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Abstract This article is concerned with the calibration of the empirical likelihood
(EL) for high-dimensional data where the data dimension may increase as the sam-
ple size increases. We analyze the asymptotic behavior of the EL under a general
multivariate model and provide weak conditions under which the best rate for the
asymptotic normality of the empirical likelihood ratio (ELR) is achieved. In addition,
there is usually substantial lack-of-fit when the ELR is calibrated by the usual nor-
mal in high dimensions, producing tests with type I errors much larger than nominal
levels. We find that this is mainly due to the underestimation of the centralized and
normalized quantities of the ELR. By examining the connection between the ELR and
the classical Hotelling’s T -square statistic, we propose an effective calibration method
which works much better in most situations.

Keywords Asymptotic normality · Coverage accuracy · High-dimensional data ·
Hotelling’s T -square statistic

1 Introduction

With the rapid development of technology, various types of high-dimensional data
have been generated in many areas, such as hyperspectral imagery, internet portals,
microarray analysis and DNA. High-dimensional data refers to a data whose dimension
p increases to infinity as the number of observations n → ∞. Traditional statistical
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methods may not work any more in this situation since they assume that p keeps
unchanged as n increases. This challenge calls for new research on properties of
traditional methods (Portnoy 1985; Hjort et al. 2009; Chen et al. 2009), and new
statistical approaches to deal with high-dimensional data, see Bai and Saranadasa
(1996) and Chen and Qin (2010) for two-sample test for means, Schott (2005) and
Chen et al. (2010) for testing a specific covariance structure, Tang and Leng (2005)
and the references therein for high-dimensional variable section.

Empirical likelihood (EL), introduced by Owen (1988, 1990), provides nonpara-
metric analogs of parametric likelihood-based tests and confidence regions. Empirical
likelihood methods have been proposed for many parameters of interest, such as a
population mean, quantiles of a population distribution, regression parameters, multi-
sample problems and estimating equations (c.f., Qin and Lawless 1994; Owen 2001).
Given the interest in both high-dimensional data and empirical likelihood, the asymp-
totic and finite-sample properties of the EL for high-dimensional data are worth being
carefully investigated.

In this paper, we focus on the EL for a population mean, which is one of its most
important applications. Let X1, . . . , Xn be independent and identically distributed
(i.i.d.) random variables with dimension p, common mean μ and nonsingular covari-
ance matrix �. The empirical likelihood ratio (ELR) function for μ is defined as

ELn(μ) = −2 sup

{
n∑

i=1

log(nwi ) : wi ≥ 0,

n∑
i=1

wi =1,

n∑
i=1

wi (Xi −μ)=0

}
. (1)

Owen (1990) revealed the following Wilks phenomenon: for fixed p, if μ0 is the true

value of μELn(μ0)
L−→ χ2

p as n → ∞.
In high-dimensional data, p diverges to infinity as n → ∞, making the asymptotics

of ELn(μ0) a different story. To emphasize the dependence on n, we rewrite μ,� as
μn, �n . Intuitively, since χ2

p is asymptotically normal with mean p and variance 2p,
we may expect that

(ELn(μ0n) − p)/
√

2p
L−→ N (0, 1), as n → ∞, (2)

where μ0n is the true value of μn .
As pioneers, Hjort et al. (2009) and Chen et al. (2009) have made excellent contri-

butions to the problem under what conditions the ELR for the population mean has an
asymptotically normal distribution. Hjort et al. (2009) proved (2) holds by assuming
boundedness of all components of Xi = (Xi1, . . . , Xip)

T and p = o(n1/3). Alter-
natively, Chen et al. (2009) assumed that the data has certain linear structure, i.e.,
Xi = �Zi + μ, where � is a p × m matrix, m ≥ p, and Zi = (Zi1, . . . , Zim)T is a
random vector such that

E(Zi = 0), Var(Zi ) = Im, E(Z4k
il ) = m4k ∈ (0,∞),

E(Zα1
ik1

Zα2
ik2

· · · Z
αq
ikq) = E(Zα1

ik1
)E(Zα2

ik2
) · · · E(Z

αq
ikq), (3)
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whenever
∑q

k=1 αk ≤ 4k and k1 �= k2 · · · �= kq . Here k is some positive integer. Under
this model, they showed that the effect of the dimensionality and the dependence among
components of Xi on the EL are leveraged through the trace of the covariance matrix
�n = ��T and its largest eigenvalue. In particular, if k could be sufficiently large, they
argued that the best rate for pn would be p = o(n1/2). The data structure (3) generates
a rich collection of Xi from Zi with a given covariance �n . However, it is difficult to
justify this model since the condition that power transformations of different compo-
nents of Zi are uncorrelated, is approximately saying that they are independent and
thus not easily met in practice. For instance, it can be verified that a random vector
with the standard multivariate t distribution does not satisfy this condition.

This paper has two objectives. One is to thoroughly investigate the conditions for the
validity of (2) without the data structure assumption. On the foundation established by
Hjort et al. (2009) and Chen et al. (2009), we analyze the asymptotic behavior of the EL
under a general multivariate model and provide more general conditions such that the
best dimension growth rate for the asymptotic normality of the ELR is achieved. We
shall see that these conditions include Chen et al. (2009) assumption as a special case.
The other objective of the paper is to study the practical calibration of the ELR in finite
sample settings. The main point of Hjort et al. (2009) and Chen et al. (2009) is that in the
high-dimensional data setting, one is suggested to calculate critical values according
to (2). However, there is usually substantial lack-of-fit when the ELR is calibrated by
the usual normal, yielding tests with type I errors much larger than nominal levels.
See the simulation results in Chen et al. (2009) and this paper. We find that the lack-of
fit is mainly due to the deviation of the expectation and variance of ELn(μ0) from p
and 2p, respectively, and the gaps get more prominent as p increases. We propose to
replace p and 2p in (2) with better approximations of the expectation and variance
of ELn(μ0). In doing so, the resulting critical values get much more accurate and the
lack-of-fit in the original normal-based calibration largely disappears.

The rest of this paper is organized as follows: In Sect. 2 we investigate the asymp-
totical normality of the ELR under very general conditions. Section 3 provides a new
method to approximate the finite-sample distribution of the ELR. The performance of
this new calibration method is evaluated by a simulation study in Sect. 4. All proofs
are postponed to the Appendix.

2 Asymptotic results

In this section, we study under what conditions the ELR, ELn(μ0n), has an asymptot-
ically normal distribution. Without loss of generality, we assume μ0n = 0 henceforth.
As pointed out by Tsao (2004), when p/n ≥ 1/2, ELn(0) has no definition with
probability tending to one and (2) will never be valid. In this paper we assume that p
is an increasing function of n and p = o(n/ log n), so that ELn(0) is almost surely
well-defined as n is sufficiently large (see Lemma 8 in Appendix D). According to
(1), if ELn(0) has definition, by Lagrange multiplier method we get

ELn(0) = 2
n∑

i=1

log
(

1 + λT∗ Xi

)
, (4)
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where λ∗ is the solution to

n∑
i=1

Xi

1 + λT Xi
= 0. (5)

For exposition convenience, we define some notation. Let γk(A) denote the kth
largest eigenvalue of a symmetric matrix A. For a random vector X , we define ‖X‖q =
[E(‖X‖q)]1/q . Throughout this paper we assume that there exists c0 > 0 such that
infn γp(�n) > c0. This is a basic assumption in the analysis of the EL for high-
dimensional data and is adopted in both Hjort et al. (2009) and Chen et al. (2009).
Moreover, let αi1i2...ik = E(Y1i1 Y1i2 . . . Y1ik ) with Yr = (Yr1, . . . , Yr p)

T = �
−1/2
n Xr .

Similar to Hjort et al. (2009) and Chen et al. (2009), we separately secure conditions
under which

ELn(0) − n X̄TS−1
n X̄ = op

(√
p
)
, (6)

n X̄T
(
�−1

n − S−1
n

)
X̄ = op

(√
p
)
, (7)

hold, where Sn = n−1∑n
i=1 Xi XT

i and X̄ = n−1∑n
i=1 Xi . If these two conclusions

hold, then

ELn(0)=n X̄T�−1
n X̄ −n X̄T

(
�−1

n − S−1
n

)
X̄ +op

(√
p
)=n X̄T�−1

n X̄ + op
(√

p
)
.

By applying the martingale central limit theorem (Hall and Hyde 1992), we have

(2p)−1/2
{

n X̄T�−1
n X̄ − p

} L−→ N (0, 1), (8)

when p/n → c ≥ 0. See Lemma 5 of Chen et al. (2009) or Bai and Saranadasa (1996)
for a detailed discussion. Hence, the validity of (6) and (7) leads to (2).

For the validity of (6) and (7), we consider the following conditions.

Condition (C1) p−1 ∑p
j=1 E(|X1 j |q) < K for some K > 0 and q ≥ 4;

Condition (C2) ‖X1‖qγ
3/2
1 (�n) = o(n(q−2)/(2q) p−1/2);

Condition (C3) p2+4/q/n → 0;
Condition (C4) p = o(n2/5);
Condition (C5) αi i j j = O(p2);
Condition (C6) αi jkαi jk = O(p5/2) and αi j jαikk = O(p5/2).

Here and henceforth, without otherwise statement, if one index occurs twice in one
term like αi1i2...ik , it means a summation over the range of this index. Conditions (C1)
and (C3) guarantee that the eigenvalues of Sn are close to those of �n , so that Sn is
nonsingular and γp(Sn) > c0 > 0 when n is large. See Lemmas 1, 2. Condition (C1) is
also assumed by Hjort et al. (2009) and is essentially analogous to assuming E(Z4k

il ) =
m4k ∈ (0,∞) for k ≥ 1 in (3). With similar techniques given in Appendix B, we
can verify that the linear structure assumption (3) implies condition (C1). Condition
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(C2), together with (C1) and (C3), implies sup1≤i≤n |λT∗ Xi | = op(1) which leads to
Taylor expansions of (13) and (14). Condition (C5) is on the fourth moments of the
standardized observations Yi ’s. This condition is very weak since it requires a sum
of p2 terms to be O(p2). Roughly speaking, it means that each αi i j j -type fourth
moment of Yi is bounded. To achieve the best rate p = o(n1/2) claimed by Chen et al.
(2009), we need condition (C6) which seems to be a relatively strong condition since
it requires a sum of p3 terms to be O(p5/2). It can be verified that if the data has the
linear structure (3) as assumed by Chen et al. (2009), then both conditions (C5) and
(C6) are satisfied since (See the Appendix)

αi i j j = O
(

p2
)

, αi j jαikk = O
(

p2
)

, αi jkαi jk = O
(

p2
)

. (9)

We present the main result of this section in the following theorem. It is actually a
corollary of Propositions 1 and 2 given in the appendix, which provide conditions for
the validity of (6) and (7), respectively.

Theorem 1 Assume conditions (C1), (C2), (C3) and (C5). If condition (C4) or (C6)

holds, then (ELn(μ0) − p)/
√

2p
L−→ N (0, 1), as n → ∞.

When γ1(�n) is bounded and q = 4, ELn(μ0) has an asymptotically normal dis-
tribution if p = o(n1/3). This improves the rates p = o(n1/4) of Chen et al. (2009)
and p = o(n1/6) of Hjort et al. (2009). If more rigorous conditions are assumed,
that is, condition (C6) holds and more moments (q > 8) of the data are finite, then
the rate of p which guarantees the asymptotical normality of ELn(μ0) is as large
as p = o(nq/(2q+4)) and it is close to p = o(n1/2) when q is large enough, which
improves the rate p = o(n1/3) of Hjort et al. (2009). Chen et al. (2009) also obtained
this rate and they further pointed out that p = o(n1/2) may be the best rate for
the asymptotical normality of ELn(μ0). Unlike Chen et al. (2009), we obtain this
best rate with conditions (C5) and (C6) not the linear structure assumption (3) on
the data. The former conditions are more general in certain sense as indicated ear-
lier.

3 A new calibration method for empirical likelihood

In the previous section, we have shown that (2) holds under some weak conditions.
When testing hypotheses or constructing confidence regions with the EL method,
we would calculate critical values based on the normal approximation (2). How-
ever, these critical values often deviate severely from the true ones when p/n is
not small. Please refer to Tables 1, 2, 3 in Sect. 4. Similar findings have also been
revealed by Chen et al. (2009). We find that this awkward fact is mainly due to the
large difference between the true expectation and variance pair (En, Vn) of ELn(0)

and (p, 2p). See also Tables 1, 2, 3. In addition, Chen et al. (2009) pointed out
that the χ2

p calibration proves to be an improvement of the calibration based on
(2). Since the EL is Bartlett correctable for any fixed p (DiCiccio et al. 1991),
it is natural to expect the χ2

p calibration with Bartlett correction for the EL will
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Table 1 Coverage percentages for n = 200

p Scenario MEL OEL SEL STEL BEL En Ên1 Ên2 Vn V̂n1 V̂n2

25 (I) 94.52 87.36 84.92 89.12 91.32 28.2 25.4 28.8 70.5 48.8 75.8

(II) 93.84 79.00 75.12 82.84 85.36 30.6 26.8 30.2 87.3 63.1 90.1

(III) 95.60 85.88 83.36 88.04 90.08 28.4 26.1 29.5 76.1 56.1 83.1

(IV) 94.84 87.48 84.68 88.84 90.84 28.1 25.4 28.8 70.6 48.8 75.8

(V) 93.84 76.68 74.00 81.20 83.04 31.2 28.4 31.8 104 81.2 108

33 (I) 94.00 79.24 77.00 84.56 86.56 39.4 36.3 39.7 117 86.3 113

(II) 91.28 66.24 63.76 74.48 77.48 43.4 38.7 42.1 157 110 137

(III) 93.64 76.12 73.60 81.84 83.92 40.2 37.2 40.6 133 95.4 122

(IV) 93.72 78.68 76.24 83.76 85.44 39.6 36.3 39.7 114 86.5 113

(V) 91.24 64.00 60.92 70.72 73.48 44.6 40.2 43.6 184 128 155

43 (I) 90.04 61.96 58.76 72.08 75.16 56.5 51.4 54.8 209 143 170

(II) 89.12 46.04 43.16 57.80 61.12 62.5 55.0 58.4 262 181 208

(III) 88.96 59.56 56.84 70.04 72.72 57.7 52.5 55.9 244 155 182

(IV) 89.44 61.64 59.00 72.12 74.36 56.7 51.4 54.8 234 143 170

(V) 87.52 43.76 41.32 55.76 58.08 64.0 56.2 59.6 327 196 223

Table 2 Coverage percentages for n = 400

p Scenario MEL OEL SEL STEL BEL En Ên1 Ên2 Vn V̂n1 V̂n2

33 (I) 95.44 90.00 88.44 91.56 93.20 35.2 32.7 36.1 78.2 59.4 86.4

(II) 93.64 84.00 81.88 87.24 89.08 37.8 34.0 37.4 96.3 71.5 98.5

(III) 95.52 88.48 86.44 90.20 91.80 35.8 33.2 36.6 84.9 64.7 91.7

(IV) 94.96 89.44 87.84 91.00 92.24 35.4 32.7 36.1 83.2 59.4 86.4

(V) 95.92 84.32 81.96 86.84 89.28 37.7 35.4 38.8 95.5 88.4 115

44 (I) 95.04 86.24 84.48 90.04 91.08 48.5 46.2 49.6 122 98.1 125

(II) 93.84 75.64 73.00 82.24 84.52 52.8 48.5 51.9 143 120 147

(III) 95.88 86.36 84.56 89.52 91.20 48.6 46.9 50.3 119 105 132

(IV) 96.28 86.36 84.64 89.88 91.32 48.3 46.2 49.6 114 98.2 125

(V) 95.68 78.40 75.88 82.92 84.84 51.8 49.8 53.2 141 136 163

58 (I) 95.04 78.60 76.40 85.20 87.04 66.9 64.6 68.0 178 157 184

(II) 92.84 61.96 59.24 73.80 76.36 73.5 68.3 71.7 221 194 221

(III) 95.12 75.64 73.52 83.64 84.88 67.6 65.4 68.8 189 166 193

(IV) 94.27 77.23 75.34 84.75 86.49 66.7 64.6 68.0 190 157 184

(V) 94.12 65.12 62.84 75.28 77.68 71.9 69.2 72.6 230 207 234

have better precision. Our simulation indicates that these two methods are still not
good.

The foundations of using (2) to calibrate the EL are that ELn(0) is close to Kn ≡
n X̄T�−1

n X̄ , and that E(Kn) = p, Var(Kn) ≈ 2p. When (En, Vn) deviates severely
from (p, 2p), this calibration does not work any more. Even so, it motivates us to
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Table 3 Coverage percentages for n = 800

p Scenario MEL OEL SEL STEL BEL En Ên1 Ên2 Vn V̂n1 V̂n2

42 (I) 95.84 92.88 91.48 93.60 94.88 43.4 41.0 44.4 89.0 72.4 99.4

(II) 93.36 88.08 86.04 89.56 91.36 46.0 42.1 45.5 107 81.3 108

(III) 95.45 93.15 91.68 93.52 94.44 43.4 41.3 44.7 88.5 76.4 103

(IV) 95.20 92.48 91.04 92.80 93.96 43.7 41.0 44.4 92.2 72.4 99.4

(V) 96.12 90.24 88.40 91.80 93.20 45.0 43.2 46.6 103 95.0 122

55 (I) 95.65 91.25 89.80 92.60 93.50 57.6 55.8 59.2 128 109 136

(II) 94.25 84.50 82.55 88.30 89.80 61.4 57.6 61.0 142 125 152

(III) 96.15 91.65 90.40 92.80 94.10 57.7 56.2 59.6 126 114 141

(IV) 96.00 91.50 90.05 92.90 93.70 57.9 55.8 59.2 120 109 136

(V) 95.60 86.15 85.15 88.65 90.05 60.0 58.6 62.0 148 139 166

72 (I) 96.55 88.35 86.85 91.75 92.70 76.5 75.9 79.3 178 164 191

(II) 94.85 77.60 75.10 84.15 86.20 82.8 78.9 82.3 201 193 220

(III) 96.40 87.15 85.55 90.65 91.80 77.1 76.4 79.8 183 170 197

(IV) 96.45 88.05 86.70 91.35 92.55 77.4 75.9 79.3 164 164 191

(V) 95.85 80.40 78.15 86.15 87.50 80.7 79.5 82.9 211 203 230

consider a possibly better approximation to ELn(0), say Tn ≡ n X̄TS−1
n X̄ , which plays

a critical role in the standard large-sample EL theorem (Owen 1990). By Proposition
2 in Appendix A, we have established that under certain conditions Tn is the dominant
part of ELn(0), so it can be expected that the expectation and variance of Tn should
be a better approximation of (En, Vn) than (p, 2p). It can be verified that

E(Tn) ≈ En1 ≡ p + 1

n

(
αi jkαi jk + αkiiαk j j

)
,

Var(Tn) ≈ Vn1 ≡ 2p + 1

n

(
12α j jkαi ik + 12αi jkαi jk − 2αi i j j

)
.

We expect that replacing (p, 2p) with (En1, Vn1) in (2) will improve the perfor-
mance of the usual normal calibration. However, our simulation results show that Tn is
still not a very good approximation as it is always less than ELn(0) (see Fig. 1). An intu-
itive explanation for this phenomenon is as follows. Let f (λ) = 2

∑n
i=1 log(1+λT Xi ).

Obviously, ELn(0) = supλ f (λ) = f (λ∗), and λ∗ is the maximum point of f (λ). By
second-order Taylor expansion, we have

f (λ) ≈ g1(λ) ≡ 2
n∑

i=1

{
λT Xi − 1

2

(
λT Xi

)2
}

, (10)

provided λT Xi ’s are small. So an approximation of ELn(0) = supλ f (λ) is naturally
supλ g1(λ) = g1(S−1

n X̄) = Tn . However, in the case of moderate n and large p, this
approximation may not work any more. The remainder of each Taylor expansion in
(10) is under control only for λT Xi ∈ (−1, 1). We find in our simulations that when
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Fig. 1 Scatter plots of n simulated values of (ELn(0), Kn) (triangles), (ELn(0), Tn) (dots) and
(ELn(0), Tnc) (circles) for the standard p-dimensional normal distribution with (a) n = 200 and p = 40,
(b) n = 400 and p = 40. The solid line is y = x

p/n is not small, some of λT∗ Xi ’s are greater than 1 with quit a large probability,
but none of them will be less than −1 due to the constraint 1 + λT∗ Xi > 0. When
λ lies in a neighborhood of 0, λT Xi ’s may have similar behaviors, that is some of
them are greater than 1 but almost none of them is less than −1. Note that when
x ∈ (−1, 1), log(1+ x) ≈ x − x2/2; while if x > 1, log(1+ x) > log(2) > x − x2/2.
Therefore, roughly we have f (λ) ≥ g1(λ) in a neighborhood of 0. This finding also
restricts us to approximate ELn(0) by two terms Taylor expansion, because Taylor
expansions of (13) would deviate from ELn(0) more and more severely if more terms
are extracted and some of λT∗ Xi ’s are not small.

To reduce the approximation error of g1(λ), we propose to add a high-order term
(λT X̄)2 to g1(λ). Intuitively g2(λ) = g1(λ) + (λT X̄)2 is a better approximate to
f (λ); so is supλ g2(λ) to ELn(0) = supλ f (λ). It can be verified that supλ g2(λ) =
n X̄TS−1

nc X̄ ≡ Tnc with Snc = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)T. As a matter of fact, Tnc

happens to be the classical Hotelling’s T -square statistic. As indicated by Brown and
Chen (1998), Tnc is also the so-called least-square empirical likelihood ratio LELn(0).
In Chapter 3 of Owen (2001), the author suggests using the distribution of Tnc to
calibrate the ELR in low-dimensional settings. The following proposition, which can
be proved in a similar fashion to Proposition 3, establishes the asymptotic behavior of
ELn(0) − Tnc.

Proposition 1 Suppose conditions (C1), (C2) and (C5) hold. Then

(ELn(0) − Tnc)/p1/2 = op(1),

provided (C4) holds or both (C3) and (C6) hold.

This proposition implies that using Tnc to approximate EL is equivalent to using Tn or
Kn from asymptotic viewpoints. However, these three approximations exhibit quite
different finite-sample behaviors, especially when p/n is not small. Based on a large
amount of simulation results, we find that Tnc is amazingly close to ELn(0) regardless
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of the choice of (n, p) in the sense that (ELn(0) − Tnc)/p1/2 is always pretty small
(p of course should not be too large so that the EL is well defined). To appreciate
this, Fig. 1 shows scatter plots of 200 simulated values of (ELn(0), Kn), (ELn(0), Tn)

and (ELn(0), Tnc) for the p-dimensional standard multivariate normal distribution.
We choose p = 40 and n = 200, 400. From Fig. 1 we can see that the values of
(ELn(0), Tnc) are always around the line y = x , but both Kn and Tn tend to under-
approximate ELn(0). When n increases from 200 to 400, all the three approximations
improve much, while Tnc is still the best approximation to ELn(0). See Sect. 4 for
more thorough analysis and comparison.

Given the foregoing discussion and evidence, we expect that the expectation and
variance of Tnc, i.e.,

E(Tnc) ≈ En2 ≡ p + 1

n

(
p2 + 2p + αi jkαi jk + αkiiαk j j

)
,

Var(Tnc) ≈ Vn2 ≡ 2p + 1

n

(
8p2 + 16p + 12α j jkαi ik + 12αi jkαi jk − 2αi i j j

)

are good approximations of En and Vn , respectively. Let (Êni , V̂ni )(i = 1, 2) be the
moment estimate of (Eni , Vni ). We may calculate critical values according to

(ELn(0) − An)/
√

Bn
L−→ N (0, 1), (11)

where (An, Bn) could be chosen as (p, 2p), or (Êni , V̂ni )(i = 1, 2). In the next section,
we will compare the three methods and show that the method based on (Ên2, V̂n2) is
the best. Hence, it is our final recommendation.

4 Simulation study

Here we report a simulation study designed to evaluate the performance of the proposed
calibration method of empirical likelihood. The number of variety of multivariate dis-
tributions and parameters are too large to allow a comprehensive, all-encompassing
comparison. We choose certain representative examples for illustration. Three well-
known multivariate distributions are considered: (i) multi-normal (scenario I); (ii)
multivariate t with five degrees of freedom, denoted by tp,5 (scenario II); (iii) multi-
variate chi-square distribution with three degrees of freedom (see Mardia et al. 1979,
p. 92), denoted by χ2

p,3 (scenario III). The covariance matrix � = (σi j ) in these three

distributions is fixed with σi j = 0.5|i− j | for 1 ≤ i, j ≤ p.
In addition, the moving average model studied in Chen et al. (2009) is also included

here, allowing us to have a more broad picture of the efficiency of the proposed method
since it satisfies the data structure (3). To be more specific, the p ×1 i.i.d. data vectors
{Xi }n

i=1 are generated from

Xi j = Zi j + ρZi, j+1, i = 1, . . . , j = 1, . . . , p,
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where for each i, Zi j ( j = 1, 2, · · · , p) are i.i.d. random variables with zero mean
and unit variance. Two distributions for the Zi j are considered. One is the standard
normal distribution (labeled as scenario (IV)), and the other is a standardized Pareto
distribution with distribution function (1 − x−4.5)I (x ≥ 1) (labeled as scenario (V)).
As the Pareto distribution has only four finite moments, we had q = 4 in the conditions
of Theorem 1, whereas q = ∞ for all the other four scenarios. Note that neither tp,5
nor χ2

p,3 distribution belongs to model (3). It can be also seen that except for scenario
(II), the other four scenarios satisfy conditions (C5) and (C6). Hence, for scenarios
(I), (III) and (V), the best rate p = o(n1/2) for the asymptotical normality of the EL
could be achieved, while for scenarios (II) and (V), the rates are o(n2/5) and o(n1/3),
respectively.

The settings of the combinations of p and n in Chen et al. (2009) are adopted
here. Say, we consider the growth rate for p with respect to n as p = cn0.24. The
sample size n is chosen as 200, 400 and 800. By assigning c = 3, 4 and 5, we obtain
three dimensions for each sample size, i.e. p = 25, 33 and 43 for n = 200; p = 33,
44 and 58 for n = 400; and p = 42, 55 and 72 for n = 800, respectively. We
compare five calibration methods for the EL: (a) the proposed method (denoted as
modified EL, MEL), i.e. the normal calibration (11) with (An, Bn) = (Ên2, V̂n2);
(b) the ordinary χ2

p calibration (OEL); (c) the usual standardized normal calibration

(2) (SEL); (d) the normal calibration (11) with (An, Bn) = (Ên1, V̂n1) (STEL); (e)
the χ2

p calibration after Bartlett correction (BEL; DiCiccio et al. 1991). Tables 1, 2,
3 report coverage percentage comparisons for constructing confidence regions with
nominal coverage level 0.95 when n = 200, 400 and 800 respectively. Each coverage
percentage is obtained based on 2,500 simulation repetitions. The averages of the
stimulated (En, Vn) and (Êni , V̂ni ), i = 1, 2 are also tabulated.

As we expect, the performances of all the five methods get better when n increases
or p decreases. The SEL calibration seems the worst among the five methods. When
n = 200 and 400, it gives rather unsatisfactory coverage probabilities in most cases.
For instance, when n = 400 and p = 58, its coverage probabilities for scenarios (II)
and (V) are as low as 60 % around. Even for the normal case in which the moment
conditions in the asymptotic analysis are much easier to met, its coverage percentage
still stays below 80 %. The ordinary χ2

p calibration method works uniformly better than
SEL in terms of coverage percentage. This is consistent with the findings of Chen et al.
(2009) which pointed out that χ2

p can be regarded as an intermediate convergence of
the ELR. However, we also observe that the improvement of OEL over SEL is limited
and in most situations their coverage percentages are unacceptably low. It is partly
because the expectation and variance of the ELR are far away from p and 2p when
p is large, as shown in these tables. We can also clearly see that the BEL and STEL
methods improve the efficiency of OEL and SEL. Unfortunately, in the cases that n is
not large enough such as n = 200 or 400, there are still considerable coverage errors
with these two methods. In comparison, our proposed method, MEL, can always attain
(or approximately) the desired coverage percent and outperform the rest four methods
in most cases. The advantage gets more remarkable when n decreases or p increases.

To check whether the above conclusions would change for other choices of nominal
coverage level, in Fig. 2, we display Q–Q plots of the standardized ELR (11) with
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Fig. 2 Normal Q–Q plots of the standardized empirical likelihood ratios with tp,5: MEL (solid line), SEL
(dashed lines) and STEL (dotted lines)

(p, 2p), and (Êni , V̂ni ), i = 1, 2, which reflect the convergence of SEL, STEL and
MEL to N (0, 1) respectively. Here we only present the results of tp,5 (Scenario II)
since the results for other scenarios are similar. There is a general convergence of all
three standardized ELRs to N (0, 1) as n and p increase simultaneously. The MEL has
the best goodness-of fit in all cases and outperform the other two methods by quite
a large margin when n is small. We also observe from the Q–Q plots that the MEL
does not improve the lack-of-fit at lower quantiles. This is not surprising. Analogous
phenomenon has been mentioned in many applications of the Edgeworth expansion
where the improvements of coverage accuracies at lower quantiles are usually not as
substantial as those at upper quantiles (Hall 1992). However, in the use of EL for
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constructing confidence regions or testing, upper quantiles are of our major concern.
Therefore, the MEL can be regarded as a reasonable alternative for the calibration of
the ELR in practice.

5 Discussion

An issue of using the EL is that for each given μ0n , the ELR function ELn(μ0n)

is well defined only if the convex hull of {X1 − μ0n, . . . , Xn − μ0n} contains the
p-dimensional zero vector. When n is not large, or when a good candidate (vector)
value of μ0n is not available, this convex hull often fails to contain 0 (Owen 2001).
Chen et al. (2008) indicated that when the maximum EL solution does not exist,
blindly setting ELn(μ0n) = ∞ as suggested in the literature fails to provide any
information on whether μ0n is grossly unfit to the data or is in fact only slightly off an
appropriate value. Also, it is numerically difficult to determine that there is no solution.
This problem is particularly critical in testing problems since μn may be far away from
μ0n . The situation would be definitely more serious for high-dimensional data streams
as Tsao (2004) pointed out when p is moderately large but fixed, the distribution of
ELn(μ0n) has an atom at infinity for fixed n. This makes the practical implementation
of EL methods infeasible and inconvenient. Chen et al. (2008), Liu and Chen (2010),
Emerson and Owen (2009) and Liu and Yu (2010) propose several remedies, through
adding some artificial data points to the observed sample. It is of great interest and
also necessity to study the calibration of these adjusted EL for high-dimensional data.

6 Appendix

6.1 Appendix A: Proof of Theorem 1

We prove Theorem 1 by proving the following two propositions.

Proposition 2 Assume conditions (C1), (C2) and (C5) are valid. If condition (C4)
holds or both conditions (C3) and (C6) hold, then (7) is valid.

Proposition 3 Under conditions (C1), (C3) and (C5), (8) is valid.

To prove the propositions, we begin with several necessary lemmas. The first lemma
comes from Hjort et al. (2009) and we omit the proof. Throughout the following
proofs, let Ln = max1≤i, j≤p |�n,i, j − Sn,i, j | where �n,i, j and Sn,i, j denote the (i, j)
components of the theoretical and sample covariance matrices �n and Sn .

Lemma 1 Let An(p, q) = p−1 ∑p
j=1 E(|X1 j |q). For any ε > 0, there exists a con-

stant c(q) > 0 such that P(Ln ≥ ε) ≤ c(q)p2

nq/2εq An(p, q)2.

Lemma 2 Let γi (�) denote the i-th largest eigenvalue of a symmetric matrix �. It
holds that max1≤i≤p |γi (�n) − γi (Sn)| ≤ pLn.
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Proof The fact that �n and Sn are both non-negative matrix implies that γi (�n) =
γ

1/2
i (�2

n) and γi (Sn) = γ
1/2
i (S2

n ). It then follows that

max
1≤i≤p

|γi (�n) − γi (Sn)|2 ≤
p∑

i=1

|γ 1/2
i

(
�2

n

)
− γ

1/2
i

(
S2

n

)
|2

= tr
(
�2

n

)
+ tr

(
S2

n

)
− 2

p∑
i=1

γi (Sn)γi (�n).

By Von Neymann’s inequality,
∑p

i=1 γi (�n)γi (Sn) ≥ tr(Sn�n), we have

max
1≤i≤p

|γi (�n) − γi (Sn)| ≤ {tr(�n − Sn)2}1/2 ≤ pLn,

where the last inequality holds because the absolute value of each element of (�n−Sn)2

is no greater than L2
n . 
�

Under condition (C1) we have

P(pLn ≥ ε) ≤ c(q)p2+q

nq/2εq
K 2. (12)

Furthermore if condition (C3) also holds, then pLn = op(1). Based on Lemmas 1
and 2, we have the following corollary.

Corollary 1 Under conditions (C1) and (C3), the inequality γp(Sn) ≥ c0 holds with
probability tending to one as n → ∞.

By Lagrange multiplier method we get

ELn(0) = 2
n∑

i=1

log
(

1 + λT∗ Xi

)
, (13)

where λ∗ is the solution to

n∑
i=1

Xi

1 + λT Xi
= 0. (14)

To expand (14), we need to guarantee that sup1≤i≤n |λT∗ Xi | = op(1), which requires
studying the magnitude of Bn ≡ max1≤i≤n ‖Xi‖.

Lemma 3 If Xi has finite q-th absolute moment, then Bn = op(n1/q‖Xi‖q).

Proof It is clear that

max
1≤i≤n

‖Xi‖ ≤
{

max
1≤i≤n

∣∣∣‖Xi‖q/2 − E
(
‖Xi‖q/2

)∣∣∣ + E‖Xi‖q/2
}2/q

,

and
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max
1≤i≤n

∣∣∣‖Xi‖q/2 − E‖Xi‖q/2
∣∣∣ {Var

(
‖Xi‖q/2

)}−1/2 = op

(
n1/2

)
.

Therefore we have

Bn = max
1≤i≤n

‖Xi‖ = op

(
n1/q

[
Var

(
‖X1‖q/2

)]1/q
)

+ Op

([
E‖X1‖q/2

]2/q
)

.

Since Var(‖X1‖q/2) ≤ E‖X1‖q and [E‖X1‖q/2]2/q ≤ ‖X1‖q , we get

Bn = max
1≤i≤n

‖Xi‖ = op

(
n1/q‖Xi‖q

)
.


�
Lemma 4 Let A = (ai j ) denote a p × p matrix and Ma(A) = max1≤i, j≤n |ai j |. If A
is non-negative definite, then Ma(A) ≤ γ1(A).

Proof Suppose A has eigen decomposition A = Q�QT, where� = diag{γ1, · · · , γp}
and Q = (qi j ) is an orthogonal matrix. It is clear that QT is also an orthogonal matrix.
Therefore

∑p
k=1 q2

ik = ∑p
i=1 q2

ik = 1. Then the result Ma(A) ≤ λ1 can be concluded
from

|ai j | =
∣∣∣∣∣

p∑
k=1

qikγk(A)q jk

∣∣∣∣∣ ≤
( p∑

k=1

q2
ik

)1/2 ( p∑
k=1

[γk(A)]2q2
jk

)1/2

≤ γ1(A)

( p∑
k=1

q2
jk

)1/2

= γ1(A).


�
Lemma 5 Assume conditions (C1), (C3) and (C2). Then sup1≤i≤n |λT∗ Xi | = op(1)

and lambda∗ = S−1
n (X̄ + βn), where X̄ = Op(n−1/2 p1/2[γ1(�n)]1/2) and βn =

Op(n(1−q)/q p‖X1‖q [γ1(�n)]2).

Proof Let λ∗ = ‖λ∗‖u where u is a vector with length one. By the same argument as
Owen (1990)(page 101) we have

1

n

n∑
i=1

uT Xi

1 + λT∗ Xi
= 0 ⇒ uT X̄(1 + ‖λ∗‖Bn) ≥ uTSnu‖λ∗‖

⇒ ‖λ∗‖(uTSnu − uT X̄ Bn) ≤ uT X̄ .

It can be seen that X̄ = Op(p1/2n−1/2[γ1(�n)]1/2) from E(X̄T X̄) = tr(�n)/n ≤
pγ1(�n)/n. Since |uT X̄ | ≤ ‖X̄‖ we get uT X̄ = Op(p1/2n−1/2[γ1(�n)]1/2). It fol-
lows that

uT X̄ Bn = op

(
p1/2n−1/2[γ1(�n)]1/2 · n1/q‖Xi‖q

)
= op(1).
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where the last equality holds because of condition (C2). According to Corollary 1,
uTSnu > c0 holds with probability tending to one as n → ∞. Therefore we have
‖λ∗‖ = O(|uT X̄ |/c0) = O(‖X̄‖) = Op(n−1/2 p1/2[γ1(�n)]1/2) and

sup
1≤i≤n

∣∣∣λT∗ Xi

∣∣∣ = ‖λ∗‖ · Bn = O
(∣∣∣uT X̄

∣∣∣ Bn

)
= op(1).

Now expanding (14) gives X̄−Snλ∗+βn = 0, where βn = 1
n

∑n
i=1 Xi (XT

i λ∗)2(1+
op(1)). So we have λ∗ = S−1

n (X̄ + βn), and

‖βn‖ ≤ 2

n

n∑
i=1

‖Xi‖
∣∣∣XT

i λ∗
∣∣∣2 ≤ 2

n

n∑
i=1

Bn

(
λT∗ Xi XT

i λ∗
)

= O
(
‖λ∗‖2γ1(�n)Bn

)
= O

(
‖X̄‖2γ1(�n)Bn

)
= Op

(
n(1−q)/q p‖X1‖q [γ1(�n)]2

)
.

It can be seen from the last but one equality that βn = X̄ · op(1). 
�
Lemma 6 If conditions (C1) and (C3) hold, then (S−1

n − �−1
n )X̄ = (�−1

n X̄)op(1).

Proof By γ1(�
−1
n ) ≤ 1/c0, we know γ1(S−1

n ) ≤ 1/c0 with probability tending to
one. Using Lemma 2, we have

‖�n(S−1
n − �−1

n )X̄‖ = ‖(�n − Sn)S−1
n X̄‖

≤ max
1≤i≤p

|γi (�n − Sn)|γ1(S−1
n )‖X̄‖

≤ pLn‖X̄‖/c0 = ‖X̄‖ · op(1),

which implies (S−1
n − �−1

n )X̄ = (�−1
n X̄)op(1). 
�

Combining Lemmas 5 and 6 results in the following corollary:

Corollary 2 Assume conditions (C1), (C3) and (C2). Then λ∗ = �−1
n X̄(1 + op(1)).

Proof of Proposition 1 Noting that max1≤i≤p λT∗ Xi = op(1), by Taylor’s expansion
of (13), we have

ELn(0) = 2
n∑

i=1

{
λT∗ Xi − 1

2
λT∗ Xi XT

i λ∗ + 1

3

(
XT

i λ∗
)3

(1 + op(1))

}

= n
(

2X̄Tλ∗ − λT∗ Snλ∗
)

+ δ1

where δ1 = 2
3

∑n
i=1(XT

i λ∗)3(1 + op(1)). Replacing λ∗ with S−1
n (X̄ + βn) in the

above expression leads to ELn(0) = n X̄TS−1
n X̄ − δ2 + δ1 where δ2 = nβT

n S−1
n βn .

The theorem is proved by showing that δ1 = op(
√

p) and δ2 = op(
√

p).

123



544 Y. Liu et al.

According to Corollary 2 and Lemma 5,

δ1 = 2

3

n∑
i=1

(
XT

i �−1
n X̄

)3
(1 + op(1)), βn = 1

n

n∑
i=1

Xi

(
XT

i �−1
n X̄

)2
(1 + op(1)).

Along the line of proving Lemma 6, we can show that δ2 = nβT
n �−1

n βn(1 + op(1)).
Recall the definition of Yr and αi1i2...ik . Let

Ai1i2...ik = 1

n

n∑
j=1

Y j,i1 . . . Y j,ik − αi1i2...ik . (15)

Then δ1 and δ2 can be rewritten as

δ1 = 2n

3
αi jk Ai A j Ak(1 + op(1)), (16)

δ2 = nαi jkαirs A j Ak Ar As(1 + op(1)),

where we adopt the summation convention employed in conditions (C5) and (C6).
With tedious calculation we obtain

E

(
2n

3
αi jk Ai A j Ak

)2

= 4

3n

(
3αi j jαikk + 2αi jkαi jk

)
(1 + o(1));

E
(

nαi jkαirs A j Ak Ar As
)

= n−1
(

2αi jkαi jk + αi j jαikk
)

(1 + o(1)).

It can be proved that |αi jkαi jk | ≤ αi i j jαkk and |αi j jαikk | ≤ 1
2 (αi i j jαkk + αi ikkαkk).

Therefore

E
(2n

3
αi jk Ai A j Ak

)2 ≤ 20

3n
pαi i j j = O

(
p3/n

)
,

E
(

nαi jkαirs A j Ak Ar As
)

≤ 3

n
pαi i j j = O

(
p3/n

)
.

Thus we have δ1 = Op(p3/2/n1/2) = op(
√

p). Since αi jkαirs A j Ak Ar As ≥ 0, it can
be seen that δ2 = O(p3/n) by Markov’s inequality.

It is clear that p = o(n2/5) is sufficient for δ2 = op(
√

p); while if both αi jkαi jk =
O(p5/2) and αi j jαikk = O(p5/2), then the rate of p can be relaxed to p = o(n1/2).


�
Lemma 7 Denote Dn = I − Vn with Vn = �

−1/2
n Sn�

−1/2
n . If condition (C5) holds,

then tr(D2
n) = Op(p2/n).

Proof It is easy to see that αi j = 1 for i = j and 0 otherwise. Note that

D2
n =

(
I − 1

n

n∑
r=1

Yr Y T
r

)2

= I − 2

n

n∑
r=1

Yr Y T
r + 1

n2

n∑
r,s=1

Yr Y T
r YsY T

s .

123



Calibration of the empirical likelihood for high-dimensional data 545

Therefore we have

Etr
(

D2
n

)
= p − 2

n

p∑
i=1

n∑
r=1

αi i + 1

n2

p∑
i, j=1

n∑
r,s=1

EYri Y
T
r j Ys j Y

T
si

= −p + 1

n2

p∑
i, j=1

⎛
⎝∑

r �=s

+
∑
r=s

⎞
⎠ EYri Y

T
r j Ys j Y

T
si

= −p + n(n − 1)

n2

p∑
i, j=1

αi jα j i + n

n2

p∑
i, j=1

αi i j j

=
(
αi i j j − p

)
/n = O

(
p2/n

)
.


�
Proof of Proposition 2 Let Ȳ = �

−1/2
n X̄ . Then ηn = nȲ T(I − V −1

n )Ȳ . Note that
I − V −1

n = Dn − D2
n + · · · − (−1)k Dk

n − (−1)k Dk
n(I − V −1

n ). Hence

ηn = n
{

Ȳ T DnȲ − Ȳ T D2
nȲ + · · · − (−1)k Ȳ T Dk

nȲ
}

+ (−1)knȲ T Dk
n(I − V −1

n )Ȳ .

(17)

Now we study the convergence of this expansion. Note that

‖Ȳ‖2 = X̄T�−1 X̄ ≤ γ1

(
�−1

n

)
‖X̄‖2 ≤ c0‖X̄‖2 = Op

(
γ1(�)n−1 p

)
,

and that |γ j (Dn)| ≤ [tr(D2
n)]1/2 = Op(p/

√
n) according to Lemma 7. So we have

∣∣∣Ȳ T Dk
nȲ

∣∣∣≤‖Ȳ‖2 max
1≤j≤p

∣∣∣γ j

(
Dk

n

)∣∣∣≤‖Ȳ‖2
[
tr

(
D2

n

)]k/2 ≤ Op

(
γ1(�)pk+1/n(k+2)/2

)
,

which means the series n
∑∞

k=1 Ȳ T Dk
nȲ (−1)k−1 is convergent for fixed n when

p = o(n1/2). With lengthy algebra we have E|nȲ T DnȲ |2 = n2E|X̄T(�n −
Sn)X̄ |2 = O(p3/n), which implies nȲ T DnȲ = Op(p3/2/

√
n) = op(

√
p). Thus,

n
∑∞

k=1 Ȳ T Dk
nȲ (−1)k−1 = op(

√
p).

The remaining task is to prove that the remainder term in (17) is negligible as
k → ∞. It is clear that

|(−1)knȲ T Dk
n

(
I − V −1

n

)
Ȳ | ≤

∣∣∣nȲ T Dk
nȲ

∣∣∣ +
∣∣∣nȲ T Dk

n V −1
n Ȳ

∣∣∣ ,
where the first term has been shown to be Op(γ1(�)pk+1/nk/2). Note that
|nȲ T Dk

n V −1
n Ȳ | ≤ npMa(Dk

n V −1
n )‖Ȳ‖2, where the operator Ma(·) is defined in

Lemma 4.
It is clear from Corollary 1 that γ1(V −1) = γ1(S−1

n �n) ≤ γ1(�n)/c0 with proba-
bility tending to one. According to Lemma 4, we have
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Ma(Dk
n V −1

n ) ≤ pMa(Dk
n)Ma(V −1

n ) ≤ p max
1≤i≤p

|γi (Dk
n)| max

1≤i≤p
|γi (V −1

n ))

= Op(pk+1n−k/2γ1(�n)).

This leads to |nȲ T Dk
n V −1

n Ȳ | = Op(γ
2
1 (�)pk+3/nk/2).

Finally, we have |(−1)knȲ T Dk
n(I −V −1

n )Ȳ | = Op(γ
2
1 (�)pk+3/nk/2), which con-

verges to zero as k → ∞ because of conditions (C3). 
�

6.2 Appendix B: calculation of Eni and Vni for i = 1, 2

In what follows, we adopt the notation defined in (15) and the summation convention
employed in condition (C6) for convenience. It is clear that αi j = δi j , where δi j is the
Kronecker delta, that is δi j = 1 if i = j ; otherwise, δi j = 0. Let Bi j denote the (i, j)
element of a matrix B.

Note that Tn = n X̄TS−1
n X̄ = nȲ T(�

1/2
n S−1

n �
1/2
n )Ȳ . Since (�

−1/2
n Sn�

−1/2
n )i j =

δi j + Ai j , it can be verified that

(
�

1/2
n S−1

n �
1/2
n

)i j = δi j − Ai j + Aik Ak j − Aik Akl Al j + · · · .

Consequently, we know

Tn = n(Ai Ai − Ai A j Ai j + Ai A j Aik Ak j − Ai A j Aik Akl Al j + · · · ),

and its expectation ETn = En Ai Ai − En Ai A j Ai j + En Ai A j Aik Ak j (1 + o(1)). Note
that E(Ai Ai ) = p/n, E(Ai A j Ai j ) = n−2(αi i j j − p)(1 + o(1)) and

E(Ai A j Aik Ak j ) = 1

n2 (αi i j j − p + αkiiαk j j + αi jkαi jk)(1 + o(1)),

which result in E(Tn) = p + 1
n (αkiiαk j j + αi jkαi jk)(1 + o(1)).

To get Vn1, we need to calculate ET 2
n :

ET 2
n = n2 E(Ai Ai A j A j − 2Ai A j Ai j Ar Ar + Ai A j Ai j Ar As Ars

+2Ai A j Aik Ak j Ar Ar + · · · )
≡ I1 − 2I2 + I3 + 2I4 + · · · ,

where

I1 = p2 + 2p + 1

n

(
αi i j j − p2 − 2p

)
(1 + o(1));

I2 = 1

n
[(p + 5)αi i j j − 2p2 − 4p + 2αi i jαrr j + 2αri jαri j ](1 + o(1));

I3 = 1

n
{3αi i j j − p2 − 2p + 8α j jkαi ik + 4αi jkαi jk}(1 + o(1));
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I4 = 1

n
{(p + 2)αi i j j − p2 − 2p + (p + 6)αi jkαi jk + (p + 4)α j jkαi ik}(1 + o(1)).

Finally, we get

ET 2
n = p2 + 2p − 2

n
αi i j j + 2p + 12

n
(α j jkαi ik + αi jkαi jk)(1 + o(1)),

Var(Tn) = ET 2
n − (ETn)2

= p2 + 2p − 2

n
αi i j j + 2p + 12

n
(α j jkαi ik + αi jkαi jk)

−
{

p + 1

n
αi jkαi jk + 1

n
αkiiαk j j

}2

+ · · ·

= 2p − 2

n
αi i j j + 12

n
(α j jkαi ik + αi jkαi jk) + · · · .

To calculate En2 and Vn2, we note that Tnc = nȲ T(�
1/2
n S−1

nc �
1/2
n )Ȳ and

(�
−1/2
n Sn�

−1/2
nc )i j = δi j + Ai j − Ai A j . Similarly,

(�
1/2
n S−1

n �
1/2
n )i j = δi j − Ai j + Ai A j + Aik Ak j − 2Aik Ak A j − Aik Akl Al j + · · · .

Thus, we have

Tnc = n(Ai Ai − Ai A j Ai j + Ai A j Ai A j + Ai A j Aik Ak j − 2Ai A j Aik Ak A j ) + · · ·
T 2

nc = n2(Ai Ai Ar Ar − 2Ar Ar Ai A j Ai j + Ar As Ars Ai A j Ai j + 2Ar Ar Ai A j Ai A j

+2Ar Ar Ai A j Aik Ak j ) + · · · .

Some algebra leads to En Ai A j Ai A j = 1
n (p2 + 2p) and n2E(Ar Ar Ai A j Ai A j ) =

1
n (p3 + 6p2 + 8p). By comparing the expansion of Tn and Tnc, it is straightforward
to see

ETnc = p + 1

n
(p2 + 2p + αkiiαk j j + αi jkαi jk)(1 + o(1)),

ET 2
nc = p2 + 2p − 2

n
αi i j j + 1

n
(2p3 + 12p2 + 16p)

+2p + 12

n
(α j jkαi ik + αi jkαi jk)(1 + o(1)),

and therefore

Var(Tnc) = 2p − 2

n
αi i j j + 8p2 + 16p

n
+ 12

n
(α j jkαi ik + αi jkαi jk) + · · · .
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6.3 Appendix C: Proof of claim (9)

Suppose the model (3) is valid for k ≥ 1. Let β i jkl = E(X1i X1 j X1k X1l), ξ
i jkl =

E(Z1i Z1 j Z1k Z1l),�
−1/2 = (Hi j ), � = (�i j ), �−1 = (Bi j ). Apparently, �i j =

�ir� jr and for fixed r �= s, ξ rrss = 1 and ξ rrrr = m4 ∈ (0,∞). Then, we have
β i jkl = �i j�kl + �ik� jl + �il�k j + �ir� jr�kr�lr (m4 − 3). Now, we separately
calculate αi i j j , αi jkαi jk and αi j jαi jk . First,

αi i j j = Hir His H ju H jvβrsuv = p2 + 2p + Brs Buv�r t�st�ut�vt (m4 − 3).

Let at = Brs�r t�st and E = Brs Buv�r t�st�ut�vt . Then E = ∑m
t=1 a2

t and∑m
t=1 at = p. Note that �−1 is nonsingular, so at > 0 and furthermore

E =
m∑

t=1

a2
t ≤ max

1≤i≤m
ai

m∑
t=1

at ≤
(

m∑
t=1

at

)2

= p2.

Thus we have αi i j j = O(p2).
Note that β i jk = �ir� js�ktξ rst = �ir� jr�krξ rrr . Then, we have

αi jkαi jk = Hir His H juβrsu Hia Hib H jcβabc = CghCghCghξ gggξ hhh

where Cgh = Bra�rg�ah . Since for fixed r, |ξ rrr | ≤ (ξ rrrr )3/4 = m3/4
4 , it follows

that

|αi jkαi jk | ≤
∑
g,h

|Cgh |3m3/2
4 ≤ m3/2

4 max
g,h

|Cg,h | ·
∑
g,h

|Cgh |2. (18)

It can be seen that maxg,h |Cg,h | ≤ maxg Ch,h ≤ ∑p
h=1 Ch,h = p and

∑
g,h(Cgh)2 =

p. This together with (18) leads to |αi jkαi jk | = O(p2). Similarly, αi j jαikk = O(p2).

6.4 Appendix D: On the assertion that ELn(0) is almost well-defined.

Lemma 8 Let X1, · · · , Xn be i.i.d. random variables with dimension p, common
mean μ0 and nonsingular covariance matrix �. The event that μ0 is inside the
convex hull of point X1, . . . , Xn happens with probability tending to 1 provided
p = o(n/ log n).

Proof First of all, by Lemma 2 of Owen (1990), for any p there exists a constant
ε0 > 0 not depending on n such that

inf
θ∈�p

P((X� − μ0)θ > 0) ≥ ε0 (19)

where �p denotes the unit p-dimensional sphere in R
p.
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Next, we will show

sup
θ∈�p

|P((X − μ0)
�θ > 0) − Pn((X − μ0)

�θ > 0)| → 0, a.s. (20)

where Pn denotes the empirical probability measure based on X1, . . . , Xn . In fact,
this can be proved by using a generalization of the Glivenko–Cantelli theorem on �p.
By Theorem 12.12 in DasGupta (2008) (or Theorem 2 in Vapnik and Chervonenkis
(1971)), for any ε > 0, we have

P

(
sup

θ∈�p

|P((X − μ0)
�θ > 0) − Pn((X − μ0)

�θ > 0)| > ε

)

≤ 8S(n, HS
p)e−nε2/32

≤ 8
VC(HS

p)∑
i=0

Ci
ne−nε2/32

= 8
p+1∑
i=0

Ci
ne−nε2/32 ≤ 8n p+1e−nε2/32

,

where HS
p is the collection of all linear half-spaces in R

p, S(n, HS
p) is the nth shat-

tering coefficient of HS
p and VC(HS

p) is the Vapnik–Chervonenkis (VC) dimension
of HS

p. The second inequality above comes from Proposition 12. 1 in DasGupta
(2008) and the equality holds by the classical result that VC(HS

p) = p + 1 (Vapnik
and Chervonenkis (1971)). For p = o(n/ log(n)), we have 8n p+1e−nε2/32 → 0 as n
tends to infinity, which means (20) holds.

It then follows from (20) and (19) that for any p

inf
θ∈�p

Pn((X − μ0)
�θ > 0) ≥ ε0

2
, a.s.

This immediately leads to

P

(
inf

θ∈�p
Pn((X − μ0)

�θ ≥ 0) > 0

)
→ 1, n → ∞,

from which we know the convex hull of X1, . . . , Xn contains μ0 with probability
tending to 1. Therefore, the empirical likelihood function EL(μ0) is almost well-
defined for large n as long as p = o(n/ log(n)). 
�
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