
Stat Papers
DOI 10.1007/s00362-017-0879-7

REGULAR ARTICLE

Small area estimation under transformed nested-error
regression models

Huapeng Li1,2 · Yukun Liu1 · Riquan Zhang1

Received: 5 February 2016 / Revised: 10 January 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract The empirical best linear unbiased prediction (EBLUP) based on the nested
error regression model (Battese et al. in J Am Stat Assoc 83:28–36, 1988, NER) has
been widely used for small area mean estimation. Its so-called optimality largely
depends on the normality of the corresponding area level and unit level error terms.
To allow departure from normality, we propose a transformed NER model with an
invertible transformation, and employ the maximum likelihoodmethod to estimate the
underlying parameters of the transformed NER model. Motivated by Duan’s (J Am
Stat Assoc 78:605–610, 1983) smearing estimator, we propose two small area mean
estimators depending on whether all the population covariates or only the population
covariatemeans are available in addition to sample covariates.We conduct two design-
based simulation studies to investigate their finite-sample performance. The simulation
results indicate that compared with existing methods such as the empirical best linear
unbiased prediction, the proposed estimators are nearly the same reliable when the
NER model is valid and become more reliable in general when the NER model is
violated. In particular, our method does benefit from incorporating auxiliary covariate
information.
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1 Introduction

Motivated by the growing demand of reliable small area statistics in public and pri-
vate sectors, the problem of small area estimation has received increasing attention
and fruitful small area estimation techniques have been developed during the past
decades. See, for example, the books by Rao (2003) and Rao and Molina (2015) for a
comprehensive description or the paper by Pfeffermann (2013) for a thorough review.
The term small area usually denotes any subpopulation for which direct estimates of
adequate precision cannot be produced. Examples of small areas include geographical
regions (such as states, counties) and socio-demographic groups (such as sex, age,
race within a large geographic area). The primary aim of small area estimation is to
make inferences with sufficient precision not only for the whole area under consid-
eration but also for all sub-areas separately. Nevertheless, the sampling design of a
typical national survey aims to only ensure that inferences can be made with sufficient
precision for the whole area. This may result in few or even no sampling units in many
sub-areas or small areas, which poses serious challenges to statisticians to estimate
characteristics of the small areas with satisfactory precision.

The classical direct survey estimators for individual small areas are based only on
area-specific sample data, and yield very large standard errors because of the shortage
of data. It is widely accepted that this problem can be addressed by using indirect
estimators, in particular, model-based small area estimators. Based on explicit small
area models, model-based small area methods “borrow strength” from outside the
small area, from the values of other variables in the small area, and from outside the
survey, and produce reliable small area estimators.

Two celebrated models to achieve this purpose are the Fay–Herriot model (Fay and
Herriot 1979) and the nested error regression model (Battese et al. 1988, NER). The
well-accepted predictor/estimator of a small area mean is the Empirical Best Linear
Unbiased Prediction (EBLUP). In the efforts of extending the NER model, Jiang and
Nguyen (2012) proposed a heterogeneous NERmodel, which allowed heterogeneous
errors across small areas. Their proposal wasmotivated by the varying variances across
small areas of the IowaCrops Data (See Fig. 1), whichwas first investigated by Battese
et al. (1988). FromFig. 1, we also observe that the distributions of the response variable
(sampled hectare), in particular for small areas 1, 5, 6 and 10, are severely skewed
and clearly far from normal. This phenomenon is very common in practice since in
practical survey sample, the response variable, such as income, revenue, harvest yield
or production, is usually positive. In this situation, EBLUP will lose its optimality,
which depends heavily on normality of the corresponding area level and unit level
error terms.

Apart from robustifying (Schmid andMunnich 2014; Sinha and Rao 2009), a rem-
edy to this issue is to transform the response variable so that the normality assumption
is or is approximately met, and then model the transformed response variable by the
NER model. Just as stated by Gurka et al. (2006), “transformation of the response
has become a very simple and popular remedy in model fitting when the validity of
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Fig. 1 Boxplots of the Iowa corn data

the assumptions of the model are called into question.” The most commonly-used
transformation is the Box–Cox transformation (Box and Cox 1964),

hBC(y; λ) =
{

(yλ − 1)/λ, if λ �= 0,

log(y), if λ = 0,

which requires y > 0 and was originally proposed in the linear regression model.
Box and Cox (1964) also studied a shifted power transformation to avoid the positive
response restriction to some extent. Gurka et al. (2006) extended it to the linear mixed
model and explored its potential effect on estimation and inference of the model
parameters. Unfortunately, since the range of the Box-Cox transformation is not the
whole real line, the maximum likelihood estimator of the transformation parameter
λ in is inconsistent (Sugasawa and Kubokawa 2014). Without the consistency of the
estimated transformation, the estimation under the transformedmodel is questionable.
Sugasawa and Kubokawa (2015) constructed a consistent estimator for this λ and
Sugasawa andKubokawa (2014) employed the dual power transformation (Yang 2006)
and showed that the maximum likelihood estimator of the transformation parameter is
consistent. However applications of their proposals are hindered by two facts: One is
that they apply only to positive response variables; The other is that they are designed
to make inference not for small area means themselves but for their transformations.

In this paper, we propose a new transformed NERmodel, where the transformation
is simple and invertible, and its domain and range are both the whole real line. This
offers much flexibility and makes it feasible for our subsequent small area estima-
tion. The new transformation show some features similar to John and Draper (1980)’s
modulus transformation, which was found to be appropriate for dealing with a fairly
symmetric but non-normal error distribution. The small area estimation procedures
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developed in this paper still work if our proposed transformation is replaced by the
modulus transformation, or more generally, any transformation that is invertible on
the whole real line and has certain smoothness in the underlying parameter. We decide
for our version because of the concise forms of itself and its inverse. This not only
facilitates its applications in practice but also makes it easy for us to prove the consis-
tency of the maximum likelihood estimator (MLE) of the transformation parameter
λ.

Besides λ, we propose to estimate the unknown parameters in the model by their
MLEs, and establish their consistency. Motivated by Duan (1983)’s smearing estima-
tor and based on the estimated transformation, we propose in Sect. 2 two small area
mean estimators depending on whether the population covariates or only the popu-
lation covariate means are available in addition to sample covariates. Our simulation
results, given in Sect. 3, indicate that compared with EBLUP, the proposed estima-
tor is as reliable when the NER model is valid and becomes more reliable when the
NER model is violated; Furthermore, its performance can be remarkably improved
by incorporating auxiliary covariate information. Section 4 provides a design-based
simulation study based on a real finite population to further illustrate the usefulness
and advantage of the proposed small area mean estimators. A discussion is given in
Sect. 5. For clarity, all proofs are postponed to the appendix.

2 Transformed NER model

2.1 Model set-up

Suppose the population of interest consists of m subpopulations {(Ykj ,Xk j ) : j =
1, 2, . . . , Nk}mk=1. Let the observed responses and the accompanying covariates be
{(yk j , xk j ) : j = 1, 2, . . . , nk}, where nk is the sample size in the kth area, and
k = 1, 2, . . . ,m are small area indices. In addition, it is often the case in practical
survey that either all the covariate variables Xk j ’s or only the population covariate
means X̄k’s are available, which can be taken as auxiliary information. The primary
goal of this paper is to estimate the population means Ȳk of all the m small areas.

Battese et al. (1988) proposed to model the relationship between yk j and xk j by the
NER model,

yk j = x�
k jβ + vk + εk j , (1)

where β is the regression coefficient, vk
iid∼ N (0, σ 2

v ) denotes a random effect and

εk j
iid∼ N (0, σ 2

e ) the random error. The random effects vk’s are assumed to be inde-
pendent of εk j ’s. The common regression coefficient β is used to borrow strength from
other small areas, while the random effect vk is used to explain the remaining variation
of y that can not be explained by the covariate x.

To allow possible departure of the NER model assumption, we may transform the
response variable such that the NER model for the transformed response variable is
or is approximately met (Gurka et al. 2006; Sugasawa and Kubokawa 2014, 2015).
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Specifically, it is assumed that

h(yk j ; λ) = x�
k jβ + vk + εk j , (2)

where h(yk j ; λ) is a user-specified transformation and λ a tuning parameter to be
determined by data. Gurka et al. (2006) suggested using the Box-Cox transformation,
while Sugasawa and Kubokawa recommended using the dual power (DP) transforma-
tion (Yang 2006; Sugasawa and Kubokawa 2014),

hDP(y; λ) =
{

(yλ − y−λ)/2λ, if λ > 0,

log(y), if λ = 0,

and the dual power logistic (DPL) transformation (Sugasawa and Kubokawa 2015)

hDPL(y; λ) =
{

{yλ(1 − y)−λ − y−λ(1 − y)λ}/2λ, if λ > 0,

log{yλ(1 − y)−λ}, if λ = 0.

A common pitfall of the three transformations is that they restrict the response to be
positive or belong to a real subset of the whole real line.

As a useful alternative transformation, we propose to use

h(y; λ) = Sign(y) × |y|λ, λ > 0, (3)

where Sign(y) is defined to be −1, 0 and 1 if y < 0, y = 0 and y > 0, respectively.
There are three considerations behind the choice of this transformation. First, since
both vk and εk j in (2) are normally distributed, the range of h(y; λ) should be the
whole real line. This excludes the Box-Cox, DP and DPL transformations, whose
ranges are either [−1/λ,∞) or (0,∞) for any λ > 0. Both the domain and range of
the new transformation are the whole real line. Second, h(y; λ) should be invertible
with respect to y, which is required in our proposed estimation procedure (See Sect.
2.3). The new transformation and John and Draper (1980)’s modulus transformation

hMOD(y; λ) =
{
Sign(y){(|y| + 1)λ − 1}/λ, if λ �= 0,

Sign(y) log(|y| + 1), if λ = 0,

both satisfy the two requirements. Our small area estimation procedures still work
if we proceed with John and Draper (1980)’s modulus transformation in place of
(3). More generally, our method extends to transformations that satisfy the above two
requirements and are smooth enough with respect to the underlying parameter. Lastly,
we choose transformation (3) to illustrate our main estimation procedure because its
inverse is of a quite simple form

h−1(y, λ) = Sign(y)|y|1/λ, λ > 0, (4)

which eases the proof burden of the consistency of the MLE of λ.
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In transformation (3), we restrict the tuning parameter λ to be between [c1, c2]
for constants c1 ∈ (0, 1) and c2 ∈ (1,∞). With this range of λ, transformation (3)
includes the identity transformation as a special case. Hence the transformed NER
model under (3) can be regarded as an extension of the NERmodel and provides more
flexibility of model fitting.Wewould consequently expect better small area estimation
under this model, compared with the EBLUP under the original NER model.

2.2 Parameter estimation

For ease of exposition, we denote y(λ)
k = (y(λ)

k1 , . . . , y(λ)
knk

)� with y(λ)
k j = h(yk j ; λ),

xk = (xk1, . . . , xknk )
�, and γ = σ 2

v /σ 2
e . The model assumptions imply that y(λ)

k ∼
Nnk (xkβ, �k), where �k = σ 2

e (Ink + γ 1nk1
�
nk ). The log-likelihood function (up to a

constant not dependent on the unknown parameters) is

�0(λ, γ, σ 2
e ,β) = −1

2

m∑
k=1

{log(|�k |) + (y(λ)
k − xkβ)��−1

k (y(λ)
k − xkβ)}

+ (λ − 1)
m∑

k=1

nk∑
j=1

log(|yk j |) + n log(|λ|),

where n = ∑m
k=1 nk is the total sample size. It can be found that �−1

k = Ak(γ )/σ 2
e

where Ak(γ ) = Ink − γ
1+γ nk

1nk1
�
nk , and |�k | = σ

2nk
e (1 + nkγ ). Therefore the log-

likelihood can be rewritten as

�0(λ, γ, σ 2
e ,β) = −1

2

m∑
k=1

[
log(1 + nkγ ) + (y(λ)

k − xkβ)�Ak(γ )(y(λ)
k − xkβ)}

σ 2
e

]

−n

2
log(σ 2

e ) + (λ − 1)
m∑

k=1

nk∑
j=1

log(|yk j |) + n log(λ).

Given λ and γ , the MLEs of β and σ 2
e are

β̃(λ, γ ) =
{

m∑
r=1

x�
r Ar (γ )xr

}−1 m∑
s=1

x�
s As(γ )y(λ)

s , (5)

σ̃ 2
e (λ, γ ) = 1

n

m∑
k=1

{y(λ)
k − xk β̃(λ, γ )}�Ak(γ ){y(λ)

k − xk β̃(λ, γ )}. (6)
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Putting them into �0(λ, γ, σ 2
e ,β), we obtain the profile log-likelihood of (λ, γ ),

�(λ, γ ) = n log(λ) + (λ − 1)
m∑

k=1

nk∑
j=1

log(|yk j |) − n

2
log

{
σ̃ 2
e (λ, γ )

}

−1

2

m∑
k=1

log(1 + nkγ ) − n

2
. (7)

Denote the maximum likelihood of (λ, γ ) by (λ̂, γ̂ ) = argmaxλ,γ �(λ, γ ). Once
(λ̂, γ̂ ) is obtained, we shall accordingly have the MLEs of β and σ 2

e ,

β̂ = β̃(λ̂, γ̂ ) and σ̂ 2
e = σ̃ 2

e (λ̂, γ̂ ).

Remark 1 The main difficulty of the maximum likelihood estimation procedure is to
calculate (λ̂, γ̂ ) ormaximize �(λ, γ ).We solve this problem by a two-stagemaximiza-
tionmethod. Specifically, for fixedλ ∈ (c1, c2), we calculate the profile log-likelihood
�p(λ) = maxγ �(λ, γ ) and then obtain λ̂ by maximizing �p(λ). Since the parameter
λ is restricted to be positive in our proposed transformation given in (3), it is natural
to choose c1 and c2 satisfying 0 < c1 < c2. In the meantime, it would be desirable
for transformation (3) to include the identity transformation as a special case. This
suggests c1 and c2 lie in (0, 1) and (1,∞), respectively. To make the family of the
proposed transformations as large as possible, we recommend choosing c1 to be as
small as possible, and c2 as large as possible. In our simulation study, we choose
c1 = 0.001 and c2 = 10; Smaller c1 or larger c2 is also feasible.

The consistency of the MLEs of the unknown parameters are established in the
following.

Theorem 1 Assume the data (xk j , yk j )’s come from the transformed NER model (2)
with the transformation given in (3). Under conditions (C1)-(C3) in the appendix, the
MLEs λ̂, β̂ and σ̂ 2

e are consistent estimators of λ,β and σ 2
e .

The estimation of Ȳk = X̄kβ + vk is equivalent to the estimation of a linear com-
bination of β and the realization of the random effect vk (Rao 2003, p. 80). Given
the estimators β̂ and λ̂, a prediction of the random effect vk or an estimator of the
realization of vk under model (2) is

v̂k = 1

nk

nk∑
j=1

h(yk j ; λ̂) − x̄�
k β̂.

In this paper we regard vk as the realization of the random effect for fixed k and
small area k (1 ≤ k ≤ m). If the conditions of Theorem 1 are fulfilled, our proposed
prediction/estimator v̂k is conditionally consistent given vk , the realization of the
random effect, since λ̂ and β̂ are both consistent.

In the next subsection, we shall present the proposed small area mean estimators,
which are based on the estimated transformed NER model and the estimators β̂, σ̂ 2

e
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and v̂k . The consistencies of λ̂, β̂ and σ̂ 2
e , and the conditional consistency of v̂k make

the proposed estimators valid.

2.3 Small area mean estimation

We begin by introducing Duan (1983)’s smearing estimator, which directly motivates
our small area mean estimator. The smearing estimator was proposed for the mean
of the untransformed response under a transformed linear regression model. Suppose
(yi , xi ) (i = 1, 2, . . . , n) is a simple sample from a transformed linear regression
model,

g(yi ) = x�
i β + ei ,

where g(·) is an invertible transformation and ei ’s are independent and identically
distributed with mean 0 and variance σ 2. The goal was to estimate the untransformed
expectation E(y|x0) = E{g−1(x�

0β + e)} = ∫
g−1(x�

0β + e)dF(e), where F(·) is
the distribution of e. Given a consistent estimator β̂ and the corresponding residuals
êi = g(yi ) − x�

i β̂, Duan (1983) defined his smearing estimator for E(yi |x0) as
∫

g−1(x0β̂ + e)d F̂n(e) = 1

n

n∑
i=1

g−1(x0β̂ + êi ),

where F̂n(e) is the empirical distribution of the residuals.
As discussed in Sect. 2.1, for λ > 0 the transformation h(y; λ) in (3) is inverse

with the inverse transformation given in (4). Model (2) can be equivalently written as

yk j = h−1(x�
k jβ0 + vk + εk j ; λ0). (8)

This implies that the small area mean in area k is

Ȳk = E{h−1(x�
k jβ0 + vk + εk j ; λ0)|vk}

=
∫ {∫

h−1(x�β0 + vk + t; λ0)dFε(t)

}
dFx,k(x) (9)

= 1

Nk

Nk∑
j=1

∫
h−1(X�

k jβ0 + vk + t; λ0)dFε(t),

where Fε(t) denotes the distribution function of ε and Fx,k(x) = N−1
k

∑Nk
j=1 I (Xk j ≤

x) is the empirical distribution of {Xk j : j = 1, 2, . . . , Nk}. For vectors x1 and x2, the
inequality x1 ≤ x2 holds element-wise.

Suppose for the time being that all the covariates Xk j ’s are known. Given σ̂e, a
reasonable estimator for the distribution of ε is N (0, σ̂ 2

e ). Similar to Duan (1983)’s
smearing estimator we proposed to estimate Ȳk by

123



Small area estimation under transformed…

ˆ̄Y k = 1

Nk

Nk∑
j=1

Eε∗{h−1(X�
k j β̂ + v̂k + ε∗; λ̂)},

where ε∗ ∼ N (0, σ̂ 2
e ) andEε∗ denotes expectationwith respect to the distributionof ε∗.

If the expectation with respect to ε∗ has no closed form, we propose to approximate it
by a re-sampling method. Let ε∗

1, . . . , ε
∗
B be independent observations generated from

N (0, σ̂ 2
e ). Then by the weak law of large numbers

Eε∗
{
h−1(X�

k j β̂ + v̂k + ε∗; λ̂)
}

≈ 1

B

B∑
r=1

h−1(X�
k j β̂ + v̂k + ε∗

r ; λ̂).

We require B to be a large integer, say 10,000, so that the above approximation is
sufficiently precise. Finally the proposed small area estimator is

ˆ̄Y TNER1

k = 1

BNk

Nk∑
j=1

B∑
r=1

h−1(X�
k j β̂ + v̂k + ε∗

r ; λ̂), (10)

which is called TNER1 hereafter. The calculation of this estimator is very fast as it
has a closed form.

Instead of knowing all covariates {Xk j }, it is more often the case in practice that only
the population means X̄k are available in addition to the sample covariates. To suffi-
ciently incorporate the auxiliary information X̄k , we propose to calibrate the estimator
(10) by the empirical likelihood (Owen 1990, 2001) or adjusted empirical likelihood
method (Chen et al. 2008). The resulting small area estimator, denoted TNER2, is

ˆ̄Y TNER2

k =
nk+1∑
j=1

{
p̂k j · 1

B

B∑
r=1

h−1(x�
k j β̂ + v̂k + ε∗

r ; λ̂)

}
, (11)

where p̂k j ’s maximize the adjusted empirical likelihood function
∏nk+1

r=1 pkr under the
constraints

nk+1∑
r=1

pkr (xkr − X̄k) = 0, pkr ≥ 0,
nk+1∑
r=1

pkr = 1. (12)

Here xk,nk+1 = −{1/(2nk)}(x̄k−X̄k)+X̄k is an added pseudo-observation and used to
guarantee the existence of feasible solutions to the constraints in (12). By the Lagrange
multiplier method, it can be found that

p̂k j = 1

nk + 1

1

1 + λ̂�
k (xk j − X̄k)

, j = 1, 2, . . . , nk + 1, (13)

where λ̂k is the solution to
nk+1∑
j=1

xk j−X̄k

1+λ�
k (xk j−X̄k )

= 0.
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The complicated form of the proposed estimators for Ȳk makes it formidable to
derive its limiting distribution. We make a remark on its conditional consistency
instead. We can write the proposed TNER estimators in a unified form,

ˆ̄Y k =
∫ {∫

h−1(x�β̂ + v̂k + t; λ̂)d F̂ε,∗(t)
}
d F̂x,k(x), (14)

where F̂ε,∗(t) is the empirical distribution of ε∗
1, . . . , ε

∗
B and F̂x,k(x) is equal to Fx,k(x)

for TNER1 and equal to F̂ (EL)
x,k (x) = ∑nk+1

j=1 p̂k j I (xk j ≤ x) for TNER2. Roughly

speaking, the conditional consistency of ˆ̄Y k will follow from the weak convergence
of F̂ε,∗(t) and the consistency of F̂x,k(x). Since Fx,k(x) is a discrete distribution, the
consistency of F̂x,k(x) means that the finite number of estimated probability weights
of F̂x,k(x) converges in probability to those of Fx,k(x). We have established in The-
orem 1 the consistency of λ̂, β̂ and σ̂ 2

e . As commented below Theorem 1, v̂k’s are
conditionally consistent estimators of vk’s. By the Glivenko-Cantelli theorem, F̂ε,∗(t)
converges uniformly to N (0, σ̂ 2

e ) conditionally on data as B becomes large. Since
the consistency of σ̂ 2

e implies the weak convergence of N (0, σ̂ 2
e ) to N (0, σ 2

e ), we
conclude that F̂ε,∗(t) also converges weakly to N (0, σ 2

e ). Thus for each fixed x and
conditionally on vk ,

∫
h−1(x�β̂ + v̂k + t; λ̂)d F̂ε,∗(t) is a conditionally consistent esti-

mator of
∫
h−1(x�β + vk + t; λ̂)dFε,∗(t) given x and vk . The weak convergence of

an empirical likelihood distribution estimator such as F̂ (EL)
x,k (x) has been established

by Qin and Lawless (1994). Therefore both the small area mean estimators TNER1
and TNER2 are conditionally consistent.

3 Simulation study

3.1 Methods under comparison

This section provides simulation results to investigate the finite-sample performance
of the proposed small area estimators under the transformedNERmodel.We have pro-
posed two TNER estimators, depending on the accessibility of auxiliary information
on covariate. It is often the case that population covariate means X̄k’s are available, so
we expect that TNER2 would be more promising. The study of TNER1 will provide
us how much gain can be obtained if all covariates are available whereas we use only
the population covariate means.

We compare TNER1 andTNER2with three existing small area estimationmethods.
A naive estimator is the sample small area mean (direct method), which can be taken
as a benchmark for comparison, although it is generally unreliable for small area
estimation. As the second method, we may ignore model (2) and blindly use the
EBLUP, which was proposed under the untransformed NER model (1). An EBLUP
of the small area mean Ȳk = X̄�

k β0 + vk in the kth area under the NER model is

ˆ̄Y EBLUP

k = X̄�
k β̃ + nk γ̃

1 + nk γ̃
(ȳk − x̄�

k β̃), (15)

123



Small area estimation under transformed…

where ȳk = 1
nk

∑nk
j=1 yk j , x̄k = 1

nk

∑nk
j=1 xk j and γ̃ and β̃ are the MLEs of γ and β

under model (1). Here the covariate population means X̄k are assumed to be known.
Given the MLEs β̂ and v̂k of the transformed NER model (2), a natural estimator of
the mean of the transformed response μk = X̄�

k β + vk is μ̂k = X̄�
k β̂ + v̂k . The third

is Sugasawa and Kubokawa (2015)’s estimator (SS method), h−1
BC(μ̂k; λ̃), with λ̃ an

estimate of λ. This estimator is designed to estimate not the original small area means
Ȳk but h−1

BC(μk; λ). However h−1
BC(μk; λ) is generally different from Ȳk unless the

transformation is linear (Duan 1983). Although h−1
BC(μ̂k; λ̃) may be a good estimation

of h−1
BC(μk; λ), it generally has systematic bias when taken as an estimator of Ȳk .

3.2 Simulation settings

We begin by creating a finite population with m = 16 small areas, each consisting of
2,000 units. Then we draw random samples using simple random sampling without
replacement from each area of the finite population; The sample sizes are chosen for
convenience to be the same with nk = 5 and 20. This procedure is repeated R = 1000
times and the Direct, TNER1, TNER2, EBLUP and SS estimates are calculated based

on each sample. Let ˆ̄Y ( j)
k denote a generic estimate of small area mean Ȳk in the j th

repetition. Two measures for the goodness of the estimator are considered: the relative
root mean squared error (RRMSE) and the absolute relative bias (RBIAS) across all
small areas,

RRMSE = 1

m

m∑
k=1

RRMSEk, RBIAS = 1

m

m∑
k=1

∣∣∣∣∣∣
1

Ȳk

⎛
⎝ 1

R

R∑
j=1

ˆ̄Y ( j)
k − Ȳk

⎞
⎠

∣∣∣∣∣∣ ,

where RRMSEk =
√

1
R

∑R
j=1(

ˆ̄Y ( j)
k − Ȳk)2

/
Ȳk . RRMSE reflects the overall perfor-

mance of a small area estimation method. Clearly the smaller the RRMSE, the better
the method. RBIAS is used to reflect whether a small area estimation method has
systemic bias.

We generate the finite population from

h(yk j ; λ) = x�
k jβ + vk + εk j , k = 1, . . . , 16. (16)

The covariates xk j are bivariate vectors with its first component 1 and each second
component independently generated from the uniform distribution U(4, 8); The coef-
ficient β is set to (1, 2)�. To show the effect of different values of λ, we consider three
choices of λ0: 0.3, 0.6 and 1. The random effects vk and errors εk j are generated from
three scenarios:

(I) both vk and εk j are independently and identically distributed as N (0, 1);
(II) for each k, vk and εk j are independently generated from N (0, 1) and N (0, σ 2

k ),
respectively, and σ 2

k ’s are 0.2, 0.2, 0.2, 0.2, 0.4, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6, 0.6,
2.0, 2.0, 2.0, 2.0;
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(III) both vk and εk j are independently generated from t-distribution with 3 degrees
of freedom.

Here are some considerations behind the above simulation settings. Under scenario
(I), when λ0 = 1, the assumption of NER model is satisfied, and the EBLUP should
have the best performance; We expect that the proposed TNER methods do not lose
much efficiency. As λ0 decreases from 1 to 0.6 and 0.3, the NERmodel is violated and
the transformed NERmodel is satisfied; In this case we expect that the TNERmethods
outperform the EBLUP, SS and Direct methods. The rest scenarios are designed to
study the robustness of the methods under comparison. In scenario (II), the homo-
geneity of the random errors are violated but they still follow normal distributions.
The random effect and random error do no follow normal distributions any more in
scenario (III), which is much heavier-tailed than normal.

3.3 Simulation results

The simulated RRMSE and RBIAS results of the small area estimation methods under
consideration are tabulated in Table 1.

When λ0 = 1 and in the case of scenario (I), the assumption of the EBLUP method
is satisfied and EBLUP owns certain optimality. We find that the TNER1 and TNER2
estimators have almost the same RRMSE as EBLUP, while as expected the Direct
estimator has the largest RRMSE. This indicates that the proposed TNER methods do
not lose efficiency in the ideal setting of EBLUP, and it also necessitates the strategy
of borrowing strength from other small areas.

When λ0 = 0.6, all methods except the Direct method have very close RRMSEs.
As λ0 decreases to 0.6 and 0.3, the priority of TNER1 and TNER2 over SS, Direct and
EBLUP becomes more and more obvious. For example, when λ0 = 0.3, TNER1 has
remarkable RRMSE reductions (more than 25%) compared with EBLUP and SS. To
our surprise, TNER2 has very close performance compared with TNER1 although it
uses not the information of all population covariates but only that of sample covariates
and population covariate means.

When the TNER model is violated in the rest scenarios, the priority order of all
methods keeps unchanged, namely the TNERmethods are still the winners. All meth-
ods have reduced RRMSEs in scenario (II) and inflated RRMSEs in scenario (III). A
possible reason is that compared with the unit error variance in scenario (I), the error
variances of most small areas in scenario (II) are much smaller than 1, while those in
scenario (III) are 3, much larger.

We turn to examining the RBIAS results. In all cases, it can be seen that the Direct
method always has the smallest and negligible bias because it is unbiased in theory.
When λ0 = 1, in the case scenario (I), the assumption of EBLUP is satisfied, the rest
four methods still have almost the same performance. However, as λ0 decreases to
λ0 = 0.6 and 0.3, compared with EBLUP, the RBIAS of the TNER methods becomes
less, while that of the SS method becomes much larger. there are similar results in the
case scenario (II) and (III). As the sample size nk per small area increases from 5 to
20, just like all RRMSEs decrease, we find that RBIAS of the TNER1, TNER2 and
EBLUP also decrease, however, the SS method has increased RBIAS.
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Fig. 2 Boxplots of the relative biases of the SS, Direct, TNER1, TNER2 and EBLUP mean estimates for
areas 1–6 in scenario (I) with λ = 0.3 and nk = 5

To see more clear the advantages of the TNER1 and TNER2 methods over the rest
three methods, we plot the boxplots of the relative biases of the five estimators under
comparison for each area in scenario (I) with λ0 = 0.3 and nk = 5. Figure 2 displays
the boxplots for the first six areas. Those for the last ten areas are similar and omitted.
Our general observations are the same as above. The SS predictor is clearly biased and
the direct estimator has the largest variance although it is unbiased. The relative biases
of the TNER1, TNER2 and EBLUP predictors are generally very small. In almost all
areas, both the TNER1 and TNER2 predictors have smaller variances than EBLUP. In
particular, in areas 3 and 6, EBLUP has not only larger biases but also larger variances
than TNER1 and TNER2.

4 Empirical studies

4.1 A real data-set

To be more practical than the simulation settings in the previous section, we conduct
simulations based on the data in the Survey of Labour and Income Dynamics (SLID)
provided by Statistics Canada (2014). We take the survey data as a basis to create
a realistic finite population and examine how well our proposed small area mean
estimator and its competitors perform if we sample from this “real” population. Since
the requirement of TNER1 is too strong, we do not take it into account and study
TNER2 instead.

The datawe obtained contains 147 variables and 47705 sampling units.Wekeep 6 of
the 147 variables, i.e., ttin, gender, age, yrx, tweek and edu, standing respec-
tively for: total income, gender, age, years of experience, number of weeks employed
and education level. More precise definitions are not essential here. We keep the vari-
able ttin because at the heart of the survey’s objectives is the understanding of the
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economic well-being of Canadians, gender and age are natural social-demographic
variables that are used to construct areas for small area estimation studies. The rest
three variables yrx, tweek and edu are believed to be closely related to ttin, and
hence are taken as covariates. We remove any units containing missing values in these
6 variables as well as those with ttin ≤ 0 or the ages under 25. Negative ttin
values also stand for missing data and most people with age < 25 are part-time or
part-year workers. The resulting data set still contains 30,099 sampling units. We first
create 8 age groups formed by individuals whose ages are in following intervals:

[25,30) [30,35) [35,40) [40,45) [45,50) [50,55) [55,60) [60,∞)

Each age group is then divided intomale and female sub-populations. Subsequently,
we created a finite population with 16 small areas based on age-gender combinations.
The sizes of these small areas Nk are given as follows.

Male 1372 1337 1469 1536 1866 1890 1920 3089
Female 1449 1504 1497 1695 2053 2019 1944 3459

4.2 Model and diagnostics

We take total income ttin as a response variable and yrx,tweek and edu as
covariates. Suppose we have a random sample of size n = 16nk from the population.
The goal is to estimate the average total incomes for all the 16 sub-populations. In
addition to the sample covariates, we assume that all population covariate means are
known. Hence not TNER1 but TNER2 applies. We fit the data by a transformed NER
model using transformation (3), namely,

h(ttink j ; λ) = β0 + β1 yrxk j + β2 tweekk j + β3 eduk j + vk + εk j . (17)

For comparison, we also model the data by the usual NER model,

ttink j = β0 + β1 yrxk j + β2 tweekk j + β3 eduk j + vk + εk j . (18)

If the (transformed) NERmodel is valid, then the residuals are approximately equal
to the corresponding random errors, which follow a normal distribution. Hence we can
check the validation by studying whether the distribution of the residuals is close to
normal. Figure 3 displays QQ-plots of the residuals under models (17) and (18) based
on one random sample. It is clear that the QQ-plot based on model (17) is nearly
a straight line, while that based on model (18) is severely not. Hence the residuals
based on model (17) approximately follow a normal distribution but those based on
model (18) is far from normal. This indicates that the transformed NERmodel is more
appropriate than the original NER model.

123



H. Li et al.

Standard Normal Quantiles
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

×104

-12

-10

-8

-6

-4

-2

0

2

4

6

8

QQ Plot of Sample Data versus 
        Standard Normal

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

-20

-15

-10

-5

0

5

10

15

QQ Plot of Sample Data versus 
         Standard Normal

Fig. 3 QQ-plots of the residuals of the transformed NER model in (17) and the NER model in (18) when
nk = 5

We also conduct formal goodness-of-fit tests for the normality of the residuals by
the Shapiro-Wilk test. For model (18), the p values is 4.12 × 10−4, which is far less
than 0.01 and strongly rejects the normality of the residuals and the appropriateness
of the NER model. In comparison, the p values for model (17) is 0.52, much larger
than 0.01. Hence there is no evidence for the non-normality of the residuals based
on model (17). These results strongly confirm that the transformed NER model is
appropriate for the sample while the NER model is not. This phenomenon occurs for
around 62% of our simulated 1000 samples in the next subsection. Around 7% of the
samples support both models. Even so, there are still 31% of the samples, in which
neither model is appropriate.

4.3 Simulation results

We proceed to conduct simulations and consider three sample sizes nk = 5, 10 and 20.
Other than the finite population and the sample size, this simulation has every other
aspects unchanged from the last section.

The simulation results are tabulated in Table 2. In this case, neither the untrans-
formed NER nor the transformed NER model is correct. We find that the comparison
results of the TNER2 with the SS, Direct, and EBLUP methods are very close to
those in the simulation section. The TNER2 method outperforms the rest methods as
it generally has the smallest RRMSE. When nk = 5 and 10, the EBLUP follows, the
SS method ranks the third, and the direct method is the most unstable. When nk = 20,
the EBLUP not only catches up with the TNER2, but also is less biased, while the SS
method is outperformed by the Direct method. As the sample size nk increases, all
numbers of RRMSEandRBIASdecrease except for theRBIASof the SSmethod. This
is because the SS method suffers from systematic bias, as disclosed in our simulation
study.

To get more insights into the results, we display the plots of RRMSEk versus small
area number k in Fig. 4. A lower line indicates smaller RRMSEk and better overall
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Table 2 RRMSE (unit: 0.1) and
RBIAS (unit: 0.01) results of the
real-data based simulation when
all covariate means X̄k ’s are
available in addition to the
sample covariates

nk SS Direct TNER2 EBLUP

RRMSE 5 2.12 3.63 1.73 1.96

10 1.97 2.53 1.55 1.62

20 1.89 1.79 1.39 1.31

RBIAS 5 16.65 0.84 10.47 11.94

10 17.03 0.64 10.39 10.78

20 17.07 0.41 9.21 8.52
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Fig. 4 RRMSE of different small area mean estimators when n = 80, 160 and 320

performance. When the sample size is small such as nk = 5 or 10, it can be seen
that the Direct estimator usually has the largest mean square errors and is the most
unstable in most of small areas. By contrast, the SS estimator is better (nk = 5) or
comparable (nk = 10) and TNER2 and EBLUP are much better. It is worth pointing
out that TNER2 has even smaller RRMSEs than EBLUP for almost all small areas.
When the sample size nk increases to 20, the Direct estimator outperforms SS across
almost all small areas, indicating that SS is unacceptable any more. In this situation,
TNER2 and EBLUP have almost equally small RRMSEs.

Overall, the proposed small area mean estimation method produces reliable esti-
mates in general and exhibits certain priority over the Direct, SS and EBLUPmethods,
in particular for small sample sizes. When the sample size is large such as nk = 20,
EBLUP is still a good alternative.

5 Discussion

To alleviate the dependence of the EBLUP on the NER model, we propose a new
transformed NER model with an invertible transformation to model small area data.
We establish the consistency of the MLEs of the transformation index parameters.
Borrowing the idea of Duan (1983)’s smearing estimator, we propose two small area
mean estimators under the new transformed NER model, depending on the extent
to which auxiliary covarate information is available. Our simulation results provide
evidence for the priority of the proposed small area mean estimator over existing
estimators such as EBLUP when sample sizes are small.

The new estimation methodology also applies to more general transformations
than (3) if they are invertible and smooth enough. In practice, we may fit data by
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the untransformed NER model and check its goodness-of-fit by QQ-plots or a formal
normality test of the residuals. We shall use the EBLUPmethod to estimate small area
means if the normality of the residuals is not rejected. Otherwise, we proceed with
the transformed NER model and apply the proposed small area mean estimators. We
would recommend the use of transformation (3) although John and Draper (1980)’s
modulus transformation or other transformations are also applicable.

In this paper our focus is on point estimation of small area means. It would be
preferable to construct confidence intervals and evaluate the goodness of small area
mean estimators, which necessitates the estimation of mean square errors of each
small area mean estimator. There have been extensive studies in the literature on the
estimation of prediction mean squared error under a basic unit-level model. See, for
example, Prasad and Rao (1990), Datta and Lahiri (2000), Pfeffermann and Correa
(2012), and Rao and Molina (2015). Due to the complexity and difficulty of small
area estimation, resampling methods are often employed to estimate prediction mean
squared error, such as a double-bootstrap procedure (Hall and Maiti 2006) and a
parametric bootstrap method (González-Manteiga et al. 2008). This issue becomes
more challenging under a transformed NER model because the transformation index
parameter λ needs also to be estimated, whichmakes the property of the resulting small
area estimator formidable. A possible solution is to employ a parametric bootstrap
method as suggested by an anonymous referee. We would leave this as a further
research topic.
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Appendix

To study the consistency of the MLEs, we make the following assumptions.

(C1) There exists constants 0 < c1 < c2 such that the transformed response h(y; λ0)

with λ0 ∈ [c1, c2] and the transformation in (3) satisfy the NER model in (1).
(C2) The small area number m keeps fixed and that as n goes to infinity, nk/n =

ρk + o(1) for ρk ∈ (0, 1).
(C3) Assume that �x = ∑m

k=1 ρk�xk is nonsingular, where �xk is the variance
matrix of xk j in small area k.

Apparently condition (C1) requires yk j is an increasing function ofx�
k jβ+vk+εk j since

h(y; λ0) is increasing when λ0 > 0. If yk j is an decreasing function of x�
k jβ+vk +εk j ,

it must be an increasing function of x�
k j (−β) + (−vk) + (−εk j ). Then condition (C1)

is still satisfied except that the parameter β has an opposite sign. Condition (C2) is
imposed to provide a justification of the proposed estimation method for λ. Also we
can checkwhether there exists systembias in the proposedmethod although the sample
sizes nk are generally very small in the literature of small area estimation.
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Proof of Theorem 1 We begin by proving the consistency of λ̂. Let (λ0, γ0) be the true
value of (λ, γ ). It is sufficient to show that as n is large, (1)

S = 1

n

∂�(λ0, γ0)

∂λ
= op(1) (19)

and (2) 1
n

∂2�(λ0,γ0)

∂λ∂λ� is positive definite. We shall prove only (1) since (2) can be proved
along the same line of proving (1) but with more tedious derivation.

From (7), we have

S = 1

n

∂�(λ0, γ0)

∂λ
= 1

λ0
+ 1

n

m∑
k=1

nk∑
j=1

log(|yk j |) − 1

2

∂σ̃ 2
e (λ0, γ0)/∂λ

σ̃ 2
e (λ0, γ0)

.

To simplify S, we need to investigate σ̃ 2
e (λ0, γ0) and ∂σ̃ 2

e (λ0, γ0)/∂λ. It follows from
Ak(γ ) = Ink − γ

1+γ nk
1nk1

�
nk that for any fixed γ > 0,
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r Ar (γ )xr = 1

nr
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� + x̄r x̄�
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1 + nrγ

= �xr + Op(n
−1/2),

1

nr
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r Ar (γ )y(λ0)
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xr j y
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r j − nrγ

1 + γ nr
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r j − ȳ(λ0)
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{y(λ)
r j }2 − nrγ

1 + γ nr
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nr∑
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{(xr j − x̄r )�β0 + (εr j − ε̄r )}2 + Op(n
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= β�
0 �xrβ0 + σ 2

e + Op(n
−1/2).

The above three equalities imply that

1

n

m∑
r=1

x�
r Ar (γ )xr =

m∑
r=1

ρr�xr + Op(n
−1/2), (20)
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1

n

m∑
r=1

x�
r Ar (γ )y(λ0)

r =
m∑

r=1

ρr�xrβ0 + Op(n
−1/2), (21)

1

n

m∑
r=1

{y(λ)
r }�Ar (γ )y(λ)

r = β�
0

m∑
r=1

ρr�xrβ0 + σ 2
e + Op(n

−1/2).

By these three equalities, we immediately have

σ̃ 2
e (λ0, γ0) = σ 2

e + Op(n
−1/2). (22)

To calculate ∂σ̃ 2
e (λ0, γ0)/∂λ, we denote zk j ≡ ∂y(λ0)

r j /∂λ = y(λ0)
r j log(|yk j |). Then

∂

∂λ

1

n

m∑
s=1

x�
s As(γ )y(λ0)

s =
m∑

r=1

nr
n

[ 1

nr

nr∑
j=1

(xr j − x̄r )(y
(λ)
r j − ȳ(λ)

r ) + x̄r ȳ
(λ)
r

1 + γ nr

]

=
m∑

r=1

ρrCov(xr j , zr j ) + Op(n
−1/2)

= �xz + Op(n
−1/2),

∂

∂λ

1

n

m∑
r=1

{y(λ)
r }�Ar (γ )y(λ)

r =
m∑

r=1

ρr {2β�
0Cov(xr j , zr j ) + 2Cov(zr j , εr j )}

= 2β�
0 �xz + 2�zε + Op(n

−1/2).

It can be found that

σ̃ 2
e (λ, γ ) = 1

n

m∑
k=1

{y(λ)
k }�Ak(γ )y(λ)

k

−{1
n

m∑
s=1

x�
s As(γ )y(λ)

s }�
{
1

n

m∑
r=1

x�
r Ar (γ )xr

}−1
1

n

m∑
s=1

x�
s As(γ )y(λ)

s .

Accordingly

∂

∂λ
σ̃ 2
e (λ0, γ0) = 2

1

n

m∑
k=1

{ ∂

∂λ
y(λ0)
k }�Ak(γ0)y

(λ0)
k − 2{1

n

m∑
s=1

x�
s As(γ0)

∂

∂λ
y(λ0)
s }�

×
{
1

n

m∑
r=1

x�
r Ar (γ0)xr

}−1
1

n

m∑
s=1

x�
s As(γ0)y(λ0)

s + op(1)

= 2β�
0 �xz + 2�zε − 2β�

0 �x�
−1
x �xz + op(1)

= 2�zε + op(1). (23)
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Putting (23) into (19), we obtain

S = 1

λ0
+

m∑
k=1

ρkE{log(|yk j |)} − 1

2

�zε

σ 2
e

+ op(1).

To prove S = op(1), it is sufficient to prove for r = 1, 2, . . . ,m that

1

λ0
+ E{log(|yr j |)} − 1

σ 2
e
Cov(zr j , εr j ) = 0,

which is true as shown in Lemma 1. This proves the consistency of λ̂.
Note that Eqs. (20) and (21) holds for any γ > 0. Since λ̂ is consistent, we imme-

diately obtain that β̂ is an consistent estimator of β0. By re-studying the proof of (22),
we find that it is still true when γ0 is replaced by any positive γ and λ0 is replaced by
its consistent estimator λ̂. This completes the proof of Theorem 1. �

Lemma 1 Under the assumptions for the transformed NER model, it holds that

1

λ0
+ Ex,ε

{
log(|yk j |)

} − 1

σ 2
e
Covx,ε(zk j , εk j ) = 0, (24)

where Ex,ε and Covx,ε denote expectation and covariance conditionally on (x, ε).

Proof Denote the left-hand side of Eq. (24) by �. By assumption, the response y(λ0)
k j

conditionally on vk and xk j follows N (x�
k jβ + vk, σ

2
e ). Since E(εk j ) = 0 and zk j =

y(λ0)
r j log(|yk j |) = λ−1

0 y(λ0)
r j log(|y(λ0)

k j |), it follows that

� = 1

λ0
+ 1

λ0

∫ ∞

−∞
log(|t |)φ

(
t − a

σe

)
dt

σe
− 1

λ0

∫ ∞

−∞
t (t − a) log(|t |)φ

(
t − a

σe

)
dt

σ 3
e

,

where we denote a = x�
k jβ + vk for short. By transforming u = t/σe and b = a/σe,

we further have

� = 1

λ0
+ 1

λ0

∫ ∞

−∞
log(|u|σe)φ(u − b)du− 1

λ0

∫ ∞

−∞
u(u − b) log(|u|σe)φ(u − b)du

= 1

λ0
+ 1

λ0

∫ ∞

−∞
{1 − u(u − b)} log(|u|)φ(u − b)du.
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Using d{φ(u − b)u} = {1 − u(u − b)}φ(u)du and integration by parts, we have

� = 1

λ0
+ 1

λ0

∫ ∞

−∞
log(|u|)d{φ(u − b)u}

= 1

λ0
+ 1

λ0
log(|u|)φ(u − b)u

∣∣∣∞−∞ − 1

λ0

∫ ∞

−∞
φ(u − b)du

= 0.

�
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