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QUANTILE AND QUANTILE-FUNCTION ESTIMATIONS UNDER
DENSITY RATIO MODEL1

BY JIAHUA CHEN AND YUKUN LIU2

University of British Columbia and East China Normal University

Population quantiles and their functions are important parameters in
many applications. For example, the lower quantiles often serve as crucial
quality indices for forestry products. Given several independent samples from
populations satisfying the density ratio model, we investigate the properties
of empirical likelihood (EL) based inferences. The induced EL quantile es-
timators are shown to admit a Bahadur representation that leads to asymp-
totically valid confidence intervals for functions of quantiles. We rigorously
prove that EL quantiles based on all the samples are more efficient than empir-
ical quantiles based on individual samples. A simulation study shows that the
EL quantiles and their functions have superior performance when the density
ratio model assumption is satisfied and when it is mildly violated. An exam-
ple is used to demonstrate the new method and the potential cost savings.

1. Introduction. Forestry plays a major role in the Canadian economy; main-
taining the high quality of wood products is vital economically and socially. We are
designing an effective long-term monitoring plan for the quality of forestry prod-
ucts in Canada. Two important quality indices for a piece of lumber are the mod-
ulus of elasticity (MOE) and the modulus of rupture (MOR), its strength in terms
of elasticity and toughness. The reliability of lumber-based structures may depend
heavily on the lower population quantiles of these indices. However, it is costly,
time consuming and laborious to obtain these quality measurements. Therefore,
efficient estimates of the population quantiles and their functions are important.

The estimation of quantiles based on a single random sample is a well-
researched topic. Empirical quantiles have been shown to admit a Bahadur rep-
resentation [Bahadur (1966); Kiefer (1967); Serfling (1980)], making it simple to
study the joint limiting distributions of any number of sample quantiles and their
smooth functions. In the presence of auxiliary information, the empirical likeli-
hood [EL; Owen (1988, 2001)] can be utilized to improve efficiency. The Bahadur
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representation of EL estimators has been established by Chen and Chen (2000).
There is also an abundant literature on the Bahadur representation when the sam-
ples are not independent or have a time-series structure. See Wu (2005) and Zhou
and Wu (2009) for recent examples.

In the targeted application, we potentially have a number of random samples
from similar populations, and the combined sample size is large. Even if the size
of each random sample is small, the total sample size increases over time. We may
also have samples from similar products, such as lumber of various shapes and
lengths. If the population distributions have some common features, the pooled
information may improve the efficiency of each quantile estimate.

Specifically, we study quantile estimators based on the density ratio model
(DRM) of Anderson (1979) and the EL approach, and we focus on investigat-
ing their properties. Suppose we have m + 1 independent random samples from
populations with cumulative distribution and density functions denoted Gk(x) and
gk(x), k = 0,1, . . . ,m. The DRM postulates that

log
{
gk(x)/g0(x)

} = θ τ
kq(x)(1)

for some known function q(x) of dimension d and corresponding unknown vector-
valued parameters θk . We require the first element of q(x) to be one so that the first
element of θk is a normalization parameter.

In this formulation, the form of g0(x) is unspecified. Many parametric distribu-
tion families including normal and Gamma are special cases of the DRM. Qin and
Zhang (1997) showed that the logistic regression model commonly used in case–
control studies can be described by the DRM. They studied the EL approach for
parameter estimation and for goodness-of-fit tests of the regression model. Zhang
(2000, 2002) investigated the EL approach for quantile estimation and goodness-
of-fit. Fokianos et al. (2001) used the EL approach under the DRM for a classical
one-way analysis-of-variance.

We focus on DRM-based quantile estimation and study its Bahadur represen-
tation. We show that the EL quantiles are more efficient than empirical quantiles.
The representation is then used to construct confidence intervals for the quantiles
and their functions. These results are particularly relevant for the design of a long-
term monitoring system for wood products. The finite-sample performance of the
new methods is superior to that of the empirical quantiles when the DRM model
assumption is valid and when it is mildly violated.

In Section 2, we review the EL approach under the DRM. Section 3 derives the
Bahadur representation. In Section 4, we study the asymptotic properties of the
new quantile estimates. The finite-sample performance is examined in Section 5,
and the proposed quantile estimation is illustrated using lumber data in Section 6.
The proofs are given in the Appendix.
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2. Empirical likelihood under DRM. Empirical likelihood under the DRM
can be found in Qin and Zhang (1997) or Fokianos et al. (2001). Suppose the
population distributions, Gk(x), of m + 1 random samples of sizes nk : {(xkj : j =
1, . . . , nk);k = 0,1,2, . . . ,m} satisfy the DRM (1). The model assumption may
also be written

dGk(x) = exp
{
θ τ

kq(x)
}
dG0(x).

If G is discrete, then dG(x) = G(x) − G(x−) = P(X = x) for the correspond-
ing random variable X. The EL is defined as if the G’s are discrete. Let pkj =
dG0(xkj ) for all k, j . The EL is defined as

Ln(G0,G1, . . . ,Gm) = ∏
k,j

dGk(xkj ) =
{∏

k,j

pkj

}
× exp

{∑
k,j

θ τ
kq(xkj )

}
,

where the product and summation with respect to {k, j} are over the full range:
k = 0, . . . ,m and j = 1, . . . , nk . We set θ0 = 0 for notational simplicity.

The DRM assumption implies that Ln is also a function of the parameter vector
θ τ = (θ τ

1, . . . , θτ
m) and G0. Hence, we may also write its logarithm as

�n(θ ,G0) = ∑
k,j

log(pkj ) + ∑
k,j

θ τ
kq(xkj ).

The model assumption also implies that, for r = 0,1, . . . ,m,∫
exp

{
θ τ

r q(x)
}
dG0(x) = 1.(2)

Thus, for any r between 0 and m,
∑

k,j pkj exp{θ τ
r q(xkj )} = 1, which is naturally

accommodated in the EL approach.
Inference on θ and other aspects of the population distributions is usually car-

ried out by first profiling the EL with respect to θ . That is, we define �̃n(θ) =
maxG0 �n(θ ,G0) subject to constraints (2) on G0. Technically, we confine the sup-
port of G0 to {xkj }. The maximum in G0 is attained when

pkj = n−1

{
1 +

m∑
s=1

νs

[
exp

{
θ τ

s q(xkj )
} − 1

]}−1

,

where (ν1, ν2, . . . , νm) is the solution to
∑

k,j pkj exp{θ τ
r q(xkj )} = 1 for r =

1,2, . . . ,m and n = ∑m
k=0 nk is the total sample size. The profile log-EL (up to

an additive constant) is given by

�̃n(θ) = −∑
k,j

log

{
1 +

m∑
s=1

νs

[
exp

{
θ τ

s q(xkj )
} − 1

]} + ∑
k,j

θ τ
kq(xkj ).(3)
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We may regard �̃n(θ) as a parametric likelihood and activate the classical
likelihood-based statistical inference. This profile likelihood has the same maxi-
mum value and point as another function,

�n(θ) = −∑
k,j

log

[
m∑

r=0

ρr exp
{
θ τ

r q(xkj )
}] + ∑

k,j

θ τ
kq(xkj ),(4)

with ρr = nr/n. Because of its simplicity, the literature often regards �n(θ) instead
of �̃n(θ) as the profile likelihood function of θ . In the two-sample situation, Keziou
and Leoni-Aubin (2008) found that it is a “dual likelihood.” Its likelihood ratio
statistics remain asymptotically chi-square.

We define the maximum EL estimator (MELE) θ̂ of θ as the maximum point
of (3) or equivalently of (4). The asymptotic normality of θ̂ has been established in
various situations [Qin and Zhang (1997); Fokianos et al. (2001); Zhang (2002)].
We summarize and extend these results, giving the necessary details as a prepara-
tional step. Let h(x; θ) = ∑m

k=0 ρk exp{θ τ
kq(x)}, and for k = 0,1, . . . ,m, we define

hk(x; θ) = ρk exp
{
θ τ

kq(x)
}
/h(x; θ).

Let h(x; θ) = {h0(x; θ), . . . , hm(x; θ)}τ and define an (m + 1) × (m + 1) matrix

H(x; θ) = diag
{
h(x; θ)

} − h(x; θ)hτ (x; θ).

When θ = θ∗, the true value of θ , we may drop θ∗ for notational simplicity. Finally,
we use dḠ(x) for h(x; θ∗) dG0(x) in the integrations.

THEOREM 2.1. Suppose we have an independent random sample {xkj }nk

j=1
from population Gk for k = 0,1, . . . ,m. The total sample size n = ∑

k nk → ∞,
and ρk = nk/n remains a constant (or within the n−1 range).

The population distributions Gk satisfy the DRM (1) with true parameter value
θ∗ and

∫
h(x; θ) dG0 < ∞ in a neighborhood of θ∗. The components of q(x) are

linearly independent and its first element is one.
Then

√
n(θ̂ − θ∗) is asymptotically multivariate normal with mean 0 and co-

variance matrix W−1 − S. Both W and S are md × md block matrices with each
block a d × d matrix, and their (r, s)th blocks are, respectively,

Wrs =
∫

q(x)qτ (x)
{
hr(x)δrs − hr(x)hs(x)

}
dḠ(x),

Srs = (
ρ−1

r δrs + ρ−1
0

)
diag{1,0, . . . ,0},

where 1 ≤ r, s ≤ m and δrs = 1 if r = s and 0 otherwise.

The Appendix contains a sketched proof to bridge some gaps. Using the Kro-
necker product ⊗, we have a tighter expression,

W =
∫

H[−1,−1](x) ⊗ {
q(x)qτ (x)

}
dḠ(x),(5)
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where H[−1,−1](x) is H(x) with its first row and column removed. This conven-
tion is adopted from the statistical software package [R Development Core Team
(2011)].

The asymptotic normality is a stepping stone for our main result on the Bahadur
representation. It also reveals that the MELE is root-n consistent. The assumption
that

∫
h(x; θ) dG0 < ∞ in a neighborhood of θ∗ implies the existence of the mo-

ment generating function of q(x) and therefore all its finite moments. This fact
will be used in our proofs.

3. Bahadur representation and its applications. Given the MELE θ̂ , the
fitted values of pkj are p̂kj = {nh(xkj ; θ̂)}−1 and the fitted Gr is

Ĝr(x) = ∑
k,j

p̂kj exp
{
θ̂

τ

r q(xkj )
}
I (xkj ≤ x)

= n−1
r

∑
k,j

hr(xkj ; θ̂)I (xkj ≤ x)

with θ̂0 = 0 and I (A) an indicator function of event A. For any α ∈ (0,1), define
the α-quantile of Gr as ξr = ξr,α = inf{x :Gr(x) ≥ α} and its EL-based estimator
as

ξ̂r = ξ̂r,α = inf
{
x : Ĝr(x) ≥ α

}
.(6)

We call the ξ̂r values EL quantiles for simplicity. The asymptotic normality of the
EL quantile ξ̂r is useful for constructing confidence intervals for ξr or for testing
related hypotheses. Researchers are often interested in smooth functions of quan-
tiles of many populations and/or at several levels. Thus, the multivariate asymptotic
behavior is useful, and this calls for the Bahadur representation.

THEOREM 3.1. Assume the conditions of Theorem 2.1, and that the density
function gr(x) is continuous and positive at x = ξr . The EL quantile (6) has Ba-
hadur representation

ξ̂r = ξr + {
α − Ĝr(ξr)

}
/gr(ξr) + Op

(
n−3/4{

log(n)
}1/2)

,(7)

where ξr is the αth quantile of Gr(x).

The proof is given in the Appendix. Without the Bahadur representation, it is a
daunting task to derive the limiting distribution of functions of EL quantiles such
as ξ̂0,α − ξ̂1,α . Theorem 3.1 links this task to that of {aĜ0(ξ0,α) − bĜ1(ξ1,α)} with
nonrandom constants a and b. The asymptotic properties of Ĝr are simple and
easy to use.



1674 J. CHEN AND Y. LIU

THEOREM 3.2. Assume the same conditions as in Theorem 2.1. For any
0 ≤ r1, r2, . . . , rk ≤ m and an accompanying set of real numbers x1, x2, . . . , xk

in the support of G0(x),
√

n{Ĝrj (xj ) − Grj (xj )} are jointly asymptotically k-
variate normal with mean 0 and covariance matrix 
EL = (ωri,rj (xi, xj ))1≤i,j≤k .
The generic form of ωri,rj (xi, xj ) is given by

ωrs(x, y) = σrs(x, y) − (ρrρs)
−1{

ars(x ∧ y) − Bτ
r (x)W−1Bs(y)

}
,(8)

where x ∧ y = min{x, y},
σrs(x, y) = ρ−1

r δrs

{
Gr(x ∧ y) − Gr(x)Gs(y)

}
,

ars(x) =
∫ x

−∞
{
δrshr(t) − hr(t)hs(t)

}
dḠ(t)

and Br (x) is a vector of length md with its sth segment (of length d with s =
1,2, . . . ,m) being

Br,s(x) =
∫ x

−∞
{
δrshr(t) − hr(t)hs(t)

}
q(t) dḠ(t).

The proof is given in the Appendix. The Bahadur representation (7) and the
multivariate asymptotic normality of the Ĝ’s lead to multivariate asymptotic nor-
mality of the EL quantiles. For notational simplicity, we will state the result only
for the bivariate case. Let ξr be the population quantile at some level αr of the r th
population in the DRM. We similarly define ξs at some level αs . The exact levels
αr and αs are not important.

THEOREM 3.3. Assume that the conditions in Theorem 3.1 hold for ξr and ξs .
The centralized EL quantile under the DRM assumption

√
n(ξ̂r − ξr , ξ̂s − ξs)

is asymptotically bivariate normal with mean 0 and covariance matrix

EL =
(

ωrr(ξr , ξr)/g
2
r (ξr ) ωrs(ξr , ξs)/

{
gr(ξr)gs(ξs)

}
ωrs(ξr , ξs)/

{
gr(ξr)gs(ξs)

}
ωss(ξs, ξs)/g

2
s (ξs)

)
.(9)

The above result does not restrict the selection of the two populations or the lev-
els of the quantiles. It can be used to conveniently obtain the limiting distributions
of smooth functions of the EL quantiles.

4. Efficiency comparison. The EL quantiles are constructed by pooling in-
formation from m + 1 independent random samples. We trust that they are more
efficient than empirical quantiles (hereafter EM) based on single samples. A rigor-
ous proof of this intuitive claim is not simple.

Let Ğr(x) be the empirical distribution function based solely on the r th sample.
As processes indexed by x,

√
n{Ğr(x)−Gr(x)}, r = 0,1, . . . ,m, are independent
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and each converges in distribution to a Gaussian process with covariance function
σrr(x, x). Let ξ̆r be the EM quantiles of the r th population at level αr . Based
on the classical Bahadur presentation, with any number of choices in r and αr ,
{√n(ξ̆r − ξr)} are jointly asymptotically multivariate normal with mean 0. In the
bivariate case, the asymptotic covariance matrix of

√
n(ξ̆r − ξr , ξ̆s − ξs) is given

by

EM =
(

σrr(ξr , ξr)/
{
g2

r (ξr )
}

σrs(ξr , ξs)/
{
gr(ξr)gs(ξs)

}
σsr(ξs, ξr)/

{
gr(ξr)gs(ξs)

}
σss(ξs, ξs)/

{
g2

s (ξs)
} )

,

where σrs(x, y) was given in Theorem 3.2.
Since the EL and EM quantiles are asymptotically unbiased, the efficiency com-

parison reduces to a comparison of two asymptotic covariance matrices. The fol-
lowing result generalizes Corollary 4.3 of Zhang (2000).

THEOREM 4.1. For any pair of integers 0 ≤ r, s ≤ m and any quantile levels
αr and αs , we have EM −EL ≥ 0. This conclusion remains true for any number
of quantiles.

5. Inferences on functions of quantiles. In applications such as the wood
project, we are interested in the size of ξr , ξr − ξs , etc. for various choices of r

and s and various levels. Two scenarios are of particular interest. (A) For a specific
wood product in a given year, is its quality index above or below the industrial
standard? (B) How different are the quality indices for wood products produced in
two different years, mills or regions?

(A) and (B) can be addressed through hypothesis tests or the construction of
confidence intervals. With the asymptotic normality and favorable efficiency prop-
erties of the EL quantiles, the task is simple. We must find a consistent esti-
mate of var(ξ̂r ) and construct approximate 100(1 − α)% confidence intervals as

ξ̂r ± zα/2

√
ˆvar(ξ̂r ), where zα/2 denotes the (1 − α/2)th quantile of the standard

normal distribution. Similarly, approximate confidence intervals for ξr − ξs are

(ξ̂r − ξ̂s) ± zα/2

√
ˆvar(ξ̂r − ξ̂s). In both cases, we need effective and consistent es-

timates of var(ξ̂r ) and var(ξ̂r − ξ̂s).
With the help of (9), plug-in consistent variance estimators can easily be con-

structed. Two necessary ingredients are consistent estimations of ωrs(x, y) and
gr(x). Although Ĝr(x) is discrete, the idea of kernel density estimation can be
used to produce a density estimate. Let K(·) ≥ 0 be a commonly used kernel func-
tion such that

∫
K(x)dx = 1,

∫
xK(x)dx = 0 and

∫
x2K(x)dx < ∞. For some

bandwidth b > 0, let Kb(x) = (1/b)K(x/b). Then a kernel estimate of gr(x) is
given by

ĝr (x) =
∫

Kb(x − y)dĜr(y).
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In the simulation study, we set K(x) to the standard normal density function. We
chose the bandwidth b according to the rule of thumb of Deheuvels (1977) and
Silverman (1986),

b = 1.06n−1/5 min{σ̂ , R̂/1.34}.
The above formula is designed for the situation where the density function is es-
timated based on n independent and identically distributed observations. In our
simulation, we regard the fitted Ĝr(x) as a nonrandom distribution function, and
compute the standard deviation and inter-quartile range of this distribution as σ̂

and R̂.
The analytical form of ωrs(x, y) contains many terms, but it is straightforward

to estimate them consistently and sensibly. Let

ârs(x) =
∫ x

−∞
{
δrshr(t; θ̂) − hr(t; θ̂)hs(x; θ̂)

}
h(t; θ̂) dĜ0(t),

and we form B̂r (x) and Ŵ via

B̂r,s(x) =
∫ x

−∞
{
δrshr(t; θ̂) − hr(t; θ̂)hs(x; θ̂)

}
q(t)h(t; θ̂) dĜ0(t),

Ŵrs =
∫ ∞
−∞

{
δrshr(t; θ̂) − hr(t; θ̂)hs(x; θ̂)

}
q(t)qτ (t)h(t; θ̂) dĜ0(t).

We then form a consistent estimator of ωrs(ξr , ξs) as

ω̂rs(ξr , ξs) = ρ−1
r δrs(αr − αrαs) − (ρrρs)

−1{
ârs(ξ̂r ∧ ξ̂s) − B̂τ

r (ξ̂r )Ŵ−1B̂s(ξ̂s)
}
,

where we have used the facts that δrsGr(ξr ∧ ξs) = δrsαr and Gr(ξr) = αr .

6. Simulation study. We now examine the finite-sample performance of the
inference procedures via simulation. Are the EL quantiles ξ̂ more efficient than
the EM quantiles ξ̆? The simulation studies shed light on how large the sample
must be before the asymptotic result applies. We analyze data sets generated from
several sets of populations, which are divided into two groups: those that satisfy
the DRM assumption and those that do not.

6.1. Populations satisfying DRM assumptions. Recall that the Gamma and
normal distribution families are special DRMs. We choose two sets of distribu-
tions from these families with the parameter values specified in Table 1. For the
Gamma distributions, the first parameter is the degrees of freedom and the second
is the scale. Therefore, the expectation of the first population is 6 × 1.5. The pa-
rameters for the normal distribution are the mean and variance. The populations
have similar means and variances to those seen in applications.

The simulations were carried out with nr = 50 and 2000 repetitions. We exam-
ine the performance of Ĝr(x) and Ğr(x) for x set to the quantile levels α = 5%,
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TABLE 1
Parameters under DRM

Distributions qτ (x)

�(6, 1.5) �(6, 1.4) �(7, 1.3) �(7, 1.2) �(8, 1.1) �(8, 1.0) (1, x, log(x))
N(18,4) N(18,9) N(20,6) N(20,9) N(22,8) N(22,10) (1, x, x2)

10%, 50%, 90% and 95%. We computed the relative bias, the asymptotic variance
and the simulated variance of the EL estimator Ĝr(x). The EM estimator Ğr(x)

is unbiased, and its asymptotic variance is α(1 − α)/ρr . For ease of comparison,
we report the ratios of the EM and EL asymptotic variances and the ratios of their
simulated variances. We also report the ratios of the mean estimated variances of
Ĝr(x) and their corresponding asymptotic variances. The results are presented in
Table 2.

There is an efficiency gain in the range of 40% to 70% for the EL estimators
in terms of both the theoretical and simulated variances. The variances of the EL
estimators are estimated accurately: in the σ̂ 2(Ĝ)/σ 2(Ĝ) column all the entries
are close to 1. Finally, the relative biases B(Ĝ) and B(Ğ) are both small.

We now turn to investigating the performance of the EL and EM quantiles for
both point and interval estimations. The quantile of a discrete distribution G(x)

is not a smooth function, and this puts the EM quantile at a disadvantage. To en-
sure that the EL quantile had a strong competitor, we modified the EM quantile.
We replaced Ğ(x) by Ğr(x) − (2nr)

−1, and we used linear interpolation to cal-
culate this quantile. These modifications do not alter the first-order asymptotics.
We continue to use the notation ξ̂r and ξ̆r for the EL and EM quantiles after these
modifications.

The simulation results for the quantile estimates are given in Table 3. The sim-
ulated EL variances var(ξ̂ ) and the mean estimated EL variances σ̂ 2(ξ̂ ) are both
close to the asymptotic variances σ 2(ξ̂ ). The results support the asymptotic theory
and the viability of the EL variance estimator. The ratio var(ξ̆ )/var(ξ̂ ) is based on
simulated variances and ranges between 1.20 and 1.60. These results indicate an
efficiency gain of between 20% and 60% in the EL quantiles. Finally, the relative
biases B(ξ̂) and B(ξ̆) are low and within ±3%.

The simulation results for the interval estimates of the quantiles and quantile
differences are given in Table 4. We compute the average lengths and coverage
probabilities of the EL and EM confidence intervals at the 95% level. The coverage
probabilities of the EL intervals are almost always closer to the nominal 95%. This
advantage is more obvious for the upper-tail quantiles (such as the 95% quantile).
Often, the coverage gains of the EL intervals reach 5%, and these intervals are 10%
to 20% shorter.

We also conducted simulations for the second group of populations, as shown
in Table 1, and for nr = 100. The results are similar and omitted. In conclusion,
the EL approach is superior when the model assumptions are satisfied.
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TABLE 2
EL and EM distribution estimates. Ĝ: EL estimate; Ğ: EM estimate; σ 2: asymptotic variance;

σ̂ 2: average of variance estimate; B: bias of
√

α(1 − α) as percentage; nk = 50

α σ 2(Ĝ) σ 2(Ğ)/σ 2(Ĝ) var(Ğ)/var(Ĝ) σ̂ 2(Ĝ)/var(Ĝ) B(Ĝ) B(Ğ)

�(6,1.5) 0.05 0.176 1.62 1.48 1.03 −0.46 −4.02
0.10 0.378 1.43 1.38 1.00 −0.28 −3.24
0.50 1.055 1.42 1.33 0.98 −0.65 −1.92
0.90 0.382 1.41 1.38 1.01 −0.83 −3.68
0.95 0.178 1.60 1.58 1.12 −0.45 −4.67

�(6,1.4) 0.05 0.176 1.62 1.49 1.08 −1.15 −4.37
0.10 0.374 1.44 1.39 1.03 −0.71 −3.33
0.50 1.031 1.45 1.37 1.00 −0.31 −2.03
0.90 0.370 1.46 1.39 1.04 −0.68 −3.20
0.95 0.172 1.66 1.66 1.13 −0.74 −4.39

�(7,1.3) 0.05 0.170 1.67 1.50 1.00 −0.27 −4.18
0.10 0.368 1.47 1.49 1.04 −0.20 −2.74
0.50 1.034 1.45 1.44 0.98 −0.29 −1.74
0.90 0.394 1.37 1.39 1.01 −0.24 −3.12
0.95 0.186 1.53 1.60 1.07 −0.29 −4.33

�(7,1.2) 0.05 0.171 1.67 1.56 1.06 −0.86 −4.14
0.10 0.369 1.46 1.39 1.05 −0.78 −3.38
0.50 1.065 1.41 1.32 0.97 −0.51 −2.33
0.90 0.371 1.46 1.42 0.99 −0.81 −3.57
0.95 0.169 1.68 1.60 0.99 −1.13 −4.68

�(8,1.1) 0.05 0.172 1.65 1.54 1.06 −0.72 −4.26
0.10 0.372 1.45 1.44 1.05 −0.67 −3.27
0.50 1.055 1.42 1.43 1.01 −0.25 −1.53
0.90 0.373 1.45 1.47 1.01 −0.19 −3.56
0.95 0.176 1.62 1.68 1.08 −0.37 −4.15

�(8,1.0) 0.05 0.180 1.59 1.55 1.07 −1.04 −4.22
0.10 0.379 1.42 1.41 0.98 −0.81 −3.44
0.50 1.041 1.44 1.33 0.95 0.28 −1.63
0.90 0.364 1.48 1.52 1.09 0.01 −2.99
0.95 0.164 1.73 1.64 1.09 −0.64 −4.39

6.2. Performance when model is misspecified. What happens to the EL ap-
proach when the model is misspecified? Fokianos and Kaimi (2006) quantified the
effect of choosing an incorrect linear form of q(x). In general, both the point es-
timation and the hypothesis tests are adversely affected when the model is mis-
specified. These findings may have motivated the model selection approach in
Fokianos (2007). That is, instead of pre-specifying a known q(x), one may se-
lect q(x) as a linear combination of a rich class of functions. For instance, let
q(x) = {1, logx, x0.5, x, x1.5, x2}τ . The most appropriate q(x) is then determined
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TABLE 3
EL and EM quantiles. ξ : true quantile; ξ̂ : EL quantile; ξ̆ : EM quantile; σ 2: asymptotic variance;

σ̂ 2: average of variance estimate; B: relative bias as percentage; nk = 50

α ξ σ 2(ξ̂ ) var(ξ̂ ) σ̂ 2(ξ̂ ) var(ξ̆ )/var(ξ̂ ) B(ξ̂ ) B(ξ̆ )

�(6,1.5) 0.05 3.92 71.31 70.38 67.50 1.51 2.19 1.59
0.10 4.73 69.23 68.28 73.79 1.34 1.08 0.97
0.50 8.51 83.70 88.50 94.46 1.27 0.45 0.15
0.90 13.91 298.78 292.15 287.19 1.35 0.23 0.19
0.95 15.77 473.53 468.31 469.48 1.54 −0.25 −0.32

�(6,1.4) 0.05 3.66 62.34 62.42 59.15 1.55 2.84 1.94
0.10 4.41 59.63 60.02 64.02 1.31 1.55 0.88
0.50 7.94 71.30 75.64 81.58 1.39 0.27 0.28
0.90 12.98 252.32 248.04 248.28 1.37 0.11 −0.05
0.95 14.72 397.73 387.44 399.88 1.51 −0.05 −0.41

�(7,1.3) 0.05 4.27 67.35 66.55 62.81 1.59 1.83 1.07
0.10 5.06 63.93 64.70 68.40 1.33 0.88 0.50
0.50 8.67 72.61 76.18 82.87 1.37 0.30 0.04
0.90 13.69 260.55 254.74 241.91 1.30 −0.08 −0.12
0.95 15.40 413.83 414.73 395.77 1.52 −0.22 −0.11

�(7,1.2) 0.05 3.94 57.63 59.87 54.10 1.54 2.32 1.11
0.10 4.67 54.66 56.15 58.62 1.36 1.32 0.75
0.50 8.00 63.76 65.99 70.68 1.32 0.30 0.23
0.90 12.64 208.95 229.25 206.39 1.32 0.24 0.12
0.95 14.21 320.80 340.92 319.98 1.61 0.13 −0.13

�(8,1.1) 0.05 4.38 60.62 56.57 54.22 1.66 1.95 1.07
0.10 5.12 56.23 54.25 58.29 1.33 1.12 0.63
0.50 8.44 61.08 60.83 67.63 1.40 0.23 −0.10
0.90 12.95 195.71 198.99 188.42 1.36 −0.15 −0.03
0.95 14.46 309.32 323.05 295.76 1.47 −0.24 −0.55

�(8,1.0) 0.05 3.98 52.12 50.42 44.41 1.55 2.48 1.22
0.10 4.66 47.38 47.27 47.85 1.31 1.35 0.88
0.50 7.67 49.81 53.38 55.67 1.35 −0.02 0.00
0.90 11.77 157.93 162.29 155.97 1.33 −0.22 −0.30
0.95 13.15 238.30 247.86 242.16 1.55 −0.14 −0.32

by selecting a subvector of the current q(x). Hence, the classical model selection
approaches can be used.

Following this lead, we provide a limited study of the impact of misspecifica-
tion on the quantile estimations. For this purpose, we simulated random samples
from a number of Gamma distributions, Weibull distributions, denoted W(·, ·), and
normal distributions, as shown in Table 5. These populations are chosen to have
similar means and variances. We obtained the EL quantile estimates as if they sat-
isfy DRM for some pre-specified but wrong q(x).
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TABLE 4
Confidence intervals for quantile and quantile differences. Nominal level: 95%;

�(6,1.5) − �(6,1.4): differences of �(6,1.5) and �(6,1.4) quantiles at the given level; nk = 50

EL EM

α 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

�(6,1.5) length 1.83 1.93 2.18 3.77 4.73 2.33 2.42 2.66 4.23 5.20
coverage 93.0 94.8 95.2 90.7 89.5 92.3 96.5 95.9 89.1 84.9

�(6,1.4) length 1.71 1.79 2.03 3.49 4.36 2.16 2.24 2.47 3.98 4.87
coverage 91.8 94.3 95.0 90.9 88.7 91.7 95.0 96.3 89.0 84.3

�(7,1.3) length 1.76 1.85 2.03 3.41 4.27 2.25 2.31 2.48 3.88 4.78
coverage 92.0 93.7 95.5 92.2 90.1 90.0 95.0 96.8 90.1 85.1

�(7,1.2) length 1.63 1.71 1.88 3.16 3.92 2.07 2.13 2.31 3.62 4.45
coverage 91.9 94.3 95.3 92.5 91.3 91.3 95.5 97.4 89.4 85.1

�(8,1.1) length 1.64 1.71 1.84 3.02 3.73 2.09 2.12 2.26 3.50 4.24
coverage 91.5 93.9 95.4 92.0 90.1 91.5 95.0 95.9 90.6 85.7

�(8,1.0) length 1.50 1.56 1.67 2.74 3.36 1.91 1.93 2.05 3.15 3.82
coverage 90.1 93.4 95.3 92.5 91.7 89.3 94.9 96.6 90.0 85.1

�(6,1.5) − �(6,1.4) length 2.41 2.58 2.92 5.08 6.33 3.23 3.32 3.65 5.95 7.38
coverage 95.0 95.5 95.5 93.8 94.5 94.5 97.3 96.0 91.8 89.5

�(6,1.5) − �(7,1.3) length 2.47 2.62 2.91 5.00 6.22 3.29 3.37 3.66 5.87 7.33
coverage 95.1 96.1 95.3 94.8 95.1 94.1 96.8 96.2 93.2 89.9

�(6,1.5) − �(7,1.2) length 2.37 2.53 2.82 4.89 6.09 3.17 3.25 3.54 5.69 7.09
coverage 93.9 95.5 95.8 94.1 93.7 94.2 96.2 96.5 93.4 90.2

�(6,1.5) − �(8,1.1) length 2.40 2.54 2.79 4.78 5.95 3.18 3.25 3.51 5.61 6.95
coverage 94.2 95.8 96.3 94.7 93.7 94.4 96.6 96.1 93.2 90.0

�(6,1.5) − �(8,1.0) length 2.29 2.43 2.71 4.68 5.84 3.06 3.12 3.38 5.39 6.67
coverage 93.5 95.2 95.9 92.3 91.9 94.1 96.4 96.7 92.7 89.0

As a trade-off between model interpretation and parsimony, we choose q(x) =
(1, x, log(1 + |x|),√|x|)τ . The remaining settings are the same as before. In Ta-
ble 6, we report only the biases and mean square errors (mse) of the EL and EM
quantiles. The EL quantiles are still uniformly more efficient with the efficiency
gains usually above 15%. The variance estimators remain accurate, and the relative
biases B(ξ̂) and B(ξ̆) are still negligible.

TABLE 5
Parameters for non-DRM

�(16, 0.6) �(19, 0.5) N(9,5) N(9.6,5.6) W(10,4.5) W(11,5)

�(16, 0.6) �(19, 0.5) �(17.5, 0.5) W(10.5,4.5) W(10,4.5) W(11,5)



QUANTILE AND QUANTILE-FUNCTION ESTIMATIONS 1681

TABLE 6
EL and EM quantiles under model mis-specification. ξ : true quantile; ξ̂ : EL quantile; ξ̆ : EM

quantile; σ̂ 2: average of variance estimate; B: relative bias as percentage; nk = 50

α ξ mse(ξ̂ ) mse(ξ̆ )/mse(ξ̂ ) σ̂ (ξ̂ )/mse(ξ̂ ) B(ξ̂ ) B(ξ̆ )

�(16,0.6) 0.05 6.022 61.06 1.23 0.83 1.20 0.56
0.10 6.681 49.19 1.19 0.95 0.48 0.07
0.50 9.401 44.14 1.16 1.13 −0.16 −0.18
0.90 12.775 125.38 1.10 0.94 0.24 −0.04
0.95 13.858 210.07 1.17 0.92 0.05 −0.27

�(19,0.5) 0.05 6.221 57.81 1.22 0.78 1.29 0.71
0.10 6.836 44.47 1.14 0.90 0.77 0.33
0.50 9.334 34.15 1.20 1.17 0.07 0.10
0.90 12.378 97.34 1.14 0.97 0.17 −0.00
0.95 13.346 151.68 1.20 0.98 0.06 −0.40

N(9,5) 0.05 5.322 103.06 1.23 0.85 1.43 0.77
0.10 6.134 73.47 1.08 0.94 0.17 0.23
0.50 9.000 37.86 1.20 1.14 0.21 −0.03
0.90 11.866 68.81 1.18 0.92 −0.26 −0.17
0.95 12.678 97.39 1.30 0.89 −0.39 −0.39

N(9.6,5.6) 0.05 5.708 116.53 1.25 0.89 0.79 0.49
0.10 6.567 87.51 1.14 0.90 0.18 0.13
0.50 9.600 43.71 1.20 1.11 0.37 0.27
0.90 12.633 76.92 1.22 0.96 −0.06 −0.13
0.95 13.492 112.45 1.25 0.91 −0.26 −0.30

W(10,4.5) 0.05 3.344 12.09 1.01 0.85 0.89 0.48
0.10 3.593 6.62 1.01 0.97 0.58 0.20
0.50 4.338 2.08 1.10 1.11 −0.09 −0.01
0.90 4.891 1.91 1.17 1.14 −0.01 −0.11
0.95 5.022 2.17 1.39 1.17 0.13 −0.18

W(11,5.0) 0.05 3.817 11.89 1.15 0.94 0.79 0.25
0.10 4.075 6.67 1.11 0.94 0.56 0.01
0.50 4.836 1.99 1.16 1.14 −0.09 −0.03
0.90 5.394 2.15 1.03 1.18 −0.11 −0.07
0.95 5.524 2.63 1.14 1.18 0.05 −0.08

The simulation results for the interval estimates of the quantiles and quantile
differences are given in Table 7. We compute the average lengths and the coverage
probabilities of the EL and EM confidence intervals at the 95% level. The EL
confidence intervals are not clearly better. These intervals have better coverage
probabilities for the upper quantiles but similar or slightly inferior probabilities for
the lower quantiles. The EL intervals are always shorter, and they are more than
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TABLE 7
Confidence intervals for quantile and quantile differences under model mis-specification. Nominal

level 95%; nk = 50

EL EM

α 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

�(16,0.6) length 1.57 1.52 1.57 2.36 2.91 1.83 1.79 1.77 2.50 3.00
coverage 87.5 91.8 95.7 91.2 88.9 89.0 94.1 96.5 90.6 86.4

�(19,0.5) length 1.48 1.41 1.40 2.10 2.63 1.71 1.64 1.61 2.25 2.66
coverage 87.9 90.8 95.5 91.9 89.7 88.5 93.0 96.4 91.0 85.2

N(9,5) length 2.04 1.82 1.47 1.77 2.05 2.22 2.00 1.67 2.02 2.28
coverage 87.4 92.0 94.6 91.1 89.6 86.2 92.3 96.4 91.7 87.6

N(9.6,5.6) length 2.13 1.90 1.54 1.91 2.22 2.35 2.12 1.76 2.12 2.35
coverage 83.5 90.6 96.1 92.4 89.3 84.4 91.3 96.8 92.3 86.6

W(10,4.5) length 0.66 0.54 0.34 0.33 0.35 0.69 0.57 0.37 0.36 0.37
coverage 82.3 88.8 95.1 96.1 95.3 84.7 90.8 96.0 95.0 91.6

W(11,5.0) length 0.68 0.53 0.33 0.35 0.38 0.70 0.59 0.37 0.36 0.37
coverage 83.3 87.9 93.8 93.7 92.4 83.5 90.9 94.8 94.6 89.9

�(16,0.6) − �(19,0.5) length 2.14 2.04 2.08 3.15 3.95 2.55 2.45 2.41 3.42 4.14
coverage 92.8 94.6 95.4 94.5 93.3 93.5 95.8 96.1 94.2 91.3

�(16,0.6) − N(9,5) length 2.59 2.36 2.13 2.96 3.60 2.94 2.71 2.45 3.26 3.87
coverage 92.4 94.3 95.7 93.4 91.9 91.4 95.3 96.9 94.0 90.9

�(16,0.6) − N(9.6,5.6) length 2.65 2.41 2.17 3.01 3.66 3.05 2.81 2.51 3.33 3.92
coverage 90.5 93.4 96.5 94.5 93.0 91.1 94.7 96.1 94.4 91.8

�(16,0.6) − W(10,4.5) length 1.73 1.63 1.61 2.39 2.93 1.99 1.89 1.81 2.53 3.03
coverage 90.1 93.3 95.3 91.6 88.9 91.8 94.7 96.1 91.1 86.1

�(16,0.6) − W(11,5.0) length 1.74 1.62 1.60 2.39 2.94 1.99 1.89 1.81 2.53 3.03
coverage 89.3 92.9 95.4 91.4 89.0 90.8 94.2 96.3 90.8 86.7

10% shorter in most cases. The simulation results for the second set of populations
are similar; they are omitted to save space.

In conclusion, while the model misspecification has a serious impact on the
estimation of θ , as shown by Fokianos and Kaimi (2006), the quantile estimations
are not as badly affected.

7. Real-data analysis. In this section, we apply our method to lumber data.
The data come from tests conducted at an FPInnovations laboratory. They contain
the MOE and MOR measurements for lumber produced in 2007 and in 2010 with
sample sizes 98 and 282, respectively. We analyze the MOE and MOR character-
istics separately. We regard the measurements of each index as two independent
random samples from two populations satisfying the DRM assumption.

We use the EL approach to obtain point estimates and confidence intervals for
the quantiles and the quantile differences between 2007 and 2010 of each quality
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FIG. 1. Histograms of MOE and MOR with EL and EM density estimates.

index. We set q(x) = (1, x, log(1 + |x|),√|x|)τ as in the second simulation study.
Different choices of q(x) do not markedly change the quantile estimates and con-
fidence intervals, although they may give very different estimates of θ .

Figure 1 presents histograms of the MOE and MOR measurements with the EL
and EM density estimates. We computed the EL and EM quantiles, the quantile
differences, and their 95% confidence intervals for the 5% level to the 95% level
in 5% increments. These point estimates and the confidence limits are connected
to obtain the six plots shown in Figure 2. The EL quantiles and confidence limits
are much smoother than those of EM. This phenomenon can be explained by the
fact that the EL method is designed to use information from all the samples, which
leads to less variation. These plots do not indicate that the EL method has sharper
confidence limits. In fact, the EL intervals are 10% shorter than the EM intervals
for both the quantiles and the quantile differences. In view of the simulation sup-
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FIG. 2. Point estimates and confidence intervals for quantiles and quantile differences for lumber
data.
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port for the validity of both the EL and EM approaches, the 10% gain is likely
real, and it implies significant cost savings in applications. To save space, we do
not include tables of the results.

APPENDIX

A.1. Sketched proof of Theorem 2.1. This theorem mostly summarizes and
extends the results in Qin and Zhang (1997), Fokianos et al. (2001) and Zhang
(2002). To enable readers to understand the other proofs, we provide some nec-
essary details. Interested readers can contact the authors for more detailed deriva-
tions.

LEMMA A.1. Assume the conditions of Theorem 2.1. For any θ such that
θ = θ∗ + o(n−1/3), we have

�n(θ) − �n

(
θ∗) = (

θ − θ∗)τ Zn − n

2

(
θ − θ∗)τ W

(
θ − θ∗) + op(1),

where the vector Zn is

Zn,r =
nr∑

j=1

q(xrj ) − ∑
k,j

hr(xkj )q(xkj )

(10)
= ∑

k,j

[{
δkr − hr(xkj )

}
q(xkj )

]
,

and n−1/2Zn is asymptotic normal with mean 0 and a positive definite covariance
matrix.

Note that Zn is a sum of independent random vectors with finite moments. The
mean of each is not zero, but the total is zero. In Theorem 3.2 we defined the r th
segment of Bk = Bk(∞) as

Bk,r = ρkE
{
δkrq(xkj ) − hr(xkj )q(xkj )

}
=

∫ {
δkrhk(x) − hr(x)hk(x)

}
q(x) dḠ(x).

An interesting and useful observation is that for 1 ≤ k, r ≤ m, Bk,r = Br,k . From∑m
k=0 hk(x) = 1, we may also verify that

E{Zn,r} = n

m∑
k=0

Bk,r = 0.

Thus, n−1/2Zn is asymptotic normal with mean 0 and some variance ma-
trix. This fact together with the form of the quadratic approximation implies that
�n(θ) − �n(θ

∗) is maximized at the θ̂ that satisfies

n1/2(
θ̂ − θ∗) = n−1/2W−1Zn + op(1).
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See Hjort and Pollard (1993) for this justification.
The remaining task is to verify that the asymptotic variance of n−1/2Zn is given

by W − WSW. This proves Theorem 2.1.

A.2. Proof of Theorem 3.1. The key to the proof is to show a seemingly
obvious claim: ξ̂r − ξr = Op(n−1/2). This is an immediate consequence of

Ĝr(x) − Gr(x) = Op

(
n−1/2)

(11)

uniformly for x in a neighborhood of ξr . We now prove (11). Recall that

Ĝr(x) = n−1
r

∑
k,j

hr(xkj ; θ̂)I (xkj ≤ x).

Replacing θ̂ in Ĝr(x) by its true value θ∗, we define

G̃r(x) = n−1
r

∑
k,j

hr

(
xkj ; θ∗)

I (xkj ≤ x),

a sum of independent random variables. From E{G̃r(x)} = Gr(x), we get

E
{
G̃r(x) − Gr(x)

}2 = n−2
r

∑
k,j

var
{
hr

(
xkj ; θ∗)

I (xkj ≤ x)
}
.

Since 0 ≤ hr(x; θ∗) ≤ 1, we have var{hr(xkj ; θ∗)I (xkj ≤ x)} ≤ 1. Hence,

sup
x

E
{
Gr(x) − G̃r(x)

}2 ≤ n/n2
r = O

(
n−1)

.

Since Gr(x) and G̃r(x) are distribution functions, the above rate is uniform in x.
Hence

sup
x

∣∣G̃r(x) − Gr(x)
∣∣ = Op

(
n−1/2)

.

Therefore, (11) is implied by supx |Ĝr(x) − G̃r(x)| = Op(n−1/2). Note that

G̃r(x) − Ĝr(x) = n−1
r

∑
k,j

{
hr

(
xkj ; θ∗) − hr(xkj ; θ̂)

}
I (xkj ≤ x).

The partial derivative of hr(x; θ) with respect to θ is bounded by
√

m‖q(x)‖. Thus∣∣G̃r(x) − Ĝr(x)
∣∣ ≤ (nρr)

−1∥∥θ̂ − θ∗∥∥∑
k,j

√
m

∥∥q(xkj )
∥∥.

The conditions of Theorem 2.1 imply that q(xkj ) has finite moments of any order.
Thus, n−1 ∑

k,j ‖q(xkj )‖ = Op(1), and subsequently,∣∣G̃r(x) − Ĝr(x)
∣∣ ≤ (nρr)

−1∥∥θ̂ − θ∗∥∥∑
k,j

√
m

∥∥q(xkj )
∥∥ = Op

(∥∥θ̂ − θ∗∥∥)

= Op

(
n−1/2)

.
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This completes the proof of (11).
The classical Bahadur representation was a rate result in the mode of “almost

sure.” Our result is stated in terms of “in probability,” and therefore it has a simpler
proof. As for the classical case, the representation is equivalent to the following
lemma:

LEMMA A.2. Under the conditions of Theorem 3.1, for any c > 0 and r =
0,1, . . . ,m, we have

sup
x : |x−ξr |<cn−1/2

∣∣{Ĝr(x) − Ĝr(ξr)
} − {

Gr(x) − Gr(ξr)
}∣∣ = Op

(
n−3/4(

log(n)
)1/2)

.

PROOF. We prove this lemma for r = 0; the other cases are equivalent. With-
out loss of generality we assume x ≥ ξr . Note that{

Ĝ0(x) − Ĝ0(ξr)
} − {

G̃0(x) − G̃0(ξr)
}

= n−1
0

∑
k,j

{
h0(xkj ; θ̂) − h0

(
xkj ; θ∗)}

I (ξr < xkj ≤ x).

By the mean value theorem and the specific form of h0(x; θ), we have∣∣h0(xkj ; θ̂) − h0
(
xkj ; θ∗)∣∣ ≤ √

m
∥∥q(xkj )

∥∥∥∥θ̂ − θ∗∥∥.
From E{‖q(xkj )‖} < ∞, we get E{q(xkj )I (ξr < xkj ≤ x)} = O(n−1/2) and{

Ĝ0(x) − Ĝ0(ξr)
} − {

G̃0(x) − G̃0(ξr )
} = Op

(
n−1)

.

With this result, Lemma A.2 is proved if we show that

sup
x : |x−ξ |<cn−1/2

∣∣[G̃0(x) − G̃0(ξr)
] − [

G0(x) − G0(ξr)
]∣∣ = Op

(
n−3/4(

log(n)
)1/2)

.

Since G̃0(x) is a sum of bounded random variables and E{G̃0(x)} = G0(x), the
result can be proved following Lemma 2.5.4E in Serfling (1980), page 97; we omit
the details here. This completes the proof. �

PROOF OF THEOREM 3.1. We have ξ̂r − ξr = Op(n−1/2) for any ξr , and the
derivative of Gr is positive and continuous in a neighborhood of ξr . Therefore,

Gr(ξ̂r ) − Gr(ξr) = gr(ξr)(ξ̂r − ξr) + Op

(
n−1)

.

By definition, we have Ĝr(ξ̂r ) = αr + O(n−1). Thus, replacing x by ξ̂r , and ξ by
ξr , the result of Lemma A.2 becomes∣∣{α − Ĝr(ξr)

} − gr(ξr)(ξ̂r − ξr)
∣∣ = Op

(
n−3/4(

log(n)
)1/2)

.

This is equivalent to the conclusion of the theorem. �
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A.3. Proof of Theorem 3.2. Theorem 3.2 characterizes the asymptotic joint
normality of a number of MELE distribution estimates. It is proved by approxi-
mating Ĝr(x) by a summation of independent random variables.

By the proof of Theorem 2.1, θ̂ − θ∗ = n−1W−1Zn + op(1). Hence,

Ĝr(x) = n−1
r

∑
k,j

hr(xkj ; θ̂)I (xkj ≤ x)

= n−1
r

∑
k,j

[
hr(xkj ) + {

ḣr

(
xkj ; θ∗)}τ (

θ̂ − θ∗)]
I (xkj ≤ x) + op

(
n−1/2)

= n−1
r

∑
k,j

hr(xkj )I (xkj ≤ x)

+ n−1
r

{
n−1

∑
k,j

ḣr

(
xkj ; θ∗)

I (xkj < x)

}τ

W−1Zn + op

(
n−1/2)

,

where ḣr (x; θ∗) = ∂hr(x; θ)/∂θ |θ=θ∗ . Working out the expression of ḣr (x; θ∗) in
terms of q(x) and hr(x), and by the law of large numbers, we find that, almost
surely,

n−1
∑
k,j

ḣr

(
xkj ; θ∗)

I (xkj < x) → Br (x),

where Br (x) is defined in the theorem. We remark here that limx→∞ Br (x) = Br ;
the latter was defined in the proof of Theorem 2.1. Before the final step, we may
verify that

Gr(x) = n−1
r E

{∑
k,j

hr(xkj )I (xkj ≤ x)

}
.

These preparations enable us to write

Ĝr(x) − Gr(x) = n−1
r

∑
k,j

[
hr(xkj )I (xkj ≤ x) − E

{
hr(xkj )I (xkj ≤ x)

}]

+ n−1
r Bτ

r (x)W−1Zn + op

(
n1/2)

.

The two leading terms are summations of independent random vectors and both
have mean zero. The joint asymptotic normality of

√
n{Ĝr(x) − Gr(x)} and√

n{Ĝs(y) − Gs(y)} is hence implied. We derive the algebraic expression of
ωrs(x, y) in the next subsection.

A.3.1. Asymptotic covariance σrs(x, y). From the expansion of Ĝr(x) −
Gr(x), ωrs(x, y) is decomposed into four covariances. Using var(Zn) = n(W −
WSW) as shown earlier, we find that one of them is given by

Cov
(
Bτ

r (x)W−1Zn,Bτ
s (y)W−1Zn

) = nBτ
r (x)

(
W−1 − S

)
Bs(y).
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We build another term from the following computations:

Cov
{
hr(xkj )I (xkj ≤ x),hs(xkj )I (xkj ≤ y)

}
= ρ−1

k

∫ (x∧y)

−∞
hr(x)hs(x)hk(x) dḠ(x) − ρ−2

k crk(x)csk(y),

where crs(x) = ∫ x
−∞ hr(t)hs(t) dḠ(t). Because

∑m
k=0 hk(x) = 1, we get

m∑
k=0

nk Cov
{
hr(xkj )I (xkj ≤ x),hs(xkj )I (xkj ≤ y)

}

= n

{
crs(x ∧ y) −

m∑
k=0

ρ−1
k crk(x)csk(y)

}
.

The last task is the cross-term Cov{hr(xkj )I (xkj ≤ x),Zn}. We break Zn into seg-
ments Zn,s and then into centralized Z̃n,s .

Cov
{
hr(xkj )I (xkj ≤ x),Zn,s

}
= E

[
hr(xkj )I (xkj ≤ x)

{(
δkr − hs(xkj )

)
qτ (xkj ) − ρ−1

k Bτ
k,s

}]
= ρ−1

k Bτ
k,r (x) − ρ−2

k crk(x)Bτ
k,s .

Summing over {k, j}, the first term sums to zero, so we find

Cov
{∑

k,j

hr(xkj )I (xkj ≤ x),Zn,s

}
= −n

m∑
k=0

ρ−1
k crk(x)Bτ

k,s .

Next, we assemble Bk,s over s to get Bk ,

Cov
{∑

k,j

hr(xkj )I (xkj ≤ x),Zn

}
= −n

m∑
k=0

ρ−1
k crk(x)Bτ

k .

Entering Bτ
s (y)W−1 into the second argument of the covariance, we get

Cov
{∑

k,j

hr(xkj )I (xkj ≤ x),Bτ
s (y)W−1Zn

}
= −n

m∑
k=0

ρ−1
k crk(x)Bτ

kW−1Bs(y).

Thus, the covariance between
√

n{Ĝr(x) − Gr(x)} and
√

n{Ĝs(y) − Gs(y)} is
given by

ωrs(x, y) = (ρrρs)
−1

[
crs(x ∧ y) −

m∑
k=0

ρ−1
k crk(x)csk(y)

−
m∑

k=0

ρ−1
k Bτ

kW−1{
crk(x)Bs(y) + csk(y)Br (x)

}

+ Bτ
r (x)

(
W−1 − S

)
Bs(y)

]
.
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Further simplification is possible. We find cr0(x)+Bτ
r (x)W−1B0 = 0, crk(x)+

Bτ
r (x)W−1Bk = δrkGr(x) and

∑m
k=0 ρ−1

k W−1BkBτ
kW−1 = S. These findings lead

to

ωrs(x, y) = (ρrρs)
−1{

crs(x ∧ y) + Bτ
r (x)W−1Bs(y) − ρrδrsGr(x)Gs(y)

}
.

The final expression (8) is obtained by noticing that crs(x) = ρrδrsGr(x)−ars(x),

where ars(x) was defined in Theorem 3.2.

A.4. Proof of Theorem 4.1. Both the EL and EM quantiles admit Bahadur
representations, and it suffices to show the same conclusion for the distribution
estimators. For the bivariate case, we denote the asymptotic covariance matrices
of the EL and EM distributions as


EL =
(

σrr(x, x) σrs(x, y)

σrs(x, y) σss(y, y)

)
, 
EM =

(
ωrr(x, x) ωrs(x, y)

ωrs(x, y) ωss(y, y)

)
,

where x = ξr and y = ξs are two population quantiles or two real values. We
show that 
EM − 
EL is nonnegative definite by writing it as D11 − D12D

−1
22 D21,

with the Dij being blocks of a nonnegative definite matrix D. By standard matrix
theory, the nonnegative definiteness of D implies that of D11 − D12D

−1
22 D21. The

generic element of 
EM − 
EL is ars(x, y) − Bτ
r (x)W−1Bs(y), which fits into

D11 − D12D
−1
22 D21 with

D11 =
(

arr (x) ars(x ∧ y)

ars(x ∧ y) ass(y)

)
, D12 =

(
Bτ

r (x)

Bτ
s (y)

)
,

D21 = Dτ
12 and D22 = W. We will show that D = ∫

U(z) dḠ(z) for some nonneg-
ative definite U(z) for all z. Then D is nonnegative definite and so is 
EM −
EL =
D11 − D12D

−1
22 D21.

We now search for such a U(z). We write

ars(x ∧ y) =
∫

I (z ≤ x)I (z ≤ y)H[r + 1, s + 1](z) dḠ(z),

Br (x) =
∫

I (z ≤ x)H[−1, r + 1](z) ⊗ q(z) dḠ(z),

W =
∫

H[−1,−1](z) ⊗ {
q(z)qτ (z)

}
dḠ(z).

Using the Khatrin–Rao product operator ∗ [Liu and Trenkler (2008)], we find such
a U(z) = A1(z) ∗ A2(z) with

A1(z) = P

⎛
⎝ H[r + 1, r + 1](z) H[r + 1, s + 1](z) H[r + 1,−1](z)

H[s + 1, r + 1](z) H[s + 1, s + 1](z) H[s + 1,−1](z)
H[−1, r + 1](z) H[−1, s + 1](z) H[−1,−1](z)

⎞
⎠P,

A2(z) =
⎛
⎝ 1 1 qτ (z)

1 1 qτ (z)

q(z) q(z) q(z)qτ (z)

⎞
⎠ , P =

⎛
⎝ I (z ≤ x) 0 0

0 I (z ≤ y) 0
0 0 Im

⎞
⎠ .
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The matrix A2(z) is clearly nonnegative definite for any z. Note that H(z) is
nonnegative definite for any z; the nonnegative definiteness of A1(z) is an easy
consequence. Since the ∗ product of two nonnegative definite matrices is still
nonnegative definite [Lemma 5 of Liu and Trenkler (2008)], we conclude that
U(z) = A1(z) ∗ A2(z) is also nonnegative definite for any z. This completes the
proof. This proof can easily be extended to the case where more distributions or
quantiles are involved.

Acknowledgments. We are grateful to the referees, the Associate Editor, and
the Editor for helpful comments.
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