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The popular empirical likelihood method not only has a convenient chi-square limiting distribution but is
also Bartlett correctable, leading to a high-order coverage precision of the resulting confidence regions.
Meanwhile, it is one of many nonparametric likelihoods in the Cressie–Read power divergence family. The
other likelihoods share many attractive properties but are not Bartlett correctable. In this paper, we develop
a new technique to achieve the effect of being Bartlett correctable. Our technique is generally applicable
to pivotal quantities with chi-square limiting distributions. Numerical experiments and an example reveal
that the method is successful for several important nonparametric likelihoods.
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1. Introduction

Since the seminal work of Owen (1988), the empirical likelihood has found applications far and
wide. It is particularly useful for estimating functions (Qin and Lawless 1994) and for over-
identified models in econometrics (Chen and Cui 2007; Matsushita and Otsu 2013). It naturally
accommodates auxiliary information for efficiency improvement in survey sampling (Chen and
Qin 1993). A celebrated property of the empirical likelihood is that its likelihood ratio function
has a chi-square limiting distribution under simple conditions. This result matches the famous
Wilks theorem for parametric models. Moreover, the empirical likelihood is Bartlett correctable
(DiCiccio et al. 1991; Chen and Cui 2006). That is, there exists a multiplication factor for the
empirical likelihood ratio such that the distribution of the corrected statistic is approximated by
a chi-square distribution with an O(n−2) margin of error over the entire range, with n being the
sample size. The Bartlett correction thus enables users to construct confidence regions with a
second-order precision coverage probability. The empirical likelihood approach also has many
other attractive properties (see Owen 2001).

The empirical likelihood is one of many nonparametric likelihoods in the power divergence
family of Cressie and Read (1984). This family also includes the Euclidean likelihood (Owen
1991) and the exponential tilting likelihood (empirical entropy; Efron 1981), both of which are
used in various applications (Imbens, Johnson, and Spady 1998; Antoine Bonnal, and Renault

∗Corresponding author. Email: ykliu@sfs.ecnu.edu.cn

© American Statistical Association and Taylor & Francis 2014

D
ow

nl
oa

de
d 

by
 [

E
as

t C
hi

na
 N

or
m

al
 U

ni
ve

rs
ity

] 
at

 1
8:

12
 1

5 
Se

pt
em

be
r 

20
14

 

mailto:ykliu@sfs.ecnu.edu.cn


434 Y. Liu et al.

2007). These nonparametric likelihoods have the same first-order properties as the empirical
likelihood, but they are not Bartlett correctable (Jing and Wood 1996; Baggerly 1998; Corcoran
1998). More precisely, there does not exist a multiplication factor such that the distribution of the
corrected statistics is approximated by a chi-square distribution with an O(n−2) margin of error
over the entire range. It therefore seems that only the empirical likelihood can be used to construct
high-precision confidence regions.

This paper introduces a new technique. In applications, the nominal level of a confidence region
is often prespecified as 95% and the size of a hypothesis test as 5%. For any prespecified nominal
level, a corresponding correction factor exists for each nonparametric likelihood in the power
divergence family. We find the explicit form of this correction factor for each nonparametric
likelihood; it is a simple function of the population moments and the target level of the confidence
region. Our result is applicable to the well-known Hotelling’s T 2 test statistic since it is simply
the Euclidean likelihood ratio test statistic (Owen 1991) scaled by (n − 1)/n. Our technique
also applies to other inferential methods based on pivotal quantities with chi-square limiting
distributions, such as the F-statistic in the analysis of variance.

The empirical likelihood and more generally all nonparametric likelihoods are also valued
for inference on population parameters defined through estimating equations. Nonparametric-
likelihood-based inference generally starts by obtaining a profile likelihood of the equation-
defined parameters. The solution set of the sample-based estimating equations may be empty,
leading to undefined or ad hoc nonparametric likelihoods. Many researchers have suggested
ways to overcome this obstacle (Chen, Variyath, and Abraham 2008; Lahiri and Mukhopadhyay
2012; Tsao and Wu 2013). The adjusted empirical likelihood of Chen et al. (2008) is particularly
simple and effective. The addition of a well-motivated pseudo-entry to the sample estimating
equation ensures that the resulting adjusted empirical likelihood is always well defined. Liu and
Chen (2010) further show that the adjusted empirical likelihood can be tuned to achieve
the same second-order precision as the Bartlett-corrected empirical likelihood. Our technique
can also develop level-specific adjustments of nonparametric likelihoods so that these like-
lihoods are always well defined and lead to confidence regions with high-order coverage
precision.

The paper is organised as follows. Section 2 briefly reviews the empirical likelihood
and nonparametric likelihoods. In Section 3, we present the technique for the nonparamet-
ric likelihood and its extensions. Monte Carlo simulations and an illustrative example are
given in Section 4. Section 5 contains some discussion. All technical proofs are given in the
appendix.

2. Cressie–Read nonparametric likelihoods

Suppose the d-dimensional observations X1, X2, . . . , Xn are independent and identically distributed
copies of X with mean μ. Owen (1988) defines the empirical likelihood ratio function for the
population mean as

EL(μ) = inf

{
−2

n∑
i=1

log(npi) : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = μ

}
. (1)

The empirical likelihood ratio function can be similarly defined for parameters defined by esti-
mating equations (Qin and Lawless 1994). The results in this paper are generally applicable, but
we will focus on the population mean.
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Baggerly (1998) observes that the empirical likelihood is one of the more general Cressie–Read
nonparametric likelihoods, which are defined, for a given user-specified γ ∈ R, to be

Lγ (μ) = inf

{
2

γ (γ + 1)

n∑
i=1

[(npi)
γ+1 − 1] : pi ≥ 0,

n∑
i=1

pi = 1,
n∑

i=1

piXi = μ

}
. (2)

When γ = −1 and γ = 0, the nonparametric likelihood Lγ (μ) is defined through its continuous
limits. When γ → −1, the nonparametric likelihood reduces to the empirical likelihood EL(μ),
and when γ → 0, it becomes

ET(μ) = inf

{
2

n∑
i=1

(npi) log(npi) : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = μ

}
,

which is called the exponential tilting or empirical entropy statistic (Efron 1981). Other popular
nonparametric likelihoods include Neyman’s modified χ2 or the Euclidean likelihood (Owen
1991) with γ = 1, the Hellinger or Freeman–Tukey statistic with γ = −1/2, and Pearson’s χ2

statistic with γ = −2 (see Cressie and Read 1984).
Throughout this paper we take μ0 as the true value of μ. When the covariance matrix of X1 is

nonsingular, the empirical likelihood ratio EL(μ0) has a χ2
d limiting distribution (Owen 1988).

Furthermore, if X1 has finite third moments, then

P{EL(μ0) ≤ x} = P(χ2
d ≤ x) + O(n−1), (3)

where χ2
d denotes a χ2-distributed random variable with d degrees of freedom. Moreover, there

exists a nonrandom constant b, called the Bartlett correction factor, such that under some higher
moment conditions,

P

{
EL(μ0)

(1 + b/n)
≤ x

}
= P(χ2

d ≤ x) + O(n−2). (4)

That is, the empirical likelihood is Bartlett correctable (DiCiccio et al. 1991; Chen and Cui 2006).
Baggerly (1998) shows that the nonparametric Wilks theorem (3) holds for all nonparametric

likelihoods defined by Equation (2). However, other than γ = −1, there exists no constant b
such that Equation (4) holds, i.e. only the empirical likelihood is Bartlett correctable. When a
likelihood is Bartlett correctable, users can construct confidence regions with highly accurate
coverage probabilities through a single multiplication factor. It therefore seems that only the
empirical likelihood can be used to construct confidence regions with a high-order coverage
precision.

In applications, the nominal level of a confidence region is often set to 95% and the size
of a hypothesis test to 5%. We show that for any prespecified nominal level, a corresponding
correction factor can be found for each nonparametric likelihood in the power divergence family.
We propose a level-specific correction that improves the precision from O(n−1) to O(n−2) as given
by Equation (4).
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3. Level-specific correction

3.1. Level-specific correction for the Cressie–Read family

The main use of either Equation (3) or (4) is to construct confidence regions for μ. A confidence
region for μ of size (1 − α) is defined to be

{μ : EL(μ) ≤
(

1 + b

n

)
χ2

d (1 − α)}, (5)

where χ2
d (1 − α) is the (1 − α)th quantile of the chi-square distribution with d degrees of freedom.

Because of Equation (4), the coverage probability of this confidence region is (1 − α) + O(n−2),
differing from the target level with an error of the order of n−2.

For the other nonparametric likelihoods, such a b does not exist unless it is made dependent on
α. Suppose

P{Lγ (μ0) ≤ x} = Fd(x) − n−1K(x) + O(n−2), (6)

where Fd(·) is the cumulative distribution function of the χ2
d distribution and K(·) is a smooth

function to be specified. For any function b(x), we have

P

{
Lγ (μ0)

(1 + b(x)/n)
≤ x

}
= Fd

(
x + xb(x)

n

)
− n−1K(x) + O(n−2)

= Fd(x) + n−1{xb(x)F ′
d(x) − K(x)} + O(n−2),

where F ′
d(x) is the derivative of Fd(x). When b(x) = K(x)/{xF ′

d(x)}, we get

P

[
Lγ (μ0)

{1 + b(x)/n} ≤ x

]
= Fd(x) + O(n−2).

For any given nominal level 1 − α, let x = χ2
d (1 − α). Consequently, a level-specific corrected

confidence region defined by

{
μ : Lγ (μ) ≤

{
1 + b(x)

n

}
χ2

d (1 − α)

}

has coverage probability (1 − α) + O(n−2). That is, a second-order precise nonparametric
likelihood confidence region is possible once Equation (6) is established for some K(x).

For ease of exposition we introduce some notation. Let Xr denote the rth component of a vector
X and for k = 1, 2, . . .,

αr1r2···rk = E(Xr1 Xr2 · · · Xrk ), Ar1r2···rk = 1

n

n∑
i=1

Xr1
i Xr2

i · · · Xrk
i − αr1r2···rk (7)

with r1, . . . , rk ∈ {1, 2, . . . , d}. Without loss of generality we assume μ0 = 0 or αr = 0, and the
covariance matrix of X is an identity matrix or αrs = δrs which is equal to 1 if r = s and zero
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otherwise. Define

ξ1 =
{

(2 − γ − γ 2)

4

}
αrrkk −

{
(γ 2 + 2γ + 3)

6

}
αrkmαrkm

+
{

(1 + γ )2

6

}
αrkkαrll, (8)

ξ2 =
{

(1 − γ 2)

4

}
αrrss +

{
(2γ 2 + 3γ + 1)

3

}
αrskαrsk

−
{

(1 + γ )2

3

}
αrkkαrss +

{
(1 + γ )2

4

}
(d2 + 2d), (9)

ξ3 =
{

5(1 + γ )2

12

}
αrssαrtt . (10)

Here and in what follows, unless otherwise stated, we use the summation convention (or tensor
notation) according to which if an index occurs more than once in an expression, summation over
the index is understood.

Theorem 3.1 Suppose that X1, X2, . . . , Xn is a random sample from a d-variate population with
mean zero. Assume that Var(X1) is the d-dimensional identity matrix, E(‖X1‖42) < ∞, and the
characteristic function of F(x) satisfies Cramér’s condition:

lim sup
‖t‖→∞

|E{exp(itTX1)}| < 1,

where tT denotes the transpose of t and i is the imaginary unit. Then for each constant γ , the
distribution of the nonparametric likelihood defined in Equation (2) has an Edgeworth expansion
(6) with

K(x) =
{(

ξ1

d

)
+

[
ξ2

{d(d + 2)}
]

x +
[

ξ3

{d(d + 2)(d + 4)}
]

x2

}
xF ′

d(x), (11)

where the ξ ’s are given in Equations (8)–(10).

Remark 1 The moment condition E(‖X1‖42) < ∞ is inherited from condition (A2) of Theorem 3
of Bhattacharya and Ghosh (1978). Together with Cramér’s condition, it ensures the validity of
the formal Edgeworth expansion (A9).

Remark 2 Under the conditions of Theorem 3.1, the remainder term in Equation (6) is O(n−2)

uniformly in x which can be shown from Equation (A9).

It follows immediately from Theorem 3.1 that the level-specific correction factor should be
chosen as

b(x) =
(

ξ1

d

)
+

[
ξ2

{d(d + 2)}
]

x +
[

ξ3

{d(d + 2)(d + 4)}
]

x2. (12)

When γ = −1, in which case the nonparametric likelihood becomes the empirical likelihood, we
find

ξ1 = 1
2αrrss − 1

3αrstαrst , ξ2 = ξ3 = 0.
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438 Y. Liu et al.

Therefore, the level-specific correction factor for the empirical likelihood is

bEL(x) = 1

d

{
1

2
αrrss − 1

3
αrstαrst

}
,

which is no longer level dependent and equals the well-known Bartlett correction factor for
the empirical likelihood. When γ = 0 and 1, we obtain the level-specific correction factors for
the exponential tilting likelihood and the Euclidean likelihood, respectively. In particular, the
level-specific correction factor for the Euclidean likelihood is given by

bEU(x) = {(2/3)αrkkαrll − αrkmαrkm}
d

+
[ {2αrskαrsk − (4/3)αrkkαrss}

{d(d + 2)} + 1

]
x

+
[ {(5/3)αrssαrtt}
{d(d + 2)(d + 4)}

]
x2.

The Euclidean likelihood ratio is asymptotically equivalent to Hotelling’s T 2 defined by

T 2(μ) = n(X̄ − μ)TS−1(X̄ − μ)

with X̄ and S being, respectively, the sample mean and the sample variance–covariance matrix.
Here is a brief explanation. The Euclidean likelihood ratio is obtained from the optimal solution
to Equation (2) when γ = 1. It is straightforward to see that this is given by

pi = 1

n
{1 − (X̄ − μ)TS−1

∗ (Xi − X̄)}

with S∗ = {(n − 1)/n}S. The Euclidean likelihood ratio function is then given by

EU(μ) = n(X̄ − μ)TS−1
∗ (X̄ − μ) =

{
n

(n − 1)

}
T 2(μ).

Strictly speaking, we require pi ≥ 0 for all i in Equation (2), but this is satisfied asymptotically.
A level-specific correction factor of Hotelling’s T 2 can hence be obtained from that of the

Euclidean likelihood. For any given x > 0, we have

P

(
EU(μ0) ≤ x

{
1 + bEU(x)

n

})
= Fd(x) + O(n−2),

or equivalently

P

(
EU(μ0)

{
(n − 1)

n

}
≤ x

{
1 + bEU(x)

n

} {
1 −

(
1

n

)})
= Fd(x) + O(n−2).

Since {1 + bEU(x)/n}{1 − (1/n)} = 1 + {bEU(x) − 1}/n + O(n−2), it follows that for Hotelling’s
T 2, a level-specific corrected confidence region with level (1 − α) can be constructed as{

μ : T 2(μ) ≤
[

1 + {bEU(χ2
d (1 − α)) − 1}

n

]
χ2

d (1 − α)

}
.

As for the empirical likelihood, the second-order precision is retained when b(x) is replaced
with one of its root-n consistent estimators. A natural root-n estimate is obtained using the method
of moments.
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3.2. Estimation of the level-specific correction factor

As suggested by Liu and Chen (2010), direct moment estimates often underestimate b. We adopt
their finite-sample corrections as follows. Let Var(X) = U�UT be an eigenvalue decomposition
of the variance–covariance matrix of X with � a d × d diagonal matrix of the eigenvalues, and
U a d × d matrix of the eigenvectors. Let Yi = UT(Xi − X̄) and define

α̂r1r2···rk = n−1
n∑

i=1

Y r1
i Y r2

i · · · Y rk
i

for k = 1, 2, . . . and 1 ≤ r1, r2, . . . , rk ≤ d. We propose estimating the ξi’s by

ξ̃1 = 2 − γ − γ 2

4

α̃rrkk

α̃rr,kk
− γ 2 + 2γ + 3

6

α̃rkm,rkm

α̃rr,kk,mm
+ (1 + γ )2

6

α̃rkk,rll

α̃rr,kk,ll
,

ξ̃2 = 1 − γ 2

4

α̃rrkk

α̃rr,kk
+ 2γ 2 + 3γ + 1

3

α̃rkm,rkm

α̃rr,kk,mm
− (1 + γ )2

3

α̃rkk,rll

α̃rr,kk,ll
+ (1 + γ )2

4
(d2 + 2d),

ξ̃3 = 5

12
(1 + γ )2 α̃rkk,rll

α̃rr,kk,ll
,

where the α̃’s are given as follows:

Parameter Estimator Expression
αrr α̃rr nα̂rr/(n − 1)

αrrss α̃rrss {nα̂rrss − 2α̃rr α̃ss − 4δrsα̃rr α̃rr}/(n − 4)

αrst α̃rst nα̂rst/(n − 3)

αrstαrst α̃rst,rst α̃rstα̃rst − (α̂rrsstt − α̃rstα̃rst)/n
αrssαrtt α̃rss,rtt α̃rssα̃rtt

αrrαss α̃rr,ss α̃rr α̃ss − α̃rrss/n
αrrαssαtt α̃rr,ss,tt α̃rr α̃ssα̃tt

We estimate b(t) according to Equation (12) by

b̃(x) =
(

ξ̃1

d

)
+

{
ξ̃2

d(d + 2)

}
x +

[
ξ̃3

{d(d + 2)(d + 4)}

]
x2.

3.3. Extension

Conceptually, the new technique is applicable to other pivotal quantities with chi-square limiting
distributions. We state this result without a proof in Theorem 3.2.

Theorem 3.2 Suppose we have a univariate pivotal quantity Qn = nT T
n Tn + Op(n−3/2) such that

P(Qn ≤ y) = P(nT T
n Tn ≤ y) + O(n−2).

Suppose further that n1/2Tn admits an Edgeworth expansion up to order o(n−2) and that for
1 ≤ r, s, t, u ≤ d, its cumulants can be expanded as

cum(n1/2T r
n ) = n−1/2βr

1 + n−3/2cr
1 + o(n−2),

cum(n1/2T r
n , n1/2T s

n) = δrs + n−1βrs
2 + n−2crs

2 + o(n−2),

cum(n1/2T r
n , n1/2T s

n , n1/2T t
n) = n−1/2βrst

3 + n−3/2crst
3 + o(n−2),

cum(n1/2T r
n , n1/2T s

n , n1/2T t
n, n1/2T u

n ) = n−1βrstu
4 + n−2crstu

4 + o(n−2),
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440 Y. Liu et al.

with cr
1, crs

2 , crst
3 , crstu

4 being nonrandom constants. In addition, the cumulants of n1/2Tn of order 5
and 6 are o(n−2).

Let b∗(t) = (ζ1/d) + [ζ2/{d(d + 2)}]t + [ζ3/{d(d + 2)(d + 4)}]t2 with

ζ1 =
∑

r

(βrr
2 + βr

1β
r
1) − 1

4

∑
r,s

(βrrss
4 + 4βr

1β
rss
3 ) + 5

12

∑
r,s,t

βrrs
3 βstt

3 ,

ζ2 = 1

4

∑
r,s

(βrrss
4 + 4βr

1β
rss
3 ) − 5

6

∑
r,s,t

βrrs
3 βstt

3 ,

ζ3 = 5

12

∑
r,s,t

βrrs
3 βstt

3 .

Then we have P[Qn/{1 + b∗(t)/n} ≤ t] = P(χ2
d ≤ t) + O(n−2).

This condition-rich theorem primarily serves a conceptual purpose. The F-statistic constructed
in the analysis of variance can be shown to satisfy these conditions. Thus, when the data are not
normal, a level-specific correction is possible. We do not go as far as to recommend its use in the
analysis of variance.

4. Simulation and an example

In this section, we investigate the performance of the level-specific corrected nonparametric
likelihoods. We examine eight representative nonparametric likelihoods corresponding to γ =
−2.5, −2.0, −1.5, −1.0, −0.5, 0.0, 0.5, and 1.0. Confidence regions for the population mean are
constructed at the nominal levels 90%, 95%, and 99%.

For the scalar observations, we generated data from two distributions: the standard normal
N(0, 1) and the χ2

3 with sample sizes n = 20 and 50. In the multivariate case, we chose the
bivariate distributions (b) and (c) of Liu and Chen (2010) with the data generated as follows. A
random observation D was first generated from the uniform distribution on the interval [1, 2].
Given D, we generated a datum X = (X(1), X(2))

T from one of the following distributions: (b)
X(1) ∼ Gamma(D, 1), X(2) ∼ Gamma(D−1, 1), and (c) X(1) ∼ 0.2N(5, D2) + 0.8N(−1.25, D−2),
X(2) ∼ 0.2N(5, D−2) + 0.8N(−1.25, D2). The sample sizes are chosen to be n = 30 and 80.

We computed the coverage rates of the confidence regions for the population means based on two
approaches, straight nonparametric likelihoods (Lγ (μ)) and the nonparametric likelihoods with
level-specific correction (Lγ (μ)/{1 + b̃(t)/n}). The simulation size is 10,000 (Tables 1 and 2).

The straight nonparametric likelihood confidence regions with γ = −1, −0.5, 0, 0.5, and 1.0
tend to have lower than nominal coverage rates. For these likelihoods, the level-specific correction
markedly improves the precision of the coverage probabilities. The improvement in the coverage
precision is more apparent when the population is skewed. When the sample size increases, the
correction still helps but is not really necessary.

When γ = −2.0 and −2.5 the level-specific correction is counterproductive. A superficial
reason is that the level-specific correction factor b becomes negative for nonparametric likelihoods
with γ values in this range. Because of this, the coverage rate decreases after the correction.
Such a correction is warranted only if the corresponding nonparametric likelihoods have higher
than nominal coverage probabilities when the chi-square distribution is used for calibration.
However, over-coverage does not occur for these nonparametric likelihoods as might be suggested
by the high-order expansion. Being confident in our mathematics, we regretfully conclude that the
expansion does not kick in for the current small sample size. This is of course the case as pointed
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Journal of Nonparametric Statistics 441

Table 1. Simulated coverage probabilities (%) of nonparametric-likelihood-based confidence intervals and their
level-specific counterparts for the population mean.

Population n γ −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

N(0,1) 20 U 90 90.03 89.26 88.69 88.20 87.92 87.80 87.83 88.01
95 94.71 94.26 93.91 93.50 93.26 93.04 93.02 93.24
99 98.56 98.46 98.25 98.06 97.92 97.84 97.79 98.15

C 90 86.11 87.92 88.04 89.49 89.86 89.95 89.97 89.93
95 90.88 92.91 92.89 94.37 94.55 94.77 94.97 95.12
99 94.83 97.23 97.98 98.48 98.74 98.88 99.02 99.32

50 U 90 90.67 89.98 89.71 89.09 88.90 88.79 88.78 88.80
95 96.19 95.50 95.24 94.72 94.43 94.30 94.31 94.37
99 99.36 99.25 99.00 98.93 98.81 98.79 98.80 98.79

C 90 89.24 89.45 90.30 89.71 89.70 89.75 89.76 89.71
95 94.80 94.98 95.23 95.04 95.05 95.16 95.17 95.17
99 99.01 99.06 98.93 99.06 99.03 99.02 99.08 99.16

χ2
3 20 U 90 87.27 86.84 86.48 86.25 85.94 85.95 85.81 85.78

95 92.70 92.50 92.19 91.84 91.42 91.26 91.14 90.93
99 97.66 97.52 97.29 96.99 96.67 96.31 95.99 95.91

C 90 80.57 84.22 86.36 88.07 88.74 88.85 88.79 88.50
95 86.27 89.45 92.04 93.05 93.43 93.47 93.52 93.42
99 92.91 95.05 96.97 97.51 97.74 97.82 97.91 98.04

50 U 90 89.91 89.52 89.06 88.89 88.74 88.52 88.50 88.56
95 95.10 94.74 94.49 94.26 94.09 93.92 93.67 93.55
99 98.92 98.80 98.75 98.47 98.27 98.14 98.07 97.95

C 90 86.91 88.38 89.19 89.62 89.94 90.01 90.07 89.95
95 92.56 93.89 94.47 94.84 94.94 95.01 95.03 95.00
99 97.62 98.18 98.73 98.69 98.74 98.75 98.74 98.77

Notes: U, uncorrected nonparametric likelihood (Lγ (μ)); C, level-specific corrected nonparametric likelihood (Lγ (μ; n−2)/{1 +
b̃(x)/n}).

out by Tsao (2004). Yet when the sample size becomes large, high-order correction is no longer
needed. Clearly, the high-order asymptotics fail to provide a useful guidance to a finite-sample
problem here.

In conclusion, we have a rigorous proof of concept for the level-specific correction. The sim-
ulation shows that the technique works well only for nonparametric likelihoods with γ ≥ −1.
Fortunately, this range of γ includes most popular nonparametric likelihoods such as the empirical
likelihood, the exponential tilting likelihood, and the Euclidean likelihood introduced earlier.

We next illustrate the proposed level-specific correction procedure using sweat data from John-
son and Wichern (2007, p. 215). The data set consists of perspiration from 20 healthy females in
terms of sweat rate and sodium and potassium content; it is given in Table 3. We are interested
in constructing confidence regions for the mean pair of sodium and potassium content in healthy
females’ sweat.

We constructed 90% and 99% confidence regions for the population mean of sodium and
potassium content based on the empirical and Euclidean likelihoods (γ = −1.0, 1.0) and their
level-specific corrected regions. The results are given in Figure 1. The top two plots reveal the
differences in the sizes of the corrections. Because the Bartlett-correctable empirical likelihood
(γ = −1) is not level dependent, the correction expands the two confidence regions at the same
rate. In comparison, the correction for the Euclidean likelihood is heavily level dependent: its 99%
region is expanded much more than its 90% region. The bottom two plots show another aspect
of the comparison. At the 90% level, the two likelihoods give near-identical confidence regions,
before or after the correction. At the 99% level and before the correction, the empirical likelihood
confidence region is shifted to the north-west compared to the Euclidean one, but the two regions
have roughly the same size. The correction has little effect on the empirical likelihood but a
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Table 2. Simulated coverage probabilities (%) of nonparametric-likelihood-based confidence regions and their
level-specific counterparts for bivariate population means.

Population n γ −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

(b) 30 U 90 86.47 86.01 84.93 84.81 84.52 83.85 83.45 83.40
95 91.78 91.64 91.15 90.43 89.87 89.17 88.72 88.59
99 97.33 97.19 96.86 96.47 95.96 95.41 94.78 94.44

C 90 75.51 81.65 84.95 87.30 88.04 88.33 88.26 87.81
95 81.57 87.26 90.87 92.32 92.91 93.13 93.31 93.18
99 89.95 93.84 96.34 97.25 97.61 97.85 97.96 98.11

80 U 90 90.01 89.31 88.67 88.49 88.22 88.02 87.71 87.27
95 95.23 94.81 94.49 94.00 93.31 92.98 92.70 92.52
99 99.07 98.95 98.70 98.60 98.37 97.98 97.67 97.43

C 90 86.50 87.96 88.68 89.49 89.88 89.91 89.83 89.80
95 92.60 93.95 93.47 94.66 94.83 94.80 94.89 94.78
99 98.15 98.55 98.31 98.84 98.94 98.96 98.91 98.97

(c) 30 U 90 89.16 88.63 87.38 87.03 86.43 85.37 84.72 84.24
95 93.63 93.41 92.99 92.47 91.70 90.74 90.13 89.67
99 97.98 97.92 97.70 97.52 97.05 96.31 95.65 95.16

C 90 82.86 85.51 87.43 89.40 89.98 89.92 89.66 89.16
95 88.59 90.83 92.62 94.00 94.73 94.80 94.77 94.31
99 94.97 96.03 97.29 98.23 98.62 98.77 98.77 98.72

80 U 90 90.60 89.90 89.75 89.05 88.51 87.98 87.74 87.57
95 95.40 95.11 95.02 94.13 93.79 93.47 93.05 92.70
99 99.11 99.06 98.96 98.77 98.46 98.21 97.84 97.64

C 90 88.91 89.23 89.79 89.64 89.67 89.67 89.51 89.53
95 94.38 94.48 94.89 94.63 94.67 94.71 94.80 94.80
99 98.78 98.93 98.93 98.90 98.97 99.05 99.11 99.16

Notes: U, uncorrected nonparametric likelihood (Lγ (μ)); C, level-specific corrected nonparametric likelihood (Lγ (μ; n−2)/{1 +
b̃(x)/n}).

Table 3. Sweat data set.

Female No. 1 2 3 4 5 6 7 8 9 10

Sodium content 48.5 65.1 47.2 53.2 55.5 36.1 24.8 33.1 47.4 54.1
Potassium content 9.3 8.0 10.9 12.0 9.7 7.9 14.0 7.6 8.5 11.3

Female No. 11 12 13 14 15 16 17 18 19 20

Sodium content 36.9 58.8 27.8 40.2 13.5 56.4 71.6 52.8 44.1 40.9
Potassium content 12.7 12.3 9.8 8.4 10.1 7.1 8.2 10.9 11.2 9.4

large effect on the Euclidean likelihood. The Euclidean confidence region is markedly expanded
after the correction. We note that after the correction, the Euclidean confidence region covers
the empirical likelihood region. Is this justified? Recall the asymptotic equivalence between the
Euclidean likelihood and Hotelling’s T 2. The latter gives a completely symmetric confidence
region regardless of the data. Thus, when the data are not symmetric, the correction has to expand
the original confidence region more to attain the nominal level of coverage. The last plot may
thus indicate the superiority of the empirical likelihood in constructing confidence intervals for
the population mean.

The properties of the level-specific corrected nonparametric confidence regions for −1 < γ < 1
or at the 95% level can be interpolated from what we have presented. They are not included to
save space and to make the plots easy to read.
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Figure 1. Nonparametric likelihood confidence regions and their level-specific counterparts for the population mean of
the sweat data. The circles and the star stand for the observations and the sample mean, respectively.

5. Discussion

It is well known that of all the nonparametric likelihoods in the Cressie–Read family, only the
empirical likelihood is Bartlett correctable. In this paper, we have established a proof of concept for
the level-specific correctability of all the Cressie–Read nonparametric likelihoods. Simulations
based on constructing confidence regions for the population mean show that the level-specific
correction helps to improve the coverage precision for many important nonparametric likelihoods,
but it is counterproductive for nonparametric likelihoods with γ < −1.

Another way to improve the precision of the empirical likelihood confidence regions is via the
adjusted empirical likelihood proposed by Chen et al. (2008). The adjusted empirical likelihood
was invented to overcome the empty-solution problem which may occur when the parameter
is defined by over-identified estimating equations (Grendar and Judge 2009; Bergsma, Croon,
and van der Ark 2012; Tsao 2013). By tuning its level of adjustment according to the Bartlett
correction factor, Liu and Chen (2010) prove that the adjusted empirical likelihood confidence
regions also have high-order coverage precision. Can nonparametric likelihoods be adjusted to
achieve high-order coverage precision? The answer is positive and the theory parallels the Bartlett
correctability of the nonparametric likelihoods. We do not bother readers with the repetitive details
and tedious algebra.
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Appendix. Proof of Theorem 3.1

There are two main steps in the proof of Theorem 1. In the first step, we seek a smooth function, say T(Z), of the sum Z
of independent and identically distributed random vectors, such that the nonparametric likelihood ratio function

Lγ (μ0) = n{T(Z)}T{T(Z)} + εn

and the remainder

P(|εn| ≥ c1n−5/2{log(n)}7/2) ≤ c2n−2{log(n)}−3

for some constants c1 and c2. We will write the above result as εn = O∗
p(n

−5/2{log(n)}7/2) with the ∗ emphasising that

the probability of exception is of the order n−2{log n}−3. We will use o∗ and O∗ in this spirit and liberally.
In the second step, we obtain a formal Edgeworth expansion of T(Z) to order o(n−2), and infer that it leads to an

expansion of the distribution function of Lγ (μ0) with the same precision, as assured by Theorem 2 of Bhattacharya and
Ghosh (1978).

Since the index γ is not relevant in the proof, it will sometimes be omitted in the presentation. Define

H(λ) = 2

γ (γ + 1)

n∑
i=1

{(1 + γ λTYi)
1/γ+1 − 1},

where YT
i = (1, (Xi − μ0)

T). Let λ̂ be the solution to the following equation:

G(λ) ≡ 1

n

n∑
i=1

(1 + γ λTYi)
1/γ Yi = e1, (A1)

where er is a vector of length d + 1 with the rth component being one and the remaining components being zero.
Solving the optimisation problem in Equation (2) by the Lagrange multiplier method, we obtain a simplified form of the
nonparametric likelihood ratio Lγ (μ0) = H(λ̂). See Baggerly (1998) for a detailed derivation.

A.1 The magnitude of λ̂ and its polynomial expansion

The sample means of a set of independent and identically distributed random variables are known to differ from their
expectation by Op(n−1/2) in general. The following lemma of Bahr (1967) gives a more precise order assessment, and it
will be used in our proof.

Lemma A1 Suppose X1, X2, . . . , Xn are independent and identically distributed random vectors with mean zero. Let X̄
denote the sample mean. If E(‖X1‖k) < ∞ for some integer k ≥ 3, then there exist positive constants c1 and c2 such that

P(‖X̄‖ > c1n−1/2{log(n)}1/2) < c2n−(k−2)/2{log(n)}−k/2.

As a first step in approximating Lγ (μ0), we quantify the order of λ̂ as follows:

λ̂ = O∗
p(n

−1/2{log(n)}1/2).

To begin with, we investigate the properties of the function G(λ) defined in Equation (A1) when ‖λ‖ ≤ c1n−1/2{log(n)}1/2.
Expanding G(λ) at 0 to order k, we get

G(λ) = G(0) + n−1
k−1∑
ν=1

aν

n∑
i=1

(λTYi)
νYi + akn−1

n∑
i=1

(λ̃TYi)
kYi, (A2)

where the aν ’s are generalised binomial coefficients and λ̃ is between 0 and λ.
In view of the size restriction on λ and for k = 2, we have∥∥∥∥∥n−1

n∑
i=1

(λ̃TYi)
2Yi

∥∥∥∥∥ ≤ ‖λ̃‖2n−1
n∑

i=1

‖Yi‖3 = ‖λ̃‖2O∗
p(1).

Note that G(0) = Ȳn = O∗
p(n

−1/2{log(n)}1/2) and the second term in the expansion has a1 = 1. Hence,

n−1a1

n∑
i=1

(λTYi)Yi = Id+1 + O∗
p(n

−1/2{log(n)}1/2),

where Id+1 denotes the (d + 1)-dimensional identity matrix. The equation G(λ) = e1 is therefore equivalent to

G(0) − e1 + Id+1 + O∗
p(n

−1{log n}) = λ, (A3)

which leads to the claim ‖λ̂‖ = O∗
p(n

−1/2{log(n)}1/2).

D
ow

nl
oa

de
d 

by
 [

E
as

t C
hi

na
 N

or
m

al
 U

ni
ve

rs
ity

] 
at

 1
8:

12
 1

5 
Se

pt
em

be
r 

20
14

 



446 Y. Liu et al.

We now approximate λ̂ by a polynomial of a sum of independent and identically distributed random vectors. Let λ̃ be
the solution to (λ) = e1 with

(λ) = G(0) + n−1
5∑

ν=1

aν

n∑
i=1

(λTYi)
νYi.

The difference between (λ) and G(λ) is O∗(‖λ̂‖6). This leads to ‖λ̂ − λ̃‖ = O∗
p(n

−3{log(n)}3).
Clearly, (λ) is a polynomial in Yi. Let Zi be a stacked vector with components Yr

i , Yr
i Ys

i , and so on up to degree 5,
and let Z represent n−1 ∑

Zi. The solution to (λ) = e1 may be written as λ̃ = W̃(Z) for a sufficiently smooth function
W̃(·).

Under the moment condition E{‖X1‖42} < ∞, it follows from Lemma 1 that

∥∥∥n−1
∑

{Zi − E(Zi)}
∥∥∥k = O∗(n−7/2{log(n)}7/2)

when k ≥ 7. Expanding W̃(Z) at Z = E(Z) to order 5, we get a polynomial W(Z) such that

λ̂ = W(Z) + O∗
p(n

−3{log(n)}3). (A4)

A.2 High-order approximation of Lγ(μ0)

The goal of this subsection is to approximate the nonparametric likelihood ratio with a polynomial of Z , a sum of
independent and identically distributed random vectors.

Clearly, H(λ̂) also admits a binomial expansion:

Lγ (μ0) = H(λ̂) =
6∑

ν=1

aν(λ̂
TYi)

ν + a7(λ̂
TYi)

7, (A5)

where the aν ’s are a combination of binomial coefficients and γ , and λ̃ lies between 0 and λ.
For the same reason as before, we have

a7(λ̂
TYi)

7 = O∗
p(n

−5/2{log(n)}7/2).

Let �(λ̂) = ∑6
ν=1 aν(λ̂

TYi)
ν . It follows from Equation (A4) that

�(λ̂) = �(W(Z)) + O∗
p(n

−5/2{log(n)}3).

Note that �(λ) is a polynomial in λ with coefficients that are linear functions of Z . Hence, �(W(Z)) is a polynomial in
Z , and we denote it Q(Z):

Lγ (μ0) = Q(Z) + O∗
p(n

−5/2{log(n)}7/2). (A6)

Because the lowest degree in the polynomial Q(Z) is two, it admits a decomposition of the form

Q(z) = nTT(z)T(Z) + nR3(Z), (A7)

where T(Z) is a polynomial in Z of degree 5, and the remainder R3(Z) contains only seventh-order or higher order
monomials of Z .

Combining expansions (A6) and (A7), we have

Lγ (μ0) = n{T(Z)}TT(Z) + O∗
p(n

−5/2{log(n)}7/2). (A8)

The algebra in this subsection has been used to demonstrate that Lγ (μ0) has a decomposition as above. The exact
form of T(Z) has been ignored but will be worked out with patience and without much mathematical complexity. We will
postpone the tedious details to the last moment to maintain readability.
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A.3 Formal Edgeworth expansion

Let the formal expansion of the cumulative distribution function of
√

nT(Z) be, symbolically,

ψ6,n(x) =
{

1 +
4∑

r=1

n−r/2πr(x)

}
φ(x)

with x a d-variate input variable, φ(x) the d-variate standard normal density function, and πr(x) some polynomials. Since
T(Z) is a smooth function of the sample means, Theorem 2 of Bhattacharya and Ghosh (1978) states that

sup
B∈B

|P(
√

nT(Z) ∈ B) −
∫

x∈B
ψ6,n(x) dx| = o(n−2) (A9)

for any class B of Borel sets having a certain boundary property. This class contains all d-dimensional rectangles, spheres,
and so on; we will not give a precise definition. This leads to

P(Lγ (μ0) ≤ y) =
∫

xTx≤y
ψ6,n(x) dx + o(n−2) (A10)

with o(n−2) uniformly in y. That is, the distribution function of Lγ (μ0) has an accurate and workable Edgeworth expansion.
It can be verified that π1(x) and π3(x) are odd polynomials so that

∫
xTx≤y πr(x)φ(x) dx = 0 for r = 1 and 3. Hence,

the Edgeworth expansion (A10) is reduced to

P(Lγ (μ0) ≤ y) =
∫

xTx≤y
{1 + n−1π2(x) + n−2π4(x)}φ(x) dx + o(n−2)

=
∫

xTx≤y
{1 + n−1π2(x)}φ(x) dx + O(n−2). (A11)

The integration with respect to π4(x) has been absorbed into the O(n−2) term.
We cannot postpone the tedious algebra much longer, so we now work out T(Z). Its expression will be used to verify

that π1(x) and π3(x) are odd polynomials and to work out the exact form of π2(x). Our task is simplified by quoting
Baggerly (1998) that

n−1Lγ (μ0) = AjAj − AjkAjAk + 1 − γ

3
αjklAjAkAl + AjlAklAjAk + 1 − γ

3
AjklAjAkAl

+ (γ − 1)αjkmAlmAjAkAl + (γ − 1)2

4
αjknαlmnAjAkAlAm

− (γ − 1)(2γ − 1)

12
αjklmAjAkAlAm + (γ + 1)2

4
AjAjAkAk + Op(n

−5/2),

where αj1···jk and Aj1···jk are defined in Equation (7). Note that the leading terms are polynomials of degree 4 in centred
sample moments Aj1···jk . The expansion matches the algebra sketched so far.

The following decomposition of Lγ (μ0) can be confirmed by matching terms on the two sides:

Lγ (μ0) = nRj
nRj

n + Op(n
−3/2),

where Rn = Rn1 + Rn2 + Rn3 and

Rj
n1 =Aj ,

Rj
n2 = − 1

2
AjkAk + 1 − γ

6
αjklAkAl ,

Rj
n3 = 3

8
AjlAklAk + 1 − γ

6
AjklAkAl − 5(1 − γ )

36
αlkmAjmAlAk

− 5(1 − γ )

18
αjkmAlmAkAl + (1 − γ )2

9
αjknαlmnAkAlAm

− (1 − γ )(1 − 2γ )

24
αjklmAkAlAm + (1 + γ )2

8
AjAkAk .

The Rn in the above decomposition is not T(Z) stated in Equation (A8), which is a polynomial of degree 5. However, we
must have T(Z) = Rn + Rn4 + Rn5 with Rn4 and Rn5 being degree 4 and 5 entries of the A’s. Because of the high degrees
of Rn4 and Rn5, the first and third cumulants of T(Z) and Rn differ by O(n−3/2), and the second and fourth cumulants
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differ by O(n−2). At the same time, π2(x) in the formal Edgeworth expansion of
√

nT(Z) is completely determined by
its first four cumulants. That is, the exact expression for π2(x) for

√
nT(Z) is found through that of the simpler Rn.

After tedious algebra, we obtain the cumulants of Rn as follows:

cum(n1/2Rr
n) = n−1/2βr

1 + O(n−3/2),

cum(n1/2Rr
n, n1/2Rs

n) = δrs + n−1βrs
2 + O(n−2),

cum(n1/2Rr
n, n1/2Rs

n, n1/2Rt
n) = n−1/2βrst

3 + O(n−3/2),

cum(n1/2Rr
n, n1/2Rs

n, n1/2Ru
n, n1/2Rv

n) = n−1βrsuv
4 + O(n−2),

where

βr
1 = −

{
(2 + γ )

6

}
αrkk ,

βrs
2 = −

{
(2γ 2 + γ − 3)

4

}
αrskk +

{
(3γ 2 + 4γ − 1)

6

}
αskmαrkm

+
{

(1 + γ )2(2 + d)

4

}
δrs +

{
(8γ 2 + 14γ + 5)

36

}
αrkkαsll ,

βrst
3 = − (γ + 1)αrsu,

βrsuv
4 =(1 − γ 2)αrsuv + (1 + γ )2(δrsδuv + δruδsv + δrvδus)

+
{

2(γ + 1)(2γ + 1)

3

}
(αrskαuvk + αrukαsvk + αrvkαsuk).

(A12)

With these cumulants and the standard Edgeworth expansion technique, we obtain the functions π1(x) and π2(x) for√
nT(Z) as follows:

π1(x) =
∑

r

βr
1xr + 1

6

∑
r,s,t

βrst
3 (xrxsxt − [δrsxt]3),

π2(x) = 1

2

∑
r,s

(βrs
2 + βr

1βs
1)(x

rxs − δrs)

+ 1

24

∑
r,s,t,u

(βrstu
4 + 4βr

1βstu
3 )(xrxsxtxu − [δrsxtxu]6 + [δrsδtu]3)

+ 1

72

∑
r,s,t,u,v,w

βrst
3 βuvw

3 (xrxsxtxuxvxw − [δrsxtxuxvxw]15

+ [δrsδtuxvxw]45 − [δrsδtuδvw]15),

where the superscripts run from 1 to d. Here [δrsxt]3 and [δrsδtu]3 denote, respectively, δrsxt + δrtxs + δstxr and δrsδtu +
δrtδsu + δruδsu, similar to the definite of U-statistics. Expressions such as [·]6 are defined in the same way.

The expressions for π1(x) and π2(x) confirm our previous claim that they are, respectively, odd and even polynomials
of x. We omit the expression for π3(x); it is odd but its exact expression is not needed.

Using the explicit expression of π2(x), we now compute the exact expression (A11) through integration. Let π2k(x)
with k = 1, 2, 3 denote the three terms in π2(x), respectively. We calculate their integrals one by one.

Clearly,
∫

xTx≤y xrxsφ(x) dx = 0 for r = s. Therefore,

∫
xTx≤y

π21(x)φ(x)dx = 1

2

d∑
r=1

(βrr
2 + βr

1βr
1)

∫
xTx≤t

(xrxr − 1)φ(x) rdx.

For fixed 1 ≤ r ≤ d, we find that∫
xTx≤y

φ(x) dx = F(y|d),
∫

xTx≤y
xrxrφ(x) dx = F(y|d + 2),

where F(t|d) is the cumulative distribution function of the χ2
d distribution. Thus, we obtain∫

xTx≤y
π21(x)φ(x) dx = 1

2

∑
r

(βrr
2 + βr

1βr
1){F(y|d + 2) − F(y|d)}.
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Next we consider
∫

xTx≤y π22(x)φ(x) dx. We observe that the integral
∫

xTx≤y φ(x)xrxsxtxu dx = 0 except for r = s =
t = u or its permutations, or when r = s = t = u. In the first case, the integral equals∫

xTx≤y
φ(x)x1x1x2x2 dx = F(y|d + 4).

In the second case, the integral is equal to∫
xTx≤y

φ(x)x1x1x1x1 dx = 3F(y|d + 4).

The other integrals in
∫

xTx≤y π22(x)φ(x) dx can be calculated in a similar way. This leads to

∫
xTx≤y

π22(x)φ(x) dx = 1

8

∑
r,s

(βrrss
4 + 4βr

1βrss
3 ){F(y|d + 4) − 2F(y|d + 2) + F(y|d)}.

Similarly, ∫
xTx≤y

π23(x)φ(x) dx = 5

24

∑
r,s,t

βrrs
3 βstt

3 {F(y|d + 6) − 3F(y|d + 4) + 3F(y|d + 2) − F(y|d)}.

The above integrals can be further simplified. According to the properties of the χ2 distribution, we have F(y|d + 2) =
F(y|d) − (2y/d)F ′(y|d) and F ′(y|d + 2) = (y/d)F ′(y|d), where F ′(y|d) is the density function of the χ2

d distribution.
Applying these properties, we obtain∫

xTx≤y
π21(x)φ(x) dx = −yF ′(y|d)

1

d

∑
r

(βrr
2 + βr

1βr
1),

∫
xTx≤y

π22(x)φ(x) dx = −yF ′(y|d)

{
y

d(d + 2)
− 1

d

}
1

4

∑
r,s

(βrrss
4 + 4βr

1βrss
3 ),

∫
xTx≤y

π23(x)φ(x) dx = −yF ′(y|d)

{
y2

d(d + 2)(d + 4)
− 2y

d(d + 2)
+ 1

d

}
5

12

∑
r,s,t

βrrs
3 βstt

3 .

Summing the above three terms gives∫
xTx≤y

π2(x)φ(x) dx = −yF ′(y|d)

{
ξ1

d
+ ξ2

d(d + 2)
y + ξ3

d(d + 2)(d + 4)
y2

}
,

where

ξ1 =
∑

r

(βrr
2 + βr

1βr
1) − 1

4

∑
r,s

(βrrss
4 + 4βr

1βrss
3 ) + 5

12

∑
r,s,t

βrrs
3 βstt

3 ,

ξ2 = 1

4

∑
r,s

(βrrss
4 + 4βr

1βrss
3 ) − 5

6

∑
r,s,t

βrrs
3 βstt

3 ,

ξ3 = 5

12

∑
r,s,t

βrrs
3 βstt

3 .

The function K(t) is then obtained from the above by replacing the β’s with Equation (A12). This completes the proof of
Theorem 1.
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