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ABSTRACT
In genetic backcross studies, data are often collected from complex mixtures of distributions with known
mixing proportions. Previous approaches to the inference of these genetic mixture models involve param-
eterizing the component distributions. However, model misspecification of any form is expected to have
detrimental effects.Wepropose a semiparametric likelihoodmethod for geneticmixturemodels: the empir-
ical likelihoodunder the exponential tiltingmodel assumption, inwhich the log ratio of theprobability (den-
sity) functions from the components is linear in the observations. An application to mice cancer genetics
involves random numbers of offspring within a litter. In other words, the cluster size is a random variable.
We wish to test the null hypothesis that there is no difference between the two components in the mix-
ture model, but unfortunately we find that the Fisher information is degenerate. As a consequence, the
conventional two-term expansion in the likelihood ratio statistic does not work. By using a higher-order
expansion, we are able to establish a nonstandard convergence rate N−1/4 for the odds ratio parameter esti-
mator β̂ . Moreover, the limiting distribution of the empirical likelihood ratio statistic is derived. The under-
lying distribution function of each component can also be estimated semiparametrically. Analogously to
the full parametric approach, we develop an expectation andmaximization algorithm for finding the semi-
parametricmaximum likelihood estimator. Simulation results and a real cancer application indicate that the
proposed semiparametric method works much better than parametric methods. Supplementary materials
for this article are available online.

1. Introduction

Finite mixture models have been widely used in psychologi-
cal, social, and medical research, and more recently in biomed-
ical and genetic studies; see, for example, Sham (1998), Ott
(1999), and Efron (2010). A finite mixture model is a proba-
bilistic model for the presence of finitely many subpopulations
within an overall population, when the observed data do not
have direct information on which subpopulations they come
from. For an observed dataset, one needs to find the subpop-
ulation origin using appropriate statistical modeling methods.

The finite mixture models of particular interest in this arti-
cle come from the backcross design, which has recently become
popular in animal study and plant research. In the backcross
design, the hybrid and the progenies in subsequent generations
are repeatedly backcrossed to one of the parents. Backcrossing
may be deliberately employed in animals to transfer a desir-
able trait in an animal of inferior genetic background to an
animal of superior genetic background. As a result, the geno-
type of the backcross progeny becomes increasingly similar to
that of the recurrent parent. In backcrossing studies, the col-
lected data often follow complex mixtures of distribution func-
tions where the mixing proportions are known (Hoff 2000a;
Zou, Fine, and Yandell 2002). Hoff (2000a, 2000b) andHoff et al.
(2002) discussed the application of this type ofmixturemodel in
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cancer genetic studies. Suppose mice with the DD genotype
have phenotypes distributed according to f (x); while mice
with the Dd genotype have phenotypes distributed according
to g(x). A kindred founder mouse with the Dd genotype is
bred to one with the DD genotype to produce a new popula-
tion. The mice in this new population are referred to as sub-
kindred founders; see Figure 1. The law of Mendelian inheri-
tance implies that the genotype of each subkindred founder is
Dd or DD, each with probability 50%. The subkindred founders
are then mated with a separate population with the DD geno-
type. The population of the resulting offspring is referred to as
the NF population. The phenotypes of this population are then
recorded. The data consist of the phenotypes of the offspring of
N subkindred founders, that is, the phenotypes of an N-litter of
mice,

x1 = (x11, . . . , x1n1 ), . . . , xN = (xN1, . . . , xNnN ),

wherewithin the ith litter, the number of offspringni is a random
variable.

TheMendelian law tells us that conditioning on the litter size
ni the densities of the phenotypes of the ni offspring have a joint
mixture density with mixture proportion 0.5:

h(xi) = 0.5
ni∏
j=1

f (xi j)+ 0.5
ni∏
j=1

{0.5 f (xi j)+ 0.5g(xi j)}. (1.1)

©  American Statistical Association
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Figure . Genotypes of the mice in the backcross design of interest.

In this case, the main interest is to estimate f and g or some
functionals of f and g. Hoff (2000a) discussed a technique for
calculating the maximum likelihood estimation of probability
measures when it is assumed that the measures are constrained
to a compact convex set. More on the application of model (1.1)
and some variations in genetic studies can be found in sec. 4 of
Hoff (2000a).

A natural choice for f (x) and g(x) is the normal distribution.
However, in practice these distributions may not be continuous,
let alone normal: in the example given by Hoff (2000b) and Hoff
et al. (2002), the phenotype is the tumor count. In the genetics
literature, little is known about the finite mixture model when
the underlying distributions are not fully parameterized. How-
ever, model misspecification is a major concern for geneticists
since it may lead to biased estimation; see, for example, Sham
(1998). It is therefore desirable to make inference on the under-
lying parameters underminimal assumptions on the underlying
component distributions.

Anderson (1979) introduced the semiparametric exponen-
tial tilting model into the finite mixture model. In this model,
the underlying densities of the two components are assumed to
satisfy an exponential tilting model. Specifically,

g(x)/ f (x) = exp(α + βx), (1.2)

where the forms of f and g are not specified beyond this ratio.
This model is analogous to the popular two-sample Lehmann’s
alternative and the Cox proportional hazard, where the two
underlying hazard functions are not specified but the ratio of
the hazards has a known parametric form. Many familiar expo-
nential families satisfy this model, for example, two normal dis-
tributions with different means but a common variance; two
exponential distributions; and two negative binomial distribu-
tions with different means but the same shape or dispersion
parameter. A quadratic term is needed in the model if the two
normal distributions have different variances. Moreover, the
exponential tilting model has a natural connection to logistic
regression if one treats δ = 0, 1 as indicators for the groups with
the DD and Dd genotypes, respectively. Among others, Ander-
son (1979) and Qin (1999) observed that the exponential tilting
model is equivalent to the logistic regressionmodel by using the

fact that

P(δ = 0|x) = 1
1 + exp(α∗ + βx)

,

where α∗ = α + log{P(δ = 1)/P(δ = 0)}. Therefore, the expo-
nential tilting approach can be used to predict the genotype for
a given phenotype.

Kay andLittle (1987) found that the exponential tiltingmodel
in (1.2) can be used in various transformed versions. For exam-
ple,

g(x)/ f (x) = exp(α + β log x) = xβ exp(α).

This is a biased sampling problem discussed by Vardi (1985). In
the special casesβ = 1, 2, 3, it corresponds to the case where the
probability of being sampled is proportional to the associated
length, area, or volume, respectively (Cox 1969; Patil and Rao
1978; Vardi 1982).

In this article, we adapt Anderson’s (1979) approach to the
genetic mixture model in (1.1). Throughout this article, unless
otherwise stated, all developments are conditional on the litter
size ni. Under model (1.2), the joint densities of the phenotypes
of the ni offspring become

h(xi) =
⎡
⎣0.5 + 0.5(1+ni )

ni∏
j=1

{1 + exp(α + βxi j)}
⎤
⎦ ni∏

j=1

f (xi j).

(1.3)
Note that the underlying parameters cannot be identified from
the marginal density

hm(xi j) = {0.75 + 0.25 exp(α + βxi j)} f (xi j)
if the density f is not specified, since the finite-dimensional
parameters α and β are absorbed by the nonparametric density
f (Zou, Fine, and Yandell 2002). In this article, we require that
on average the litter size should be at least two, so that the param-
eters (α, β, f ) can be identified from model (1.3). In fact, h(xi)
and hm(xi j) can be consistently estimated by empirical densities.
Therefore,

h(xi)∏ni
j=1 hm(xi j)

= 0.5 + 0.5(1+ni )
∏ni

j=1{1 + exp(α + βxi j)}∏ni
j=1{0.75 + 0.25 exp(α + βxi j)}

can be identified. As a result, (α, β) and the cumulative distri-
bution function F of f can be consistently estimated.

The exponential tilting model has been investigated exten-
sively in the literature due to its flexibility and efficiency.
Recently, Chen and Liu (2013) had found an application of this
model in the study of Canadian lumber. Liu et al. (2013) used the
model to link the scalar scores of HIV patients with viral failure
and those with viral suppression. Carvalho and Davison (2014)
applied the model to study the dependence between extreme air
temperatures under the forest canopy and in a nearby open field
at 14 sites in Switzerland. It is worth pointing out that all these
studies considered only situations with a standard convergence
rate, that is, N−1/2. The results in this article disclose an estima-
tor of β with an N−1/4 convergence rate when the true value of
β is zero.

In the proposed inference procedure, we handle the nonpara-
metric f (x) by the well-known empirical likelihood method
(Owen 2001). Compared with the previous approaches of
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1252 P. LI ET AL.

Anderson (1979), Qin (1999), Zou, Fine, and Yandell (2002),
and Tan (2009), our application of empirical likelihood to the
exponential tiltingmixturemodel has threemajor differences:

1. We have only a single random sample in the mice appli-
cation. Hence, there are no direct observations from f
and g or multiple mixture samples of f and g as consid-
ered in Zou, Fine, and Yandell (2002) and Tan (2009). In
other words, the model considered in this article is fun-
damentally different from those in Zou, Fine, and Yan-
dell (2002) and Tan (2009), which results in different
asymptotic properties of the maximum empirical like-
lihood estimator of β when the true value of β is zero.
More details are given in Section 2.3.

2. Even in the literature on empirical likelihood and selec-
tion biased sampling problems (Vardi 1985), there is a
lack of general large-sample theory for the summation of
random numbers of random variables. Our mice appli-
cation involves the number of offspring within a litter
or the cluster size, which is a bounded random vari-
able. The theoretical derivation becomes rather com-
plex and tedious; see the proofs in the supplementary
material.

3. Since the Fisher information is degenerate under the
null f = g or β = 0, a fourth-order Taylor expansion
for the likelihood ratio statistic is required to derive its
limiting distribution. As a result, the proof is extremely
complex compared with existing proofs for related
problems, where a second-order Taylor expansion
suffices.

The organization of this article is as follows. In Section 2, we
present the empirical likelihood inference approach for themice
genetic mixture model in (1.1) under the exponential tilting
model assumption in (1.2). An EM-algorithm is suggested for
finding the maximum empirical likelihood estimates of the
unknown parameters/functions. We show that the limiting
distribution of the empirical likelihood ratio test for testing
H0 : β = β0 is 0.5χ2

0 + 0.5χ2
1 , an equal mixture of a distribu-

tion with point mass at zero and a χ2
1 distribution, if the true

value β0 of β is 0; and it is χ2
1 if β0 �= 0. Further, the conver-

gence rate of the maximum empirical likelihood estimator of
β is N−1/4 when β0 = 0; and it becomes N−1/2 when β0 �= 0.
When β0 �= 0, the maximum empirical likelihood estimator
of (α, β) has an asymptotic joint normal distribution, and
the underlying distribution function of each component can
also be estimated with the rate N−1/2. We present a simulation
study in Section 3 and discuss a real example in Section 4.
Section 5 provides concluding remarks. For convenience of
presentation, all the proofs are given in a supplementary
document.

2. Semiparametric Likelihood for Genetic Mixture
Model

2.1. Parameter Estimation

Let pi j = dF(xi j). Then it follows from model (1.2) that
dG(xi j) = exp(α + βxi j)pi j. Based on the given xi j’s, the empir-
ical likelihood of (α, β, F ) is defined as

LN (α, β, F )

=
N∏
i=1

{[
0.5 + 0.5(1+ni )

ni∏
j=1

{1 + exp(α + βxi j)}
] ni∏

j=1

pi j
}
.

(2.4)

The feasible pi j ’s satisfy

pi j ≥ 0,
N∑
i=1

ni∑
j=1

pi j = 1,

N∑
i=1

ni∑
j=1

pi j{exp(α + βxi j)− 1} = 0, (2.5)

which implies that the empirical likelihoodmodels F by F(x) =∑N
i=1
∑ni

j=1pi jI(xi j ≤ x).
Inferences about (α, β) are usually made through the pro-

file empirical likelihood or log-likelihood function, lN (α, β) =
supF log{LN (α, β, F )}, where themaximum is taken under con-
straint (2.5) given (α, β). By the Lagrangemultipliermethod,we
find that

pi j = pi j(α, β) = 1∑N
i=1 ni

1
1 + γ (eα+βxi j − 1)

,

where γ is the solution to

N∑
i=1

ni∑
j=1

eα+βxi j − 1
1 + γ (eα+βxi j − 1)

= 0.

The resulting profile empirical log-likelihood is

lN (α, β) =
N∑
i=1

log

⎧⎨
⎩0.5 + 0.5(1+ni )

ni∏
j=1

(1 + eα+βxi j )

⎫⎬
⎭

−
N∑
i=1

ni∑
j=1

log{1 + γ (eα+βxi j − 1)}. (2.6)

Let themaximum empirical likelihood estimator of (α, β) be
(α̂, β̂ ) = arg supα,β lN (α, β).We then estimate the cumulative
distribution functions F(x) and G(x) by

F̂(x) =
N∑
i=1

ni∑
j=1

p̂i jI(xi j ≤ x) and

Ĝ(x) =
N∑
i=1

ni∑
j=1

p̂i jeα̂+β̂xi j I(xi j ≤ x),

respectively, where p̂i j = pi j(α̂, β̂ ). We further estimate the
populationmeansμF andμG of F(x) andG(x), respectively, by

μ̂F =
N∑
i=1

ni∑
j=1

p̂i jxi j and μ̂G =
N∑
i=1

ni∑
j=1

p̂i jeα̂+β̂xi j xi j,
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and the population variances σ 2
F and σ 2

G of F(x) and G(x),
respectively, by

σ̂ 2
F =

N∑
i=1

ni∑
j=1

p̂i j(xi j − μ̂F )
2 and

σ̂ 2
G =

N∑
i=1

ni∑
j=1

p̂i jeα̂+β̂xi j (xi j − μ̂G)
2.

The explicit forms of (α̂, β̂ ) and the p̂i j’s are unknown in gen-
eral. In the next subsection, we present an EM-algorithm to
search for these estimates.

2.2. EM-Algorithm

Since the genotype of each observation is missing, we need to
deal with the complicated mixture structure in the likelihood
(2.4), which makes the maximization of (2.6) difficult. The EM-
algorithm naturally fits into our problem. We first define the
missing data. Let zi j = 1 if the jth mouse in the ith litter has the
Dd genotype, and 0 if the jth mouse in the ith litter has the DD
genotype. That is, the zi j’s are themissing labels for all the obser-
vations. Further, let X = (x11, . . . , xNnN ) be the observed phe-
notypes, Z = (z11, . . . , zNnN ) be the missing labels, and � =
(α, β, p11, . . . , pNnN ).

Conditional on zi j = 1 or 0, xi j has the cumulative distribu-
tion function G(x) or F(x), respectively. Further the xi j’s are
conditionally independent given the zi j’s. It can be verified that

P(zi1 = · · · = zini = 0) = 0.5 + 0.5ni+1 and

P(zi1 = ai1, . . . , zini = aini ) = 0.5ni+1

for ai j = 0 or 1, and (ai1, . . . , aini ) �= (0, . . . , 0). Hence, based
on the complete data {X ,Z}, the log-likelihood of � has the
following form (up to a constant not depending on �):

lc(�) =
N∑
i=1

ni∑
j=1

{(1 − zi j) log dF(xi j)+ zi j log dG(xi j)}

=
N∑
i=1

ni∑
j=1

{zi j(α + βxi j)+ log(pi j)},

where we have used the exponential tiltingmodel assumption in
(1.2). The concise form of the complete log-likelihood makes it
convenient to develop the EM algorithm.

The core of the EM-algorithm is the EM-iteration,
which contains an E-step and an M-step. We use �(r−1) =
(α(r−1), β(r−1), p(r−1)

11 , . . . , p(r−1)
NnN ) to denote the value of �

after r − 1 EM-iterations, r = 1, 2, . . .. When r = 1, �(0)

denotes the initial value of �.
In the E-step of the rth iteration, we need to calculate

Q(�|�(r−1)) = E{lc(�)|X ,�(r−1)}

=
N∑
i=1

ni∑
j=1

{
E
(
zi j|xi,�(r−1))(α + βxi j)+ log pi j

}
,

where the expectation is with respect to the conditional dis-
tribution of Z given X and using �(r−1) for �. Let w(r)

i j =

E(zi j|xi,�(r−1)). In the supplementary material, we show that

w(r)
i j =

∏ni
k=1(0.5 + 0.5eα(r−1)+β(r−1)xik )

1 +∏ni
k=1(0.5 + 0.5eα(r−1)+β(r−1)xik )

· eα(r−1)+β(r−1)xi j

1 + eα(r−1)+β(r−1)xi j
.

(2.7)
In theM-step of the rth iteration, we update� by�(r), which

maximizes

Q(�|�(r−1)) =
N∑
i=1

ni∑
j=1

{
w(r)

i j (α + βxi j)+ log(pi j)
}

with respect to � under the constraints in (2.5). Using the
approach of Zhang (2002), we can perform the abovemaximiza-
tion in the following steps (see the detailed explanation in the
supplementary material):

Step 1. Update

p(r)i j (α, β) = 1∑N
i=1 ni

1
1 − γ (r) + γ (r) exp(α + βxi j)

,

where γ (r) = ∑N
i=1
∑ni

j=1 w(r)
i j /

∑N
i=1 ni.

Step 2. Substitute p(r)i j (α, β) into the Q-function to get

Q(r)(α, β) =
N∑
i=1

ni∑
j=1

[
w(r)

i j (α + βxi j)+ log
{
p(r)i j (α, β)

}]

=
N∑
i=1

ni∑
j=1

[
w(r)

i j (α + βxi j)− log
{
1 − γ (r)

+ γ (r) exp(α + βxi j)
}]+ constant,

where the constant does not depend on (α, β). Max-
imize Q(r)

(
α, β

)
to get (α(r), β(r)).

Step 3. Update pi j via

p(r)i j = 1∑N
i=1 ni

1
1 − γ (r) + γ (r) exp(α(r) + β(r)xi j)

.

The E-step and M-step are iterated until convergence.
We make two remarks about the above EM-algorithm. First,

following the proof in Dempster, Laird, and Rubin (1977) and
that in Zhang (2002), we can show that the empirical likelihood
LN (α, β, F ) does not decrease after each iteration. That is, for
r ≥ 2

LN (α(r), β(r), F (r)) ≥ LN (α(r−1), β(r−1), F (r−1)).

Further, note that LN (α, β, F ) = ∏N
i=1{0.5

∏ni
j=1 pi j

+ 0.5
∏ni

j=1(0.5pi j + 0.5qi j)} ≤ 1 and LN (α, β, F ) is a con-
tinuous function of all the unknown parameters. Then the
sequence {LN (α(r), β(r), F (r))} eventually converges to a sta-
tionary value of LN (α, β, F ) for a given initial value �(0) (Wu
1983). However, this stationary value may not be a global
maximum. Even in the full parametric mixture model, there is
no guarantee that the EM algorithm leads to the global max-
imum. The semiparametric approach has the same problem.
To increase the possibility of finding the global maximum,
we recommend using multiple initial values. Our simulation
results demonstrate that this method works well. Second, in
practice, we may stop the algorithm when the increment in the
log empirical likelihood after an iteration is no greater than,
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1254 P. LI ET AL.

say, 10−6. The EM-algorithm converges very fast according
to our simulations. For instance, for the real data analyzed in
Section 4, the algorithm stops after 21 iterations starting from
(α(0), β(0)) = (1,−1). Further, it takes less than 1 sec for the
above calculation in an IMAC with a 3.4-GHz Intel Core i7
processor.

2.3. Asymptotic Properties

One problem of practical and scientific interest is whether or
not the phenotype distributions of the mice with the DD geno-
type and those with the Dd genotype are the same, or equiva-
lently β = 0 or β �= 0. In this subsection, we first investigate the
asymptotic properties of the empirical log-likelihood ratio test
(ELRT) under model (1.3) for the null hypothesis H0 : β = 0.

Define the empirical log-likelihood ratio function of β as

RN (β) = 2
{
lN (α̂, β̂ )− sup

α

lN (α, β)
}
.

The following theorem presents the limiting distribution of
RN (0) under H0.

Theorem 1. Suppose 2 ≤ ni ≤ C for some given positive integer
C, the xi j’s take at least two values and are independent of ni, and∫
eβx f (x)dx < ∞ in a neighborhood of β = 0. Under the null

hypothesis H0 : β = 0, as N → ∞ we have
(a) β̂ = Op(N−1/4);
(b) the limiting distribution of RN (0) is 0.5χ2

0 + 0.5χ2
1 , an

equal mixture of a distribution with point mass at zero
and a χ2

1 distribution.

For presentational continuity, the proofs of Theorem 1 and
those for Theorems 2 and 3 are given in the supplementary doc-
ument. The assumption that

∫
eβx f (x)dx < ∞ in a neighbor-

hood of β = 0 implies the existence of the moment generating
function of xi j and therefore all its finite moments. This fact will
be used in our proofs of Theorems 1 and 2.

If the true value of β is not equal to 0, the large-sample prop-
erties of the empirical likelihood estimator β̂ and the empirical
log-likelihood ratio for testingH0 : β = β0 for β0 �= 0 are differ-
ent from those in Theorem 1.

Theorem 2. Let (α0, β0) denote the true value of (α, β) and
assume (α0, β0) �= (0, 0). Suppose 2 ≤ ni ≤ C for some given
positive integerC, the xi j’s take at least two values and are inde-
pendent of ni, and

∫
eβx f (x)dx < ∞ in a neighborhood of β =

β0 and β = 0. Let � be the matrix defined in Equation (A.1),
and assume � is positive definite. As N → ∞,

(a) the limiting distribution of
√
N(α̂ − α0, β̂ − β0)

τ is
N(0,�);

(b) the limiting distribution of RN (β0) is χ2
1 .

We now give some insight into the difference between the
asymptotic results in Theorems 1 and 2. In the proof of Theorem
1, we encounter two types of irregularities. First, β = 0 implies
that α = 0, which means that α and β are not completely free
at the null hypothesis H0 : β = 0. This irregularity was first
pointed out by Zou, Fine, and Yandell (2002) when they applied
the exponential tilting model to mixtures of two univariate dis-
tributions with known mixing proportions. To overcome this

irregularity, Zou, Fine, and Yandell (2002) proposed a partial
empirical likelihood method. They further showed that the
maximum partial likelihood estimator of β is

√
N consistent

and asymptotically normalwhether or notβ = 0, and the profile
log-likelihood ratio for testing β = 0 has a χ2

1 limiting distribu-
tion. Their results are in sharp contrast to our Theorem 1. This
is because of the second type of irregularity, degenerate Fisher
information at β = 0, in our setup. Let plN (β) = supα lN (α, β).
It can be verified that

E

[
d2plN (β)

dβ2

∣∣∣
β=0

]
= 0.

This implies that after profiling out α, the Fisher information
of β is degenerate at β = 0. Tan (2009) showed that after α
is profiled out, the Fisher information of β is not degenerate
under the setup of Zou, Fine, and Yandell (2002) whether or
not β = 0. Hence,

√
N consistency and an asymptotic χ2

1 lim-
iting distribution are expected for the maximum partial likeli-
hood estimator of β and the profile log-likelihood ratio for test-
ingβ = 0, respectively.However, in our setup, degenerate Fisher
information at β = 0 results in the second-order Taylor expan-
sion being insufficient to approximate lN (α, β) in the neighbor-
hood of (0, 0). In the supplementary material, we show that it
is necessary to use a fourth-order Taylor expansion to approx-
imate lN (α, β), and hence the convergence rate of β̂ becomes
N−1/4 instead of N−1/2 when the true value of β is 0. When the
true value β0 of β is not equal to 0, the above two types of irreg-
ularity do not exist. Therefore, a second-order Taylor expansion
is sufficient to find the leading term of lN (α, β) in the neigh-
borhood of (α0, β0). The quadratic approximation of lN (α, β)
enables us to derive the χ2

1 limiting distribution of RN (β0) and
the joint asymptotic normality of (α̂, β̂ ).

Now we consider the asymptotic properties of the proposed
estimators F̂(x) and Ĝ(x) of F(x) and G(x) when (α0, β0) �=
(0, 0). Because of the

√
N-consistency and joint asymptotic nor-

mality of (α̂, β̂ ), we have the following results for F̂(x) and Ĝ(x),
which imply that F̂(x) and Ĝ(x) are consistent and have the con-
vergence rate N−1/2.

Theorem 3. Assume the conditions of Theorem 2. As N → ∞,
we have that

√
N{F̂(x)− F(x), Ĝ(y)− G(y)} converges weakly

to a bivariate Gaussian process B(s) with zero mean, indepen-
dent increment, and covariance structure �(s1, s2) defined in
(A.2). Here s = (x, y)τ , s1 = (x1, y1)τ , and s2 = (x2, y2)τ .

3. Simulation Study

3.1. Setup

In this section, we conduct Monte Carlo simulation to provide
insight into the following questions:

(a) When testing H0 : β = 0, does the limiting distribution
provide an accurate approximation to the finite-sample
distribution of the ELRT? Is the ELRT comparable to the
parametric likelihood ratio test (PLRT) when the model
is correctly specified andmore powerful when themodel
is misspecified?

(b) If the true value of β is nonzero, are the proposed
maximum EL estimators for μF , μG, σ 2

F , σ 2
G, F(x), and
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G(x) comparable to those based on the correct model,
and more efficient than those based on the misspecified
model?

In our simulation studies, we use a tumor-count dataset (Hoff
2000b) that contains the tumor counts of 21 litters of mice.
Drinkwater and Klotz (1981) and Hoff et al. (2002) suggested
using a negative binomial distribution to model this dataset. To
generate data from Model (1.1), we need to specify f (x), g(x),
and the distribution of ni. We consider two scenarios for f (x)
and g(x).

Scenario I: We choose f (x) and g(x) to be the probability mass
functions of two negative binomial distributions with the com-
mon shape or dispersion parameter η and means μF and μG,
respectively. That is,

f (x) = 
(x + η)


(x + 1)
(η)

(
η

η + μF

)η (
μF

η + μF

)x

, (3.8)

g(x) = 
(x + η)


(x + 1)
(η)

(
η

η + μG

)η (
μG

η + μG

)x

. (3.9)

Then log{g(x)/ f (x)} = α + βx with

α = η log
η + μF

η + μG
and β = log

μG(η + μF )

μF (η + μG)
. (3.10)

Therefore, the ratio g(x)/ f (x) satisfies the exponential tilting
model in (1.2).

Scenario II: We first fit the tumor-count dataset in Hoff (2000b)
by the proposed estimation procedure and obtain themaximum
empirical likelihood estimator f̂ (x) of f (x), the probability
mass function for the phenotype of mice that are noncarriers
of the particular allele. The cumulative distribution function of
f̂ (x) is given in Section 4. We then set f (x) to f̂ (x) and g(x)
such that g(x)/ f (x) satisfies the exponential tilting model in
(1.2). The specific value of β will be given later.

In all scenarios, the ni’s are randomly generated from the
set {3, 4, 4, 5, 8, 8, 8, 8, 9, 9, 10, 13, 15, 16, 16, 17, 17, 18, 19,
20, 22}; these are the litter sizes of the 21 litters of mice in the
tumor-count dataset.

We fit the data generated from each scenario by the expo-
nential tilting model in (1.2) with the empirical likelihood, and
the parametric model in (3.8)–(3.9) with the parametric likeli-
hood, respectively. It is worth mentioning that the exponential
tilting model assumption is always satisfied in both scenarios.
However, the parametric model in (3.8)–(3.9) is valid only in
Scenario I. Hence, the parametric model is misspecified in Sce-
nario II for any estimation and testing procedures.

3.2. Testing H0 : β = 0

The purpose of this subsection is to address question (a). We
first check the performance of the limiting distribution. We set
η = 5,μF = μG = 4 in Scenario I, and β = 0 in Scenario II.We
choose N = 20, which is close to the number of litters in the
tumor-count dataset. We calculate the Type I error rates of the
ELRT under the exponential tilting model assumption (1.2) and

of the PLRT under the parametric model assumption in (3.8)–
(3.9) based on 50,000 repetitions. Recall that for both scenar-
ios, the model is correctly specified for the ELRT, while for the
PLRT the model is correct under Scenario I but misspecified
under Scenario II. At the 5% and 1% levels, the simulated Type
I error rates of the ELRT are, respectively, 5.9% and 1.3% under
Scenario I, and 6.2% and 1.4% under Scenario II. In compari-
son, those for the PLRT are, respectively, 6.2% and 1.3% under
Scenario I, and 23.2% and 8.8% under Scenario II. Clearly, the
limiting distribution of the ELRT provides a satisfactory approx-
imation to the finite-sample distribution under both scenarios.
If the parametric model is correct (i.e., Scenario I), the limit-
ing distribution of the PLRT also works reasonably well, but if
the model is misspecified (i.e., Scenario II), this distribution is
stochastically much smaller than the finite-sample distribution.
Hence, in this case the Type I error rates of the PLRT based on
the limiting distribution aremuch larger than the corresponding
true values.

Next we compare the powers of the ELRT and PLRT under
alternative models. In Scenario I, we set η = 5, μG = 4, and
choose 10 values of β : −0.05, . . . ,−0.5 with μF being deter-
mined by (3.10). The same 10 values for β are considered in
Scenario II. For a fair comparison, we take the simulated distri-
butions of the ELRT and PLRT under the null hypothesis based
on 50,000 repetitions as reference distributions, andwe calculate
their p-values and critical values. The powers of the ELRT and
PLRT under the alternativemodels are calculated based on 2000
repetitions.We still consider the sample sizeN = 20. The results
under the 5% and 1% significance levels are plotted in Figure 2.
We can see that if the model is correctly specified for both the
ELRT and PLRT (i.e., Scenario I), then the ELRT and PLRT
have almost the same power for detecting a difference between
f (x) and g(x). However, if the model is misspecified (i.e., Sce-
nario II) for the PLRT, then the PLRT is less powerful than the
ELRT.

3.3. EstimatingμF, μG, σ2
F, σ2

G, F(x), and G(x)

We now address question (b). We choose η = 5, μG = 4, μF =
12, 18, and 24 in Scenario I, and β = −0.3,−0.45,−0.6 in Sce-
nario II. In Scenario II, μF = 19.58; the values of μG corre-
sponding to β = −0.3,−0.45, and−0.5 are 6.96, 4.84, and 3.47,
respectively. We consider two choices of N: 20 and 200.

We first compare the estimation of (μF , σ
2
F ) and (μG, σ

2
G).

We use (μ̂F,p, σ̂
2
F,p) and (μ̂G,p, σ̂

2
G,p) to denote the estimates

of (μF , σ
2
F ) and (μG, σ

2
G), respectively, under the parametric

model assumption in (3.8)–(3.9). Tables 1 and 2 give the bias,
variance (Var), andmean square error (MSE) for each estimator
based on 2000 repetitions under the two scenarios. As expected,
the parametric maximum likelihood estimators of (μF , σ

2
F ) and

(μG, σ
2
G) based on the correct model (i.e., Scenario I) are more

efficient than themaximum empirical likelihood estimators.We
also observe that the maximum empirical likelihood estimator
of (μF , σ

2
F ) is comparable to the maximum likelihood estima-

tor when the sample size is large. When the parametric model
is misspecified (i.e., Scenario II), the maximum empirical like-
lihood estimators of (μF , σ

2
F ) and (μG, σ

2
G) are more efficient

(in most cases) than or at least comparable to the maximum

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

4:
57

 3
0 

O
ct

ob
er

 2
01

7 



1256 P. LI ET AL.

Figure . Power comparison between the ELRT and PLRT under Scenarios I and II at the significance levels % and %: the powers are calculated based on  repetitions,
and , repetitions under the null model are used to calculate the p-values of the ELRT and PLRT.

parametric likelihood estimators. For both methods, as N
increases, the MSEs decrease, as expected.

Now we turn to the estimation of F(x) and G(x). We use
F̂p(x) and Ĝp(x) to denote the respective estimators of F(x) and
G(x) under the parametric model. The Kolmogorov–Smirnov
distance between the estimated and true cumulative distribu-
tion functions is used as a basis for comparison. Table 3 gives
the average Kolmogorov–Smirnov distance based on 2000 rep-
etitions. When the parametric model is correct (Scenario I), the
parametric estimators of F(x) and G(x) are more accurate than
the proposed distribution estimators. If the parametric model
is misspecified (Scenario II), the proposed estimators become
more accurate. This provides evidence for the robustness of
the proposed estimators. Finally, the Kolmogorov–Smirnov dis-
tances of both methods decrease as N increases under each
model.

In the supplementary material, we consider one more sce-
nario in addition to Scenarios I and II, in which the parametric
model is correctly specified while the exponential tilting model
is misspecified. We summarize the observations as follows:

� model misspecification on the exponential tilting model
seems to have no effect on the Type I error rate and the
power of the ELRT for testing H0 : β = 0;

� as expected, model misspecification deteriorates the per-
formance of themaximum empirical likelihood estimators
of (μF , σ

2
F ), (μG, σ

2
G), F(x), and G(x).

We comment that since the exponential tilting model
assumption is weaker than the full parametric model, in gen-
eral we are not likely to misspecify the exponential tilting model
but correctly specify the parametric model.

4. Real Example

Hoff (2000b) analyzed a tumor-count dataset collected from 74
subkindreds, with tumor counts from 968mice. His analysis was
based on the tumor counts from 21 randomly selected litters.
Following Hoff (2000b), we also analyzed the observations from
these 21 litters.

Panel (a) of Figure 3 presents the estimates of F(x) and G(x)
under the exponential tilting model assumption in (1.2) and
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Table . Comparing the biases, variances, andmean square errors (MSEs) of the estimators of (μF , σ
2
F ) and (μG, σ

2
G) under the exponential tilting and parametric models

under Scenario I, in which the model is correctly specified for (μ̂F , σ̂
2
F , μ̂G, σ̂

2
G) and (μ̂F,p, σ̂

2
F,p, μ̂G,p, σ̂

2
G,p).

Exponential tilting Parametric model

(μF , μG) Summary μ̂F σ̂ 2
F μ̂G σ̂ 2

G μ̂F,p σ̂ 2
F,p μ̂G,p σ̂ 2

G,p

Scenario I: N = 20

(,) Bias − . − . . . − . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(,) Bias − . . . . . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(,) Bias − . − . . . . − . . .
Var . . . . . . . .
MSE . . . . . . . .

Scenario I: N = 200

(,) Bias − . − . . . − . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(,) Bias . − . . . . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(,) Bias − . − . . . − . − . . .
Var . . . . . . . .
MSE . . . . . . . .

the parametric model assumption in (3.8)–(3.9). Panel (b) of
Figure 3 displays three estimates of the marginal distribution of
the tumor counts xi j, 0.75F (x)+ 0.25G(x): themarginal empir-
ical distribution, the proposed estimate 0.75F̂ (x)+ 0.25Ĝ(x)
based on the exponential tilting model, and the estimate
0.75F̂p(x)+ 0.25Ĝp(x) based on the parametric model. We can
see in panel (a) that the two estimates of G(x) are almost the
same, while the two estimates of F(x) are apparently different
when x is between 30 and 50. In panel (b), we observe that the
proposed estimate is almost the same as the marginal empirical
distribution of xi j, and both are apparently different from the

parametric estimate when x is between 30 and 50. Therefore,
the exponential tilting model is more suitable than the paramet-
ric model for modeling the tumor counts. We conclude that the
proposed estimates F̂(x) and Ĝ(x) are more reliable than the
parametric estimates F̂p(x) and Ĝp(x).

Further, we apply the ELRT to test H0 : β = 0. The
test statistic is found to be 57.738, which gives a p-
value around 0 calibrated by the limiting distribution.
For (μF , σ

2
F ) and (μG, σ

2
G), under the exponential tilting

model, we get (μ̂F , σ̂
2
F ) = (19.58, 128.11) and (μ̂G, σ̂

2
G) =

(4.32, 9.67). The above results provide strong evidence

Table . Comparing the biases, variances, and mean square errors (MSEs) of the estimators of μF and μG under the exponential tilting and parametric models under
Scenario II, in which the model is correctly specified for (μ̂F , σ̂

2
F , μ̂G, σ̂

2
G) but misspecified for (μ̂F,p, σ̂

2
F,p, μ̂G,p, σ̂

2
G,p).

Exponential tilting Parametric model

(μF , μG) Summary μ̂F σ̂ 2
F μ̂G σ̂ 2

G μ̂F,p σ̂ 2
F,p μ̂G,p σ̂ 2

G,p

Scenario II: N = 20

(., .) Bias − . − . . . − . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(., .) Bias − . − . . . − . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(., .) Bias − . − . . . − . − . − . − .
Var . . . . . . . .
MSE . . . . . . . .

Scenario II: N = 200

(., .) Bias − . − . . . − . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(., .) Bias − . − . . . − . − . . .
Var . . . . . . . .
MSE . . . . . . . .

(., .) Bias . − . . . − . − . − . − .
Var . . . . . . . .
MSE . . . . . . . .
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1258 P. LI ET AL.

Table . Kolmogorov–Smirnov distance between the estimated cumulative dis-
tribution function and true cumulative distribution function under exponential
tilting and parametric models.

Exponential tilting Parametric model

(μF , μG) ||F̂ − F ||∞ ||Ĝ − G||∞ ||F̂p − F ||∞ ||Ĝp − G||∞
Scenario I: N = 20

(, ) . . . .
(, ) . . . .
(, ) . . . .

Scenario I: N = 200
(, ) . . . .
(, ) . . . .
(, ) . . . .

Scenario II: N = 20
(., .) . . . .
(., .) . . . .
(., .) . . . .

Scenario II: N = 200
(., .) . . . .
(., .) . . . .
(., .) . . . .

that F(x) and G(x) are different, and further μG < μF ,
that is, the mean of the phenotype of mice with the Dd
genotype is smaller than that of mice with the DD geno-
type. This finding is in accordance with scientific knowledge
that the particular allele d suppresses the tumor-causing
effects (Hoff 2000b). Under the parametric model, we get
(μ̂F,p, σ̂

2
F,p) = (18.09, 85.16) and (μ̂G,p, σ̂

2
G,p) = (4.23, 7.89).

According to our simulation experience and Figure 3, the
estimates based on the exponential tilting model are more
reliable.

Based on the estimates of F(x) and G(x) under the expo-
nential tilting and parametric models, we calculate the poste-
rior probability that a subkindred founder carries the allele d.
Panel (a) of Figure 4 compares the posterior probabilities for all
21 subkindred founders under the twomodels. To have a clearer
picture of the lower-left and upper-right corners of Panel (a), we
further compare the posterior probabilities for the eight subkin-
dred founders under the lower left corner of Panel (a) in Panel
(b) and those for the seven subkindred founders under the upper

Figure . Panel (a) compares F̂(x) and F̂p(x) in the lower part and Ĝ(x) and Ĝp(x) in the upper part; panel (b) compares the marginal empirical distribution of xi j ,

0.75F̂(x)+ 0.25Ĝ(x), with 0.75F̂p(x)+ 0.25Ĝp(x).

Figure . Panel (a) compares the posterior probabilities for all  subkindred founders; Panel (b) compares the posterior probabilities for the eight subkindred founders
under the lower left corner of Panel (a); Panel (c) compares the posterior probabilities for the seven subkindred founders under the upper right corner of Panel (a).
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right corner of Panel (a) in Panel (c). The posterior probabilities
from the exponential tilting model are larger than those from
the parametric model. Since the exponential tilting model pro-
vides a better fit, we believe that the posterior probabilities from
this model are more reliable.

5. Concluding Remarks

In this article, we have explored a semiparametric approach to
the genetic mixture model. The theoretical results show that
the semiparametric approach has many nice statistical proper-
ties that are analogous to those of the full parametric likelihood.
Moreover, the numerical results demonstrate that the efficiency
loss from the semiparametric mixture model compared to the
full parametric model is small if the underlying full parametric
model is correctly specified. On the other hand, the semipara-
metricmethod ismore robust than the full parametric approach.
The results of the mice data analysis strongly support our semi-
parametric approach.

The methods discussed in this article can be generalized to
other applications ofmixturemodels. For example, Hoff (2000a)
proposed an alternative model for the data presented in the
Introduction. This model considers both a zygotic effect and a
maternal effect of allele d. A mouse in the NF population expe-
riences the zygotic effect if the animal has the Dd genotype and
experiences the maternal effect if the animal’s mother has the
Dd genotype. This gives rise to four categories of animals with
four potentially different tumor count distributions. The tumor
count of a mouse in the NF population is distributed according
to

� f1(x) if the animal is subject to both maternal and zygotic
effects, that is, the animal and its mother both have the Dd
genotype;

� f2(x) if the animal is subject to the maternal effect only,
that is, the animal has the DD genotype and its mother has
the Dd genotype;

� f3(x) if the animal is subject to the zygotic effect only, that
is, the animal has the Dd genotype and its mother has the
DD genotype;

� f4(x) if the animal is subject to neither, that is, the animal
and its mother both have the DD genotype.

If the ith subkindred founder is female, then conditional on
ni, the joint density of xi is

0.5
ni∏
j=1

f4(xi j)+ 0.5
ni∏
j=1

{0.5 f1(xi j)+ 0.5 f2(xi j)}; (5.11)

if the ith subkindred founder is male, then conditional on ni, the
joint distribution of xi is

0.5
ni∏
j=1

f4(xi j)+ 0.5
ni∏
j=1

{0.5 f3(xi j)+ 0.5 f4(xi j)}. (5.12)

We can model fk(x)/ f4(x) for k = 1, 2, 3 by the exponential
tilting model

fk(x)/ f4(x) = exp(αk + βkx).

The empirical likelihood method can then be used to esti-
mate (αk, βk) and Fk(x), the cumulative distribution function

of fk(x). We plan to investigate the asymptotic properties of the
resultant estimators in future research.

Since we have made only the assumption that the two-
component density ratio satisfies the exponential tilting model,
our method can also be applied to any F2 or recombinant
inbred-line experiments as long as there are repeated observa-
tions or there are direct observations from each of the compo-
nent distributions. An example is the setup of Anderson (1979).
In general, without training samples or repeated observations,
the density ratio is not identifiable.

Appendix: Forms of� and�(s1, s2)

A.1. Form of�

Let θ = (α, β)τ , yi j = (1, xi j)τ , and ψi(θ) = ∏ni
j=1{0.5 +

0.5 exp(θτyi j)}. We use θ0 to denote the true value of θ and
ψi = ψi(θ0). We note that the profile empirical log-likelihood in
(5) can be written as lN (α, β) = infγ l(θ, γ ) with

l(θ, γ ) =
N∑
i=1

log{0.5 + 0.5ψi(θ)}

−
N∑
i=1

ni∑
j=1

log{1 + γ (eθ
τ yi j − 1)}.

Equivalently, lN (α, β) = l(θ, γ ) with γ being the solution to
∂ l(θ, γ )/∂γ = 0.

The form of� depends on the second derivatives of l(θ, γ )with
respect to θ and γ , which are given below:

∂2l(θ, γ )
∂θ∂θτ

=
N∑
i=1

ψi(θ)

{1 + ψi(θ)}2
ni∑
j=1

eθ
τ yi j

1 + eθτ yi j
yi j

ni∑
k=1

eθ
τ yik

1 + eθτ yik
yτik

+
N∑
i=1

ψi(θ)

1 + ψi(θ)

ni∑
j=1

{
eθ

τ yi j

(1 + eθτ yi j )2
yi jy

τ
i j

}

−
N∑
i=1

ni∑
j=1

γ (1 − γ )eθ
τ yi j

{1 + γ (eθτ yi j − 1)}2 yi jy
τ
i j,

∂2l(θ, γ )
∂γ 2 =

N∑
i=1

ni∑
j=1

{eθτ yi j − 1}2
{1 + γ (eθτ yi j − 1)}2 ,

∂2l(θ, γ )
∂θ∂γ

= −
N∑
i=1

ni∑
j=1

eθ
τ yi j

{1 + γ (eθτ yi j − 1)}2 yi j.

Then � is defined to be

� = (
D12D−1

22 D21 − D11
)−1

, (A.1)

where D11 = E{ 1
N
∂2 l(θ0,γ0 )

∂θ∂θ
τ }, D12 = Dτ

21 = E{ 1
N
∂2 l(θ0,γ0 )

∂θ∂γ
}, D22 =

E{ 1
N
∂2 l(θ0,γ0 )

∂γ 2 }, and γ0 = 0.25. The meaning of γ0 is discussed in
Section 3 of the supplementary document.
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A.2. Form of�(s1, s2)

Let w(xi j) = 0.5 + 0.5eθ
τ
0yi j and

N,F (x) =
⎧⎨
⎩

N∑
i=1

ni∑
j=1

I(xi j ≤ x)
NE(n1)

1
0.5 + 0.5w(xi j)

− F(x)

⎫⎬
⎭

−C1,x(γ̂ − γ0)− Cτ2,x(θ̂ − θ0)

with C1,x = E[I(xi j ≤ x)(eθ
τ
0yi j − 1){0.5 + 0.5w(xi j)}−2] and

C2,x = E[I(xi j ≤ x)γ0eθ
τ
0yi j {0.5 + 0.5w(xi j)}−2yi j]. Further, let

N,G(x) =
⎧⎨
⎩

N∑
i=1

ni∑
j=1

I(xi j ≤ x)
NE(n1)

eθ
τ
0yi j

0.5 + 0.5w(xi j)
− G(x)

⎫⎬
⎭

−C3,x(γ̂ − γ0)− Cτ4,x(θ̂ − θ0)

with C3,x = E[I(xi j ≤ x)eθ
τ
0yi j (eθ

τ
0yi j − 1){0.5 + 0.5w(xi j)}−2] and

C4,x = E[I(xi j ≤ x)(1 − γ0)eθ
τ
0yi j {0.5 + 0.5w(xi j)}−2yi j].

It is shown in the supplementary material that

F̂(x)− F(x) = N,F (x)+ Op(N−1),

Ĝ(x)− G(x) = N,G(x)+ Op(N−1).

Further, let �N (s) = (N,F (x),N,G(y))τ with s = (x, y)τ . Then
�(s1, s2) is defined as

�(s1, s2) = lim
N→∞

NE
{
�N (s1)�τ

N (s2)
}
. (A.2)

SupplementaryMaterials

The online web appendix contains more simulation studies, more
details for the EM-algorithm in Section 2.2, and detailed proofs of
Theorems 1–3.
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