Ann Inst Stat Math (2013) 65:529-550
DOI 10.1007/s10463-012-0384-7

Calibration of the empirical likelihood
for high-dimensional data

Yukun Liu - Changliang Zou - Zhaojun Wang

Received: 4 January 2012 / Revised: 4 June 2012 / Published online: 18 November 2012
© The Institute of Statistical Mathematics, Tokyo 2012

Abstract This article is concerned with the calibration of the empirical likelihood
(EL) for high-dimensional data where the data dimension may increase as the sam-
ple size increases. We analyze the asymptotic behavior of the EL under a general
multivariate model and provide weak conditions under which the best rate for the
asymptotic normality of the empirical likelihood ratio (ELR) is achieved. In addition,
there is usually substantial lack-of-fit when the ELR is calibrated by the usual nor-
mal in high dimensions, producing tests with type I errors much larger than nominal
levels. We find that this is mainly due to the underestimation of the centralized and
normalized quantities of the ELR. By examining the connection between the ELR and
the classical Hotelling’s T-square statistic, we propose an effective calibration method
which works much better in most situations.

Keywords Asymptotic normality - Coverage accuracy - High-dimensional data -
Hotelling’s T'-square statistic

1 Introduction

With the rapid development of technology, various types of high-dimensional data
have been generated in many areas, such as hyperspectral imagery, internet portals,
microarray analysis and DNA. High-dimensional data refers to a data whose dimension
p increases to infinity as the number of observations n — oo. Traditional statistical
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methods may not work any more in this situation since they assume that p keeps
unchanged as n increases. This challenge calls for new research on properties of
traditional methods (Portnoy 1985; Hjort et al. 2009; Chen et al. 2009), and new
statistical approaches to deal with high-dimensional data, see Bai and Saranadasa
(1996) and Chen and Qin (2010) for two-sample test for means, Schott (2005) and
Chen et al. (2010) for testing a specific covariance structure, Tang and Leng (2005)
and the references therein for high-dimensional variable section.

Empirical likelihood (EL), introduced by Owen (1988, 1990), provides nonpara-
metric analogs of parametric likelihood-based tests and confidence regions. Empirical
likelihood methods have been proposed for many parameters of interest, such as a
population mean, quantiles of a population distribution, regression parameters, multi-
sample problems and estimating equations (c.f., Qin and Lawless 1994; Owen 2001).
Given the interest in both high-dimensional data and empirical likelihood, the asymp-
totic and finite-sample properties of the EL for high-dimensional data are worth being
carefully investigated.

In this paper, we focus on the EL for a population mean, which is one of its most
important applications. Let X1, ..., X,, be independent and identically distributed
(i.i.d.) random variables with dimension p, common mean px and nonsingular covari-
ance matrix X. The empirical likelihood ratio (ELR) function for u is defined as

EL, (1) = ~2sup [Zlog(nwo twi =0, wi=1, Zwi<xi—m=01 Q)

i=1 i=1 i=1

Owen (1990) revealed the following Wilks phenomenon: for fixed p, if g is the true

value of wEL,, (10) £, Xzz) asn — oo.

In high-dimensional data, p diverges to infinity as n — 00, making the asymptotics
of EL, (o) a different story. To emphasize the dependence on n, we rewrite i, X as
Uns 2. Intuitively, since X,z, is asymptotically normal with mean p and variance 2 p,
we may expect that

(EL, (1on) — p)/V/2p -5 N(O. 1), as n — oo, @

where (o, is the true value of w,,.

As pioneers, Hjort et al. (2009) and Chen et al. (2009) have made excellent contri-
butions to the problem under what conditions the ELR for the population mean has an
asymptotically normal distribution. Hjort et al. (2009) proved (2) holds by assuming
boundedness of all components of X; = (X;q, ..., Xi,,)T and p = o(n1/3). Alter-
natively, Chen et al. (2009) assumed that the data has certain linear structure, i.e.,
X; =TZ; 4+ u, where I is a p x m matrix, m > p,and Z; = (Z;y, ..., Zim)Visa
random vector such that

E(Zi =0), Var(Z;) = Ly, E(Z{') = may € (0, 00),
E(Z3 Z -+ Zf’,jq) = E(ZJ)EZ}) - E(zf‘,jq), (3)
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whenever ZZ: | %k < 4kandky # ko - - - # kg. Here k is some positive integer. Under
this model, they showed that the effect of the dimensionality and the dependence among
components of X; on the EL are leveraged through the trace of the covariance matrix
¥, = I'T'T andits largest eigenvalue. In particular, if k could be sufficiently large, they
argued that the best rate for p, would be p = o(n'/?). The data structure (3) generates
arich collection of X; from Z; with a given covariance X,,. However, it is difficult to
justify this model since the condition that power transformations of different compo-
nents of Z; are uncorrelated, is approximately saying that they are independent and
thus not easily met in practice. For instance, it can be verified that a random vector
with the standard multivariate ¢ distribution does not satisfy this condition.

This paper has two objectives. One is to thoroughly investigate the conditions for the
validity of (2) without the data structure assumption. On the foundation established by
Hjortetal. (2009) and Chen et al. (2009), we analyze the asymptotic behavior of the EL
under a general multivariate model and provide more general conditions such that the
best dimension growth rate for the asymptotic normality of the ELR is achieved. We
shall see that these conditions include Chen et al. (2009) assumption as a special case.
The other objective of the paper is to study the practical calibration of the ELR in finite
sample settings. The main point of Hjort et al. (2009) and Chen et al. (2009) is that in the
high-dimensional data setting, one is suggested to calculate critical values according
to (2). However, there is usually substantial lack-of-fit when the ELR is calibrated by
the usual normal, yielding tests with type I errors much larger than nominal levels.
See the simulation results in Chen et al. (2009) and this paper. We find that the lack-of
fit is mainly due to the deviation of the expectation and variance of EL, (o) from p
and 2 p, respectively, and the gaps get more prominent as p increases. We propose to
replace p and 2p in (2) with better approximations of the expectation and variance
of EL,, (140). In doing so, the resulting critical values get much more accurate and the
lack-of-fit in the original normal-based calibration largely disappears.

The rest of this paper is organized as follows: In Sect. 2 we investigate the asymp-
totical normality of the ELR under very general conditions. Section 3 provides a new
method to approximate the finite-sample distribution of the ELR. The performance of
this new calibration method is evaluated by a simulation study in Sect. 4. All proofs
are postponed to the Appendix.

2 Asymptotic results

In this section, we study under what conditions the ELR, EL,, (140, ), has an asymptot-
ically normal distribution. Without loss of generality, we assume 10, = 0 henceforth.
As pointed out by Tsao (2004), when p/n > 1/2, EL,(0) has no definition with
probability tending to one and (2) will never be valid. In this paper we assume that p
is an increasing function of n and p = o(n/logn), so that EL,(0) is almost surely
well-defined as n is sufficiently large (see Lemma 8 in Appendix D). According to

(1), if EL,, (0) has definition, by Lagrange multiplier method we get

EL,(0) = Zilog (1 +/\le-), “)

i=1
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where A, is the solution to

n

ZLZO (5)
1+ ATX; '

i=1

For exposition convenience, we define some notation. Let yx(A) denote the kth
largest eigenvalue of a symmetric matrix A. For arandom vector X, we define || X ||, =
[E(]| X 19)]"/4. Throughout this paper we assume that there exists ¢y > 0 such that
inf, y»(X,) > co. This is a basic assumption in the analysis of the EL for high-
dimensional data and is adopted in both Hjort et al. (2009) and Chen et al. (2009).
Moreover, let /172 = E(Y1;, Y1y ... Y1i,) with Y, = (Y1, .. ., Y,,,)T = En_l/er.
Similar to Hjort et al. (2009) and Chen et al. (2009), we separately secure conditions
under which

EL,(0) —nX'S,'X = 0, (\/P), (©6)
nXT (2;‘ - S;‘) X =0, (VD). (M

3

hold, where S, = n_lz:’ZIX[X?— and X = n~'>"_, X;. If these two conclusions
hold, then

EL,(0)=nX"E'X—nXT (2;1 — S,;l) X+o, (VP)=nX"E,'X +0, (VD).
By applying the martingale central limit theorem (Hall and Hyde 1992), we have
ep 2 X5 1% - pl 5 Vo, @®)

when p/n — ¢ > 0. See Lemma 5 of Chen et al. (2009) or Bai and Saranadasa (1996)
for a detailed discussion. Hence, the validity of (6) and (7) leads to (2).
For the validity of (6) and (7), we consider the following conditions.

Condition (C1) p~! le E(1X119) < K for some K > 0and q > 4;
Condition (C2) | X, ||,7;"*(£,) = o(n@=2/C0) p=1/2);

Condition (C3) p>*t¥/4/n — 0;

Condition (C4) p = o(n?/%);

Condition (C5) o'/ = 0(p?);

Condition (C6) o/'/*aii% = 0 (p%/?) and a'iia’™ = 0 (p>/?).

Here and henceforth, without otherwise statement, if one index occurs twice in one
term like /12-% | it means a summation over the range of this index. Conditions (C1)
and (C3) guarantee that the eigenvalues of S, are close to those of X, so that S, is
nonsingular and y,(S,) > c¢o > 0 whenn is large. See Lemmas 1, 2. Condition (C1) is
also assumed by Hjort et al. (2009) and is essentially analogous to assuming E (Zflk ) =
mair € (0,00) for k > 1 in (3). With similar techniques given in Appendix B, we
can verify that the linear structure assumption (3) implies condition (C1). Condition
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(C2), together with (C1) and (C3), implies sup; ; -, |AIX,>| = 0p(1) which leads to
Taylor expansions of (13) and (14). Condition (C5) is on the fourth moments of the
standardized observations Y;’s. This condition is very weak since it requires a sum
of p* terms to be O(p?). Roughly speaking, it means that each «’'//-type fourth
moment of ¥; is bounded. To achieve the best rate p = o(nl/ 2y claimed by Chen et al.
(2009), we need condition (C6) which seems to be a relatively strong condition since
it requires a sum of p> terms to be O (p>/?). It can be verified that if the data has the
linear structure (3) as assumed by Chen et al. (2009), then both conditions (C5) and
(C6) are satisfied since (See the Appendix)

o'l = 0 (pz) g — o (pz) Akl = o (pz) ) 9)

We present the main result of this section in the following theorem. It is actually a
corollary of Propositions 1 and 2 given in the appendix, which provide conditions for
the validity of (6) and (7), respectively.

Theorem 1 Assume conditions (C1), (C2), (C3) and (C5). If condition (C4) or (C6)
holds, then (EL,(110) — p) /2P = N(0, 1), as n — 0.

When y(%,) is bounded and ¢ = 4, EL, (110) has an asymptotically normal dis-
tribution if p = o(n'/3). This improves the rates p = o(n'/*) of Chen et al. (2009)
and p = o(n'/®) of Hjort et al. (2009). If more rigorous conditions are assumed,
that is, condition (C6) holds and more moments (¢ > 8) of the data are finite, then
the rate of p which guarantees the asymptotical normality of EL, (1) is as large
as p = o(n?/4+9) and it is close to p = o(n'/?) when q is large enough, which
improves the rate p = o(n'3) of Hjort et al. (2009). Chen et al. (2009) also obtained
this rate and they further pointed out that p = o(n'/?) may be the best rate for
the asymptotical normality of EL, (o). Unlike Chen et al. (2009), we obtain this
best rate with conditions (C5) and (C6) not the linear structure assumption (3) on
the data. The former conditions are more general in certain sense as indicated ear-
lier.

3 A new calibration method for empirical likelihood

In the previous section, we have shown that (2) holds under some weak conditions.
When testing hypotheses or constructing confidence regions with the EL. method,
we would calculate critical values based on the normal approximation (2). How-
ever, these critical values often deviate severely from the true ones when p/n is
not small. Please refer to Tables 1, 2, 3 in Sect. 4. Similar findings have also been
revealed by Chen et al. (2009). We find that this awkward fact is mainly due to the
large difference between the true expectation and variance pair (E,, V,) of EL, (0)
and (p,2p). See also Tables 1, 2, 3. In addition, Chen et al. (2009) pointed out
that the X,% calibration proves to be an improvement of the calibration based on
(2). Since the EL is Bartlett correctable for any fixed p (DiCiccio et al. 1991),
it is natural to expect the X,z; calibration with Bartlett correction for the EL will
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Table 1 Coverage percentages for n = 200

p  Scemario MEL OEL SEL STEL BEL E, E, Epn Vi Vi Ve
25 (D) 9452 8736 8492 89.12 91.32 282 254 288 705 488 758
10)) 93.84 79.00 75.12 82.84 8536 30.6 268 302 873 631 90.1
(1) 95.60 85.88 83.36 88.04 90.08 284 261 295 761 561 83.1
av) 94.84 8748 84.68 88.84 90.84 28.1 254 288 70.6 488 758
) 93.84 76.68 7400 81.20 83.04 312 284 31.8 104 812 108
33 () 9400 7924 77.00 8456 86.56 39.4 363 397 117 863 113
an 91.28 6624 63.76 7448 7748 434 387 421 157 110 137
(1) 93.64 76.12 73.60 81.84 8392 402 372 40.6 133 954 122
av) 9372 78.68 7624 8376 8544 39.6 363 397 114 865 113
) 91.24 64.00 60.92 70.72 7348 44.6 402 43.6 184 128 155
43 (I 90.04 61.96 5876 72.08 75.16 565 514 548 209 143 170
01)) 89.12 46.04 43.16 57.80 61.12 625 550 584 262 181 208
(1) 88.96 59.56 56.84 70.04 7272 57.7 525 559 244 155 182
av) 89.44 61.64 59.00 72.12 7436 56.7 514 548 234 143 170
) 87.52 4376 4132 5576 58.08 640 562 59.6 327 196 223
Table 2 Coverage percentages for n = 400
p  Scenario MEL OEL SEL STEL BEL E, E, Epn Vu Va Vo
33 D 9544 90.00 8844 91.56 9320 352 327 36.1 782 594 864
n 93.64 84.00 81.88 87.24 89.08 37.8 340 374 963 71.5 985
(1) 95.52 8848 8644 90.20 91.80 358 332 366 849 647 917
av) 9496 89.44 87.84 91.00 9224 354 327 361 832 594 864
) 9592 8432 8196 86.84 8928 377 354 388 955 884 115
4 I 95.04 8624 8448 90.04 91.08 485 462 496 122 981 125
1)) 93.84 7564 73.00 8224 8452 528 485 519 143 120 147
(1) 95.88 86.36 84.56 89.52 91.20 48.6 469 503 119 105 132
av) 96.28 86.36 84.64 89.88 9132 483 462 49.6 114 982 125
) 95.68 7840 7588 82.92 84.84 51.8 498 532 141 136 163
58 (D) 95.04 78.60 7640 8520 87.04 669 646 68.0 178 157 184
an 92.84 61.96 5924 7380 7636 735 683 717 221 194 221
(1) 95.12 7564 7352 83.64 8488 67.6 654 688 189 166 193
av) 9427 7723 7534 8475 8649 667 646 680 190 157 184
) 9412 65.12 62.84 7528 77.68 719 692 726 230 207 234

have better precision. Our simulation indicates that these two methods are still not

good.

_The foqndations of using (2) to calibrate the EL are that EL,,(0) is close to K;, =
nXTEn_lX, and that E(K,) = p, Var(K,) =~ 2p. When (E,, V,) deviates severely
from (p, 2p), this calibration does not work any more. Even so, it motivates us to
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Table 3 Coverage percentages for n = 800

p  Scenario MEL OEL SEL STEL BEL E, Eu Epn Vi Va Vn

42 @D 95.84 92.88 91.48 93.60 94.88 434 41.0 444 89.0 724 994
In 93.36 88.08 86.04 89.56 91.36 46.0 42.1 455 107 813 108
(1II) 9545 93.15 91.68 93.52 9444 434 413 447 885 764 103
Iv) 95.20 9248 91.04 92.80 9396 4377 41.0 444 922 724 994
V) 96.12 90.24 88.40 91.80 9320 450 432 46.6 103 950 122

55 (@D 95.65 91.25 89.80 92.60 9350 57.6 558 592 128 109 136
In 94.25 8450 82.55 88.30 89.80 614 57.6 61.0 142 125 152
(11II) 96.15 91.65 9040 92.80 94.10 57.7 562 59.6 126 114 141
av) 96.00 91.50 90.05 9290 9370 579 558 592 120 109 136
V) 95.60 86.15 85.15 88.65 90.05 60.0 58.6 620 148 139 166

72 (D) 96.55 8835 86.85 91.75 9270 765 759 793 178 164 191
In 9485 77.60 75.10 84.15 86.20 828 789 823 201 193 220
(11I) 96.40 87.15 8555 90.65 91.80 77.1 764 79.8 183 170 197
av) 96.45 88.05 86.70 91.35 9255 774 759 793 164 164 191
V) 95.85 80.40 78.15 86.15 87.50 80.7 79.5 829 211 203 230

consider a possibly better approximation to EL,, (0), say T,, = nX T S, !X, which plays
a critical role in the standard large-sample EL theorem (Owen 1990). By Proposition
2 in Appendix A, we have established that under certain conditions 7}, is the dominant
part of EL, (0), so it can be expected that the expectation and variance of 7,, should
be a better approximation of (E,, V;) than (p, 2p). It can be verified that

E(T,)~E,n=p+— (a”k(x”k —l—ak”ak-’-’) ,
n
1 jjk iik ijk ijk iijj
Var(T,) ~ V,1 =2p + — (1205” a' + 12aY o — 20 ”) .
n

We expect that replacing (p, 2p) with (E,1, V,1) in (2) will improve the perfor-
mance of the usual normal calibration. However, our simulation results show that 7, is
still not a very good approximation as it is always less than EL,, (0) (see Fig. 1). Anintu-
itive explanation for this phenomenon is as follows. Let f(1) = 2>"7_, log(1 +ATX).
Obviously, EL,(0) = sup; f(A) = f(A«), and A, is the maximum point of f(1). By
second-order Taylor expansion, we have

f~gam =23 [,\TX,» - % (ATXi)Z] , (10)

i=1

provided ATX i’s are small. So an approximation of EL, (0) = sup, f(A) is naturally
sup, g1(A) = g1(S,; 1X) = T;,. However, in the case of moderate n and large p, this
approximation may not work any more. The remainder of each Taylor expansion in
(10) is under control only for ATX; € (—1, 1). We find in our simulations that when
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Fig. 1 Scatter plots of n simulated values of (EL,(0), K,) (triangles), (EL,(0),T,;) (dots) and
(EL,,(0), Tye) (circles) for the standard p-dimensional normal distribution with (a) n = 200 and p = 40,
(b) n =400 and p = 40. The solid line is y = x

p/n is not small, some of XIX i’s are greater than 1 with quit a large probability,
but none of them will be less than —1 due to the constraint 1 + AIX i > 0. When
A lies in a neighborhood of 0, AT X;’s may have similar behaviors, that is some of
them are greater than 1 but almost none of them is less than —1. Note that when
x € (=1, 1),log(14+x) ~ x —x?/2; while if x > 1, log(1 +x) > log(2) > x —x2/2.
Therefore, roughly we have f(A) > g1(A) in a neighborhood of 0. This finding also
restricts us to approximate EL, (0) by two terms Taylor expansion, because Taylor
expansions of (13) would deviate from EL,, (0) more and more severely if more terms
are extracted and some of AT X;’s are not small.

To reduce the approximation error of gi()), we propose to add a high-order term
(ATX)? to g1 (A). Intuitively g2 (A) = g1(A) + (ATX)? is a better approximate to
f(A) so is sup, g2(A) to EL,(0) = sup, f(k) It can be verified that sup, g2(A) =
nX'S1X = T, with S, = 127 ((Xi = X)(X; — X)T. As a matter of fact, T,
happens to be the classical Hotelling’s T'-square statistic. As indicated by Brown and
Chen (1998), T),. is also the so-called least-square empirical likelihood ratio LEL,, (0).
In Chapter 3 of Owen (2001), the author suggests using the distribution of T}, to
calibrate the ELR in low-dimensional settings. The following proposition, which can
be proved in a similar fashion to Proposition 3, establishes the asymptotic behavior of
EL,(0) —

Proposition 1 Suppose conditions (C1), (C2) and (C5) hold. Then
(BL,(0) — Tne)/p'/* = 0, (1),

provided (C4) holds or both (C3) and (C6) hold.

This proposition implies that using 7}, to approximate EL is equivalent to using 7}, or
K, from asymptotic viewpoints. However, these three approximations exhibit quite
different finite-sample behaviors, especially when p/n is not small. Based on a large
amount of simulation results, we find that 7}, is amazingly close to EL,, (0) regardless
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of the choice of (n, p) in the sense that (EL,(0) — Ty¢)/ pl/ 2 s always pretty small
(p of course should not be too large so that the EL is well defined). To appreciate
this, Fig. 1 shows scatter plots of 200 simulated values of (EL,(0), K,,), (EL, (0), T,,)
and (EL,(0), T,,.) for the p-dimensional standard multivariate normal distribution.
We choose p = 40 and n = 200, 400. From Fig. 1 we can see that the values of
(EL,(0), Ty¢) are always around the line y = x, but both K,, and 7}, tend to under-
approximate EL, (0). When n increases from 200 to 400, all the three approximations
improve much, while 7). is still the best approximation to EL,(0). See Sect. 4 for
more thorough analysis and comparison.

Given the foregoing discussion and evidence, we expect that the expectation and
variance of Ty, i.e.,

E(The) ¥ Ejz = p+ = (p2 +2p + o' Rk a’”’a’w) ,
n

Var(T),e) &~ Vo = 2p + — (8p2 +16p + 12077k 1% 4 12017k 1Tk — 205””)
n

are good approximations of E, and V,, respectively. Let (l:?,,i, Vni)(i = 1,2) be the
moment estimate of (E,;, V,;). We may calculate critical values according to

(EL(0) — A)/v/By —5> N(O, 1), (11)

where (A, B;) couldbe chosenas (p, 2p), or (Iz:m-, Vni)(i =1,2).Inthe next seAction,
we will compare the three methods and show that the method based on (Ej2, V;2) is
the best. Hence, it is our final recommendation.

4 Simulation study

Here we report a simulation study designed to evaluate the performance of the proposed
calibration method of empirical likelihood. The number of variety of multivariate dis-
tributions and parameters are too large to allow a comprehensive, all-encompassing
comparison. We choose certain representative examples for illustration. Three well-
known multivariate distributions are considered: (i) multi-normal (scenario I); (ii)
multivariate ¢ with five degrees of freedom, denoted by ¢, 5 (scenario II); (iii) multi-
variate chi-square distribution with three degrees of freedom (see Mardia et al. 1979,
p- 92), denoted by X;,S (scenario III). The covariance matrix ¥ = (0j;) in these three
distributions is fixed with o;; = 0.5~/ for 1 <, j < p.

In addition, the moving average model studied in Chen et al. (2009) is also included
here, allowing us to have a more broad picture of the efficiency of the proposed method
since it satisfies the data structure (3). To be more specific, the p x 1i.i.d. data vectors
{X;}i_, are generated from

Xij=Zij+pZijn,i=1,..., j=1...,p,
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where for each i, Z;; (j = 1,2,---, p) are i.i.d. random variables with zero mean
and unit variance. Two distributions for the Z;; are considered. One is the standard
normal distribution (labeled as scenario (IV)), and the other is a standardized Pareto
distribution with distribution function (1 — x~#3)I(x > 1) (labeled as scenario (V)).
As the Pareto distribution has only four finite moments, we had ¢ = 4 in the conditions
of Theorem 1, whereas ¢ = oo for all the other four scenarios. Note that neither 7, 5
nor x2 5 distribution belongs to model (3). It can be also seen that except for scenario
(1D, the other four scenarios satisfy conditions (C5) and (C6). Hence, for scenarios
(D), (IIT) and (V), the best rate p = o(n'/?) for the asymptotical normality of the EL
could be achieved, while for scenarios (IT) and (V), the rates are o(n2/°) and o(n'/3),
respectively.

The settings of the combinations of p and n in Chen et al. (2009) are adopted
here. Say, we consider the growth rate for p with respect to n as p = cn®?*. The
sample size n is chosen as 200, 400 and 800. By assigning ¢ = 3, 4 and 5, we obtain
three dimensions for each sample size, i.e. p = 25, 33 and 43 for n = 200; p = 33,
44 and 58 for n = 400; and p = 42, 55 and 72 for n = 800, respectively. We
compare five calibration methods for the EL: (a) the proposed method (denoted as
modified EL, MEL), i.e. the normal calibration (11) with (A,, B,) = (En2, Vi2);
(b) the ordinary X,2; calibration (OEL); (c) the usual standardized normal calibration

(2) (SEL); (d) the normal calibration (11) with (A,, By) = (En1, Va1) (STEL); (e)
the XI% calibration after Bartlett correction (BEL; DiCiccio et al. 1991). Tables 1, 2,
3 report coverage percentage comparisons for constructing confidence regions with
nominal coverage level 0.95 when n = 200, 400 and 800 respectively. Each coverage
percentage is obtained based on 2,500 simulation repetitions. The averages of the
stimulated (E,, V,;) and (Eni, Vni), i = 1, 2 are also tabulated.

As we expect, the performances of all the five methods get better when n increases
or p decreases. The SEL calibration seems the worst among the five methods. When
n = 200 and 400, it gives rather unsatisfactory coverage probabilities in most cases.
For instance, when n = 400 and p = 58, its coverage probabilities for scenarios (II)
and (V) are as low as 60 % around. Even for the normal case in which the moment
conditions in the asymptotic analysis are much easier to met, its coverage percentage
still stays below 80 %. The ordinary X; calibration method works uniformly better than
SEL in terms of coverage percentage. This is consistent with the findings of Chen et al.
(2009) which pointed out that XI% can be regarded as an intermediate convergence of
the ELR. However, we also observe that the improvement of OEL over SEL is limited
and in most situations their coverage percentages are unacceptably low. It is partly
because the expectation and variance of the ELR are far away from p and 2p when
p is large, as shown in these tables. We can also clearly see that the BEL and STEL
methods improve the efficiency of OEL and SEL. Unfortunately, in the cases that 7 is
not large enough such as n = 200 or 400, there are still considerable coverage errors
with these two methods. In comparison, our proposed method, MEL, can always attain
(or approximately) the desired coverage percent and outperform the rest four methods
in most cases. The advantage gets more remarkable when n decreases or p increases.

To check whether the above conclusions would change for other choices of nominal
coverage level, in Fig. 2, we display Q-Q plots of the standardized ELR (11) with

@ Springer



Calibration of the empirical likelihood for high-dimensional data

539

EL quantile

EL quantile

EL quantile

(n,p)=(200,25)

i

Normal quantile

(n,p)=(400,33)

-2 0 2 4
Normal quantile

(n,p)=(800,42)

-2 0 2 4

Normal quantile

EL quantile

EL quantile

EL quantile

(n,p)=(200,33)

Normal quantile

(n,p)=(400,44)

-2 0 2 4
Normal quantile

(n,p)=(800,55)

-2 0 2 4
Normal quantile

EL quantile

EL quantile

EL quantile

(n,p)=(200,43)

Normal quantile

(n,p)=(400,58)

-2 0 2 4
Normal quantile

(n,p)=(800,72)

-2 0 2 4
Normal quantile

Fig. 2 Normal Q-Q plots of the standardized empirical likelihood ratios with 7, 5: MEL (solid line), SEL
(dashed lines) and STEL (dotted lines)

(p,2p), and (Em-, \A/m-),i = 1, 2, which reflect the convergence of SEL, STEL and
MEL to N(0, 1) respectively. Here we only present the results of 7, 5 (Scenario II)
since the results for other scenarios are similar. There is a general convergence of all
three standardized ELRs to N (0, 1) as n and p increase simultaneously. The MEL has
the best goodness-of fit in all cases and outperform the other two methods by quite
a large margin when »n is small. We also observe from the Q—Q plots that the MEL
does not improve the lack-of-fit at lower quantiles. This is not surprising. Analogous
phenomenon has been mentioned in many applications of the Edgeworth expansion
where the improvements of coverage accuracies at lower quantiles are usually not as
substantial as those at upper quantiles (Hall 1992). However, in the use of EL for
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constructing confidence regions or testing, upper quantiles are of our major concern.
Therefore, the MEL can be regarded as a reasonable alternative for the calibration of
the ELR in practice.

5 Discussion

An issue of using the EL is that for each given uo,, the ELR function EL, (1o,)
is well defined only if the convex hull of {X| — won, ..., Xn — Kon} contains the
p-dimensional zero vector. When # is not large, or when a good candidate (vector)
value of uq, is not available, this convex hull often fails to contain 0 (Owen 2001).
Chen et al. (2008) indicated that when the maximum EL solution does not exist,
blindly setting EL, (10,) = o0 as suggested in the literature fails to provide any
information on whether 11(,, is grossly unfit to the data or is in fact only slightly off an
appropriate value. Also, it is numerically difficult to determine that there is no solution.
This problem is particularly critical in testing problems since , may be far away from
Won- The situation would be definitely more serious for high-dimensional data streams
as Tsao (2004) pointed out when p is moderately large but fixed, the distribution of
EL,, (10,) has an atom at infinity for fixed n. This makes the practical implementation
of EL methods infeasible and inconvenient. Chen et al. (2008), Liu and Chen (2010),
Emerson and Owen (2009) and Liu and Yu (2010) propose several remedies, through
adding some artificial data points to the observed sample. It is of great interest and
also necessity to study the calibration of these adjusted EL for high-dimensional data.

6 Appendix
6.1 Appendix A: Proof of Theorem 1

We prove Theorem 1 by proving the following two propositions.

Proposition 2 Assume conditions (C1), (C2) and (C5) are valid. If condition (C4)
holds or both conditions (C3) and (C6) hold, then (7) is valid.

Proposition 3 Under conditions (C1), (C3) and (C5), (8) is valid.

To prove the propositions, we begin with several necessary lemmas. The first lemma
comes from Hjort et al. (2009) and we omit the proof. Throughout the following
proofs, let L, = maxi<; j<p |Zn,i,j — Su,i,j| where £, ; j and S, ; ; denote the (i, j)
components of the theoretical and sample covariance matrices X, and S,,.

-1 P
=1
2
stant ¢(q) > O such that P(L, > &) < D2 A, (p, ).

nq/zgq

Lemmal Let A,(p,q) = p E(|X1j17). For any € > 0, there exists a con-

Lemma 2 Let y;(X) denote the i-th largest eigenvalue of a symmetric matrix X. It
holds that maXi<i<p |Vi(2n) - Vl(Sn)| = an'
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Proof The fact that ¥, and S, are both non-negative matrix implies that y;(X,) =

v 2(52) and y;(S,) = v,/ (S2). It then follows that

P
2 172 (2 172 (2 2
max (7 () = vi(S)| s;m (=2) = %" (s2)1

= (22) +u(s2) - 2Zp: Vi ()i (Sn).

i=1
By Von Neymann’s inequality, le Yi () yi (Sy) > tr(S, X,,), we have

max |y (Zy) — ¥ (Sn)| < {tr(Z, — S} < pLy,
1<i<p

where the last inequality holds because the absolute value of each element of (X, — Sy)?
is no greater than L2, O

Under condition (C1) we have

c(q)p*ta

2
o K (12)

P(pL, > ¢) <

Furthermore if condition (C3) also holds, then pL, = o0,(1). Based on Lemmas 1
and 2, we have the following corollary.

Corollary 1 Under conditions (C1) and (C3), the inequality y,(S,) > co holds with
probability tending to one as n — oo.

By Lagrange multiplier method we get

n
EL,(0) =2 log (1 +/\IX,~), (13)
i=1

where A, is the solution to

n

A —— (14)
1+ATx;

i=1

To expand (14), we need to guarantee that sup;; ., |AIX il = op(1), which requires
studying the magnitude of B, = maxi<;<, || X;i|.

Lemma 3 If X; has finite q-th absolute moment, then B, = op(nl/q | Xillg)-
Proof 1t is clear that

2/q
max X < [ max [I1X;19% = E (1X:1) | + EJX; ||‘1/2] ,
I<i<zn 1<i<n
and
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~12
max (1192 — B ;19| {var (1x:192) ) = 0, (7).

1<i<n

Therefore we have

1/q 2/q
B, = max X/ = o, (n”‘f [Var (1x11972) | ) +0, ([E||X1||‘1/2] ) .

Since Var([| X]|9/?) < E[ X1l and [E|| X1 [9/21%/4 < [|X1 4, we get
B, = max |X;| = o, (nl/q||x,~||q).
<n

I<i

m}

Lemma 4 Let A = (a;;) denote a p x p matrix and Ma(A) = maxi<; j<u la;j|. If A
is non-negative definite, then Ma(A) < y1(A).

Proof Suppose A haseigen decomposition A = QT 0T, where " = diag{y1,---, ¥p}
and Q = (g;;) is an orthogonal matrix. It is clear that 07 is also an orthogonal matrix.
Therefore >, g2 = > | ¢ = 1. Then the result Ma(A) < A; can be concluded

from
» 12 4 1/2
s(Zq?k) (Z[n(A)]Zq?k)
k=1 k=1

» 1/2
< 1(4) (Zq?k) = y1(A).

k=1

P

ZQika(A)‘ij

k=1

laij| =

m}

Lemma 5 Assume conditions (C1), (C3) and (C2). Then sup;; <, |X1Xi| = op(D)
and lambda, = Sn_l(X' + Bn), where X = OP(n_1/2p1/2[y1(Zn)]l/2) and B, =
0, (=D p|| X1 lly[y1 (Za)]?).

Proof Let Ay = ||Ay«||lu where u is a vector with length one. By the same argument as
Owen (1990)(page 101) we have

Lo 00X W TRA 4 IhlB) = T Syl
— = u u u
= Al (" Spu —u' XB,) < u' X.
It can be seen that X = O, (p'/>n=12[1(2,)1'/?) from E(XTX) = tr(Z,)/n <
py1(Zy)/n. Since [uT X| < | X|| we get u' X = O0,(p"*n=2[y1(2,)]"/?). 1t fol-
lows that

WX By =0, (P07 P E012 01X ) = 0p(1).

@ Springer



Calibration of the empirical likelihood for high-dimensional data 543

where the last equality holds because of condition (C2). According to Corollary 1,
u' Sau > ¢ holds with probability tending to one as n — oo. Therefore we have
el = O(uTX|/co) = OUIX) = 0, (n~ /2 p'/[y1(£,)]"/?) and

sup XIXi

1<i<n

— sl - By = O (‘MTK(‘ B,,) =0,(1).

Now expanding (14) gives )_(—Snk*+/3n = 0, where 8, = % Zfl:l Xi (XiTk*)z(l+
0,(1)). So we have A, = S, ' (X + B,), and

A

2 n
1Bl = = 03l [ X7
i=1

2 20
= => B (WIxixTh)
n
i=1

0 (IrIPn(E0B,) = 0 (11271 Ba)

= 0p (11 pI X, g1 (B P)

It can be seen from the last but one equality that 8, = X - o p(D). O
Lemma 6 If conditions (C1) and (C3) hold, then (S;' — £, )X = (1 X)o,(1).

Proof By y1(Z,; 1Y < 1/co, we know yl(Sn_l) < 1/co with probability tending to
one. Using Lemma 2, we have

12,8, — =X = 1120 — S0) S, Xl

max |y (S, — Sy (S, HIX]
<i<p

IA

1
< pLallXll/co = X1l - 0p(1),
which implies (S; ! — ;7 HX = (2,1 X)o,(1). o
Combining Lemmas 5 and 6 results in the following corollary:
Corollary 2 Assume conditions (C1), (C3) and (C2). Then i = ;' X(1 + 0,(1)).

Proof of Proposition 1 Noting that maxj<;<, )LIX i = 0,(1), by Taylor’s expansion
of (13), we have

n

1 1 3

EL,(0) =2 [xlxi — XX 5 (XTh) a4 o,,(l))]
i=1

—n (2)‘(Tx* - AISHA*) 8

where 8; = 23" (X[ 1)3(1 + 0,(1)). Replacing A, with S;'(X + B,) in the
above expression leads to EL, (0) = n)_(TSn_l)_( — &2 + 81 where 6, = n,B,TSn_l,Bn.
The theorem is proved by showing that §; = 0,(/p) and 82 = 0,(/P).
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According to Corollary 2 and Lemma 5,

51=§Z(XT2 X) (I+0p(1). Bu=~ ZX(XTE‘U?)ZUMPUD-
i=1

Along the line of proving Lemma 6, we can show that 8, = n,B,T 2;1 Bn(1 +0p(1)).
Recall the definition of Y, and o'1"2-% ., Let

Ali2edx — 2 Z Yji - Yig — o2k (15)

Then §; and 6> can be rewritten as

Mmoo
5 = ?na’/kA’AfAk(l +o,(1)), (16)

8y = na T o™ AT AR AT AS (1 + 0, (1)),
where we adopt the summation convention employed in conditions (C5) and (C6).
With tedious calculation we obtain
20 ik wi aj ak g 4 ijj ikk ijk ijk
E(Fataiaiat) = 3—(3aﬂa + 20kl )(1+0(1));
n
E (na"/ka"”A-/A"A’AS) — (20/'!'"0/-/" 4 a"/f'a”"‘) (1 + o(1)).

It can be proved that [a'/¥a//¥| < /i o** and o'/ a*F| < J (aliiT ok 4 qfikkgkk).
Therefore

20 ...
S, pe =0 (p3/n),

%pa“jj =0 (p3/n) .

IA

E(2—”o/!"‘A"A/’A")2
3

IA

E (notijk(xi”AjAkArAs)

Thus we have §; = 0,(p¥/?/n'/?) = 0,(/P). Since a'/*a"s AT A¥ A" AS > 0, it can
be seen that 8, = O(p>/n) by Markov’s inequality.
It is clear that p = 0(n?/7) is sufficient for 8, = 0p(/P); while if both alTkglik =
O (p>'?) and o7 o'k = O (p>/?), then the rate of p can be relaxed to p = o(n'/?).
O
Lemma 7 Denote D, = I — V,, with Vy, = £, /28, %, /2. If condition (C5) holds,
then tr(D}) = 0, (p*/n).

Proof It is easy to see that o’/ = 1 for i = j and 0 otherwise. Note that

=(1—%im’f) —I——ZYYT—i—— ZYYTYYT
r=1

r,s=1
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Therefore we have

p R 1 &«
Ewr (D) =p- 2D D it > > BV Yy

i=1r=1 i,j=1rs=1

—p+— Z S+ | Evy vy

i,j=1 \r#s r=s

n =D e i N i
=Pt 3 2 o +n22a

i,j=1 i,j=1

_ (aiijj _ P) /n=0 (172/") .

O
ProofofPropositionZ Let Y = En_l/z}_(. Then n, = n¥Y (I — Vn’])?. Note that
-V '=D,—D2+... — (=)*Dk — (=1)*Dk(1 — v~1). Hence
fin :n{YTDnY—YTDgl?Jr. — (—)*7TDkY }+( D7Dk — VYT

a7
Now we study the convergence of this expansion. Note that
IPI? = X727 % < 1 (577) IXIP < ol K12 = 0, (n(®n~'p).
and that |y; (D,)| < [tr(Dz)]l/2 (0] (p/f) according to Lemma 7. So we have

_ _ _ _ k/2
PTDLF| <IPI2 max |y, (D8)| <1712 [ir (D2) ] = 05 (mi@)p™ n=272),

I<j<p

which means the series n Z,fil I?TD];Y (—l)k_l is convergent for fixed n when
p = o(n'/?). With lengthy algebra we have ElnYTD,Y|> = n’E|IX"(Z, —
S)X|? = O(p/n), which implies nY D, ¥ = 0,(p>?//n) = 0,(/p). Thus,
nY 2, YTDEY (=) =0, (/D).

The remaining task is to prove that the remainder term in (17) is negligible as
k — oo. It is clear that

(=D ¥ D) (1= V") I < [n7TDEF| + 27T DV, .

where the first term has been shown to be O,(y (Z)pk+l/nk/2). Note that
|n)_’TD’,§Vn’1)_’| < ana(D,’iVn’l)H)_’Hz, where the operator Ma(-) is defined in
Lemma 4.

It is clear from Corollary 1 that y; v—hH = Y1 (Sn_lE,,) < y1(Z,)/co with proba-
bility tending to one. According to Lemma 4, we have
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Ma(D;V,") < pMa(DMa(V,™) < p max |y;(Dy)| max [yi(V,™)
= 0,(P"'n 7 2y (Z0)).
This leads to [nY T DXV,-1Y | = 0, (y2(2) pk+3 /nk/?).

Finally, we have |(—1)*nYTDE(1 =V, )Y | = 0, (y2(2) p¥*3/n*/2), which con-
verges to zero as k — oo because of conditions (C3). O

6.2 Appendix B: calculation of E,; and V,; fori =1, 2
In what follows, we adopt the notation defined in (15) and the summation convention
employed in condition (C6) for convenience. It is clear that &’/ = '/, where 8"/ is the
Kronecker delta, that is 8/ = 1 ifi = J; otherwise, 84 = 0. Let BY denote the (D)
element of a matrix B.

Note that T, = nXTS71X = n¥T(2,/2S715)/?)¥. Since (3, /28, %, /)i =
8 4+ AY it can be verified that

(2,1/23; s,/ 2)ij =51 — Al 4 ATRAK — ATKARI AT 4
Consequently, we know
T, =n(A'A" — ATAT AT + ATAT AR AR — AT AT ATR AR AL 0,

and its expectation ET), = EnA’ A" —EnA!AJ AV + EnA’ A7 A A% (1 + 0(1)). Note
that E(A’AY) = p/n, E(A' AT A = n=2(a''// — p)(1 4+ o(1)) and

E(A'AT A% AN = — (o' — p + oM 4 a'* el (1 4 0(1)),
n

which result in E(T,,) = p + %(akiiakjj + akeikY (1 4 o(1)).
To get V1, we need to calculate ETnZ:

ET] =n*E(ATATATAT —2ATAT AV AT A" + AT AT AT A A* AT
+2A AT ARART AT AT 4.
=L 2L+ 54214+,

where
2 1 iijj 2
L=p +2p+;(a i — _2p) (1 + o(1));
L=-[(p+5a —2p* —4p +2a" a7 + 20" a"7](1 4 0(1));
n

I =—{3a" — p? —2p + 8alika* + 40Tk alkY (1 + 0(1));
n
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Iy = ~{(p+ 2" = p? = 2p + (p + O’ @’ + (p + Ha ) (1 + 0(1)).
n

Finally, we get

2 2pH12
ET —p +2p — PLL) Rl i M p+ (Ol”ka”k +()tljk(xljk)(l—|—o(1)),
n
Var(T,) = ET,; — (ET,,)Z
_ ot op- 2 ”JJ+M(ajjkaiik+aijkaijk)
n

Voiik ik o 4 ki kjj ?
—ip+ —a o+ oMM 4
n n
=2p_%aiijj_l_ln_z(ajjkaiik_'_aijkaijk)_’_”'

sl2

To calculate E,; and V,», we note that 7,, = nYT(El/ 2 )Y and

(2,128, 0 )ii = 817 4 AUl — AT AJ. Similarly,
(287 s,/ = 81 — AU 4 ATAT + AT AR 2 ATk AR AT — ATK AR AL
Thus, we have

The = n(A'AT — ATAT AT + ATATATAT + ATAT AR AR — 2 AT AT ATRARATY 4 .

T2 =n?(ATATAT A" —2A" A" ATAT AT 4 AT ASATSATAT AT 42 AT AT ATAT AT AT
+2AT AT AT AT AR ARy 4L

Some algebra leads to EnATAJA'AJ = L(p? + 2p) and n?E(A" A" ATAT AT AT) =

%(p3 + 6p? + 8p). By comparing the expansion of T, and T,., it is straightforward
to see

ET,c = p+ —(p2 +2p + oMb ok TR (1 + 0(1)),
2
ET2 = p> +2p — —ot””+ (2p + 12p* + 16p)

2 12
+L(auka”k + ol aiiky (1 4 o(1)),
n

and therefore

2
8"+ 16p | 12 Liikgiik | giikgitky ..
n

.
Var(T,,.) = 2p — —a' +
n
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6.3 Appendix C: Proof of claim (9)

Suppose the model (3) is valid for k > 1. Let ,B’fkl = E(XllelekXU) é’fkl =
E(ZiZ\jZuZu), £~V = (HY), T = ('), £7! = (BY). Apparently, 7/ =
IrTJ" and for fixed r # s, & = 1 and &7 = my4 € (0, 00). Then, we have
Bk = piigk 4 sikyil 4 wilski 4 pirpirpkrplr gy — 3). Now, we separately
calculate '/ | a7 qi/% and o'/ /%, First,

Oliijj — HirHisHjquvﬂrsuv — p2 4 2[7 + BrsBqurtl—w.stFutl—wvt(m4 _ 3)'

Let @, = B™T"'I" and E = B"SB“I"'T¥T“T". Then E = > a? and
>, a = p. Note that ¥ ! is nonsingular, so @, > 0 and furthermore

m m m 2
2 2
= < . < —
E-3 s mmadas(3a) -
t=1 t=1 t=1
Thus we have o/'// = O (p?).
Note that g7k = [irpJspkigrst — pirpJrpkrerrr Then, we have
aijkaijk — Hir His Hjuﬁrsu Hia Hinjc,Babc — Cgh Cghcgh%.gggghhh

where C8" = Brar81ah Since for fixed r, |E777| < (£7777)3/4 = mi/4, it follows
that

ljk 1/k|<z|cgh|3 3/2<m maXngh Z|Cgh (18)
g.h

It can be seen that max, 5, |C* h < max, chh < Zp chh = pandz (Cgh)2 =
p. This together with (18) leads to |oz’fk ik = 0(]72) Similarly, o ”’oc’kk o(p?).

6.4 Appendix D: On the assertion that EL,, (0) is almost well-defined.

Lemma8 Ler X1, ---, X, be i.i.d. random variables with dimension p, common
mean (o and nonsingular covariance matrix X. The event that Lo is inside the
convex hull of point X1, ..., X, happens with probability tending to 1 provided
p = o(n/logn).

Proof First of all, by Lemma 2 of Owen (1990), for any p there exists a constant
€0 > 0 not depending on n such that

inf P((X — 1o)d > 0) > g (19)

0eR,

where €2, denotes the unit p-dimensional sphere in R”.
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Next, we will show

sup |P((X — o) 0 > 0)— P,((X — o)1 > 0)] - 0, a.s. (20)
0e2,
where P, denotes the empirical probability measure based on X1, ..., X,. In fact,

this can be proved by using a generalization of the Glivenko—Cantelli theorem on £2,,.
By Theorem 12.12 in DasGupta (2008) (or Theorem 2 in Vapnik and Chervonenkis
(1971)), for any € > 0, we have

P\ sup [P((X — 10) "0 > 0) — Py(X — 110) "6 > 0)| > €

QGQP
< 8S(n, HSP)e <’ /32
VC(HS?) -
<8 > Che "
(=0
p+1

. 2/32 2/32
=38 Z Cre "¢ / < gpPtlene / ,
i=0

where HS? is the collection of all linear half-spaces in R”, S(n, HSP) is the nth shat-
tering coefficient of HS? and VC(HSP?) is the Vapnik—Chervonenkis (VC) dimension
of HIS”. The second inequality above comes from Proposition 12. 1 in DasGupta
(2008) and the equality holds by the classical result that VC(HS?”) = p + 1 (Vapnik
and Chervonenkis (1971)). For p = o(n/ log(n)), we have 8n7+1e="<*/32 5 0 asn
tends to infinity, which means (20) holds.

It then follows from (20) and (19) that for any p

. €0
f P ((X—po)'0>0>=, as.
glengp n (( o) 0 >0) = 7 a4
This immediately leads to

P ( inf P,((X —0)'6>0) > o) — 1, n— oo,
0e2,

from which we know the convex hull of X1, ..., X,, contains po with probability
tending to 1. Therefore, the empirical likelihood function EL(uq) is almost well-
defined for large n as long as p = o(n/log(n)). O
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