2

n.

The proposed testing rule is to reject H0 if |Rc| > z1−α/2. An immediate advantage of
this test over Shi’s test is its convenience of practical use because it needs neither a tun-
ing parameter nor a computation-intensive critical-value determining procedure. What is
more, our simulations (see section 4) indicate that the bias-corrected ELR test usually have
comparable or even better testing performance than Vuong test and Shi’s NDT test.

As pointed out by an anonymous referee, we may correct the bias of the ELR test in
Equation (2) by the strategy of Chen [4] and Vexler et al. [25], who proposed bias cor-
rections for the t-test and the ELR test for mean by carefully studying their Edgeworth
expansions; The goal of the corrections is to improve the approximation accuracy of their
type I errors from Op(n−1/2) to op(n−1/2). However when this strategy is applied to the
ELR test in Equation (2), we find that it is formidable to derive an Edgeworth expansion
of R and a subsequent bias-corrected ELR test because the ‘observations’ Zi’s are not iid.
Hence to be simple and easy to use, we choose to use Rc as the proposed test for model
comparison.

3. Extension tomoment-basedmodels

The proposed ELR tests apply also to moment-based models. Suppose the two competing
moment-based models are

F = {F : EF(mf (X,α)) = 0}, (4)

G = {F : EF(mg(X,β)) = 0}. (5)

We define the profile empirical log-likelihood (up to a non-random constant) of α and β

to be

Lf (α) = max
λ1

Lf (α, λ1) and Lg(β) = max
λ2

Lg(α, λ2),

where Lf (α, λ1) = −
∑n

i=1 log{1+ λτ
1mf (x,α)} and Lg(α, λ2) = −

∑n
i=1 log{1+

λτ
1mg(x,α)}. Denote

α̂ = argmax Lf (α, λ1(α)) with λ1(α) = argmin
λ1

Lf (α, λ1)

and let λ̂1 = λ1(α̂). We define β̂ , λ2(β), β̂ and λ̂2 similarly.
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The empirical KL distance between the two moment models is

d̂(F ,G ) = 1
n
{Lf (α̂)− Lg(β̂)}

= −1
n

n∑
i=1

log{1+ λτ
1(α)mf (Xi,α)} + 1

n
min

β

n∑
i=1

log{1+ λτ
2(β)mg(Xi,β)}

= 1
n

n∑
i=1

[log{1+ λ̂τ
2mg(Xi, β̂)} − log{1+ λ̂τ

1mf (Xi, α̂)}].

If modelsF and G are the same appropriate for fitting the data, then d(F ,G ) tends to be
small; otherwise it should be at a distance from zero.

We define the pseudo true value of α to be

α∗ = argmaxE log{1+ λτ
1(α)mf (Xi,α)}

λ1∗(α) = argmin
λ1

E log{1+ λτ
1mf (Xi,α)}

and the pseudo value of λ1 to be λ1∗ = λ1∗(α∗). We define β∗, λ2∗(β) and λ2∗ in the same
way. Then the KL distance between the two moment models is

d(F ,G ) = E0[log{1+ λτ
2∗mg(Xi,β∗)} − log{1+ λτ

1∗mf (Xi,α∗)}]
and the formal testing problem is

H0 : d(F ,G ) = 0←→ H1 : d(F ,G ) �= 0.

Let φ = (α, λ1,β , λ2)τ , φ∗ = (α∗, λ1∗,β∗, λ2∗)τ and φ̂ = (α̂, λ̂1, β̂ , λ̂2)τ . Define

�i(φ) = log{1+ λτ
2mg(Xi,β)} − log{1+ λτ

1mf (Xi,α)}.
The testing problem is equivalent to

H0 : E{�i(φ∗)} = 0←→ H1 : E{�i(φ∗)} �= 0.

The proposed EL and ELc tests apply to this problem directly by setting Zi = �i(φ̂).

4. Simulation study

In this section, we report Monte Carlo simulation results to evaluate the performance of
the proposed two ELR tests, the sign root R of ELR (EL) and the bias-corrected sign root
Rc of ELR (ELc). This purpose is achieved by comparing them with three existing tests:
One-step Vuong test (1-step VT), Two-step Vuong test (2-step VT) and [21]’s NDT.

Example 4.1: [(Normal regression; [21])] Suppose the true underlying data generating
process is

Y = 1+ (a1/
√
d1)1τ

d1X(1) + (a2/
√
d2)1τ

d2X(2) + ε, (6)

where X1 and X2 are d1 and d2-variate covariates, and (Xτ
1 ,X

τ
2 , ε) follows the (d1 + d2 +

1)-variate standard normal distribution and a1, a2 ∈ [0, 1]. With data generated from
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Table 1. Simulated rejection probabilities (%) of the five tests under comparison.

Cases EL ELc 1-StepVT 2-StepVT NDT Var. T

nE{�i(φ
∗)}

250
= 0

Base (0.24, 7.52) (1.70, 1.34) (0.32, 8.24) (0.32, 7.82) (1.18, 1.08) 95.14
d2 = 19 (0.00, 26.58) (1.34, 0.88) (0.00, 28.34) (0.00, 18.02) (0.96, 0.96) 64.36
d2 = 4 (0.86, 3.32) (1.78, 1.26) (0.94, 3.82) (0.94, 3.82) (1.00, 0.78) 99.08
n= 100 (0.04, 10.78) (1.20, 0.46) (0.06, 12.50) (0.04, 1.84) (0.34, 0.18) 19.84
n= 500 (0.44, 6.62) (1.80, 1.90) (0.48, 7.12) (0.48, 7.12) (1.36, 1.66) 100.00

nE{�i(φ
∗)}

250
= log(1.09)

Base (16.58, 0.02) (50.90, 0.00) (18.10, 0.02) (17.44, 0.00) (42.78, 0.00) 80.76
d2 = 19 (2.06, 0.86) (36.52, 0.00) (2.28, 1.06) (1.60, 0.24) (32.30, 0.00) 41.60
d2 = 4 (41.34, 0.00) (59.70, 0.00) (43.74, 0.00) (43.64, 0.00) (47.66, 0.00) 95.08
n= 100 (19.46, 0.00) (50.90, 0.00) (22.02, 0.04) (14.04, 0.00) (37.16, 0.00) 53.82
n= 500 (15.10, 0.02) (50.26, 0.00) (15.74, 0.02) (15.68, 0.02) (43.68, 0.00) 87.22

nE{�i(φ
∗)}

250
= − log(1.09)

Base (0.00, 88.60) (0.00, 39.72) (0.00, 90.06) (0.00, 74.56) (0.00, 36.12) 77.76
d2 = 19 (0.00, 98.68) (0.00, 26.22) (0.00, 98.96) (0.00, 33.92) (0.00, 29.90) 34.00
d2 = 4 (0.00, 76.24) (0.00, 53.92) (0.00, 78.90) (0.00, 78.24) (0.00, 43.94) 94.58
n= 100 (0.00, 90.20) (0.00, 38.08) (0.00, 92.76) (0.00, 29.70) (0.00, 27.86) 30.78
n= 500 (0.00, 88.52) (0.00, 43.26) (0.00, 89.70) (0.00, 82.94) (0.00, 41.06) 86.86

Note: In each pair (p1, p2), p1 denotes the probability of rejecting H0 and supportingF , and p2 the probability of rejecting
H0 and supporting G .

Equation (5), we wish to select between the following two models

F : Y = α0 + ατ
1X(1) + e1, e1|(X(1),X(2)) ∼ N(0, σ 2

1 ),

G : Y = β0 + βτ
1X(2) + e2, e2|(X(1),X(2)) ∼ N(0, σ 2

2 ),

where α0,α1, σ 2
1 ,β0,β1 and σ 2

2 are all unknown.

Our simulation settings in this example are the same as Example 1 of [21]. Given (a1, a2),
we consider five cases. The base case is n = 250, d1 = 1 and d2 = 9. The rest four are
variants of the base case, which are only different from the base case in d2 = 19, d2 =
4, n = 100 and n=500, respectively. Three pairs of (a1, a2) are considered: (H1) a1 = a2 =
0.25; (H2) a1 =

√
1.09250/n − 1, a2 = 0; (H3) a1 = 0, a2 =

√
1.09250/n − 1. In this exam-

ple, E{�i(φ
∗)} = 1

2 {log(1+ a21)− log(1+ a22)}. Therefore in case (H1), E{�i(φ
∗)} = 0

and the null hypothesis is true. In case (H2), E{�i(φ
∗)} = log(1.09)× (250/n); the null

hypothesis is violated and model F is true. Case (H3) is the opposite of case (H2).
We generated 5000 data-sets from Example 1 under each of the 15 settings and com-

puted the simulated rejection probabilities (in percentage) of the tests under consideration.
In addition, we also record the proportion (denoted Var.T) of rejecting the hypothesis that
the variance of likelihood ratio is zero. The simulation results are reported in Table 1.

The first panel of Table 1 includes simulated type I errors of the five tests under com-
parison. Since the two competing models have equal goodness-of-fit for the data, it is
ideally expected that the probability that the tests reject the null hypothesis and recommend
either model should be at most 2.5 % at the 0.05 significance level. However only the bias-
corrected ELR and [21]’s NDT make it, and the former has closer-to-nominal one-sided
type I errors than the latter, which is somewhat conservative. The original ELR and the
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two Vuong tests often have severely-inflated one-sided type I errors particularly when the
parameter dimension is large (case d2 = 19) or the sample size is small (case n=100). This
also implies that the EL does have an unignorable bias and the ELc succeeds in correcting
it, leading to rather accurate type I errors.

Simulated power comparisons are presented in the second and third panels of Table 1,
corresponding respectively to (a1, a2) values given in cases (H2) and (H3). The power com-
parisons are only meaningful for the bias-corrected ELR and [21]’s NDT control their type
I errors, because only they two control their type I errors. Case (H2) is designed such that
model F is better than model G . The ELc test has uniformly larger power than NDT in
detecting the fact. We have similar observations in case (H3), which is designed such that
model G is better than model F .

Example 4.2: Suppose the two competing models are a Poisson model

F = {f (y|x,α) = e−λλy/y!, λ = exp(ατx)}, (7)

and a Geometric model

G = {g(y|x,β) = (1− p)yip, p = eβ
τ x/(1+ eβ

τ x)}, (8)

where y takes non-negative integer values. The covariate x is a 5-variate vector with its first
component being 1 and the rest four are iid as the uniformdistribution on (0, 0.25). Assume
that the data generating process is a two-component mixture distribution, π f (y|x,α∗)+
(1− π)g(y|x,α∗) where α∗ = (1, 1, 1, 1, 1) and π ∈ (0, 1) to be determined.

This example is designed to mimic the model selection setting for number of doctor
visits in Section 5.1. We hope that the simulation results in this example can shed light
on the performances of the tests under comparison and provide evidence for their relative
efficiency.

Intuitively, when π is small, E{�i(φ
∗)} tends to be negative, and the Geometric model

fits better; while whenπ is large,E{�i(φ
∗)} tends to be positive, and the Poissonmodel fits

better. Based on extra-large samples (sample size 100,000), we found that E{�i(φ
∗)} = 0

when π = 0.875. In our simulation, the sample size is n=100 and the simulation size is
2000. We generate data from the mixture models with π varying from 0.675 to 0.975 with
increment 0.02. When π < 0.875, model G fits the data better, while when π > 0.875,
model F fits the data better. Our simulation results are tabulated in Table 2. The pow-
ers of the two-step VT are not reported because they are almost the same as those of the
one-step VT.

When π = 0.875 or the null hypothesis H0 : E{�i(φ
∗)} = 0 holds, the powers (bold

numbers) given in Table 2 are actually type I errors. We find that only the ELc controls its
type I error below the significance level 5%; it type I error is also the closest to 5%. The
Vuong tests have the largest and excessive type I error as was pointed out by Shi [21]. With
the bias-correction strategy, the ELc and Shi’s NDT tests reduce the type I errors of EL and
Vuong’s VT tests, respectively.

In view of power comparison, among all the tests the ELc test has the largest power
when π < 0.875 or the Geometric model fits better, and has the smallest power π > 0.875
or the Poisson model fits better. Because of the comparison result in type I error, only the
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Table 2. Simulated powers (unbolded numbers) and sizes (bolded numbers) in
percentage in Example 4.2.

π EL ELc 1-step VT NDT

0.675 97.40 98.70 96.20 97.00
0.695 94.75 96.25 92.85 94.00
0.715 88.55 91.90 85.05 87.05
0.735 80.60 86.10 75.80 78.40
0.755 66.45 73.40 60.30 63.25
0.775 53.40 61.20 46.20 49.90
0.795 37.30 46.75 31.75 35.00
0.815 21.90 29.25 17.35 19.60
0.835 11.60 17.05 9.50 10.05
0.855 6.30 8.60 6.25 5.50
0.875 5.90 4.80 7.80 5.45
0.895 10.95 7.65 16.25 10.85
0.915 23.60 16.95 33.20 22.95
0.935 47.70 37.90 58.30 46.95
0.955 71.75 62.40 80.35 71.45
0.975 91.30 86.75 95.35 91.15

simulated power of the ELc is trustable; those for the EL, VT and NDT tests may not be
representative for their true testing power.

5. Real-data analysis

We illustrate the proposed bias-corrected ELR test by analyzing a data set taken from the
first 12 annual waves (1984 through 1995) of the German Socioeconomic Panel data. This
data set, studied by Greene [10] and Riphahn et al. [20] , consists of 27,326 observations on
25 variables including number of doctor visits in the last three months (Docvis), number
of hospital visits in last calendar year (Hospvis), and numerous other socio-demographic
variables such as age (Age), education (Edu), house income (Income) and having kids
or not (Kids). We choose y = Docvis or Hospvis, and x = (Age, Edu, Income, Kids).
Following Example 14.10 of [10], we consider the model selection problem between the
competing models (7) and (8) for the conditional probability of y given x.

The histograms of Docvis and Hospvis are too skewed. Among all the 27,326 values,
there 10,135 zeros in Docvis and 24,931 zeros in Hospvis. For a better presentation, in
Figure 1 we only display the non-zero values in Docvis and Hospvis. The log likelihood
ratios �i(φ̂) for y = Docvis or Hospvis, are also calculated and displayed in Figure 1.

We find that the variance estimate ω̂2 = 1276948.35 (in the case of Docvis) and
86986.38 (in the case of Hospvis) are both larger than the accompanying critical value
583.82 and 1137.52 at the 5% significance level. Thus the one- and two-step Vuong tests
will lead to the same decision. Table 3 presents the test statistics of the proposed ELR and
bias-corrected ELR tests, one-step Vuong test and Shi’s NDT test.

The critical values proposed by Shi [21] for the NDT test are 2.0229 and 2.1949 cor-
responding to the cases y = Docvis and Hospvis, respectively. Clearly all the four tests
conclude that (1) the Poissonmodel and theGeometricmodel do not have the same appro-
priateness for the data at the 5% significance level, and (2) the Geometric model fits better
because the mean of �i(φ̂) is negative and a negative E{�i(φ

∗)} supports G . Meanwhile
the absolute value of the ELc is much larger those of the VT and NDT tests. Given that all



JOURNAL OF APPLIED STATISTICS 2605

Docvis[Docvis>0]

Docvis

Fr
eq

ue
nc

y

0
20

00
50

00

Hospvis[Hospvis>0]

Hospvis

Fr
eq

ue
nc

y

0 20 40 60 80 120 0 10 20 30 40 50

0
50

0
15

00

Response variable is Docvis

Log likelihood ratio

Fr
eq

ue
nc

y

−40 −30 −20 −10 0

0
40

00
80

00

Response variable is Hospvis

Log likelihood ratio

Fr
eq

ue
nc

y

−40 −30 −20 −10 0

0
10

00
0

20
00

0

Figure 1. Histogram display of Docvis, Hospvis and the corresponding log likelihood ratios.

Table 3. Test statistics of the EL tests, the VT and NDT tests for the real data example.

Responsevariable EL ELc VT NDT

Docvis −147.9161 −147.9408 −46.7393 −46.7531
Hospvis −270.5393 −270.6181 −91.0500 −91.08769

the critical values are all around 2, this implies that the proposed ELc test provides much
stronger evidence for the superiority of the Geometric model.

Two observations make the conclusion not surprising. On one hand, according to our
simulation experience in Example 4.2, the ELc test has the most accurate type I error and
largest power in supporting the Geometric model among the four tests. On the other hand,
the student-type test relies to some extent to the normality of the likelihood ratios, while the
EL-type tests do not. However we observe from Figure 1 the likelihood ratios in the cases
of y = Docvis and Hospvis are both severely skewed and far away from being normally
distributed. Therefore it is natural that the EL and ELc tests have better powers than the VT
and NDT in this real data analysis.
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