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Semiparametric inference in a genetic mixture model

Pengfei Li, Yukun Liu, and Jing Qin∗
Abstract

In genetic backcross studies, data are often collected from complex mixtures of distribu-

tions with known mixing proportions. Previous approaches to the inference of these genetic

mixture models involve parametrizing the component distributions. However, model misspec-

ification of any form is expected to have detrimental effects. We propose a semiparametric

likelihood method for genetic mixture models: the empirical likelihood under the exponential

tilting model assumption, in which the log ratio of the probability (density) functions from the

components is linear in the observations. An application to mice cancer genetics involves ran-

dom numbers of offspring within a litter. In other words, the cluster size is a random variable.

We wish to test the null hypothesis that there is no difference between the two components

in the mixture model, but unfortunately we find that the Fisher information is degenerate. As

a consequence, the conventional two-term expansion in the likelihood ratio statistic does not

work. By using a higher-order expansion we are able to establish a nonstandard convergence

rate N−1/4 for the odds ratio parameter estimatorβ̂. Moreover, the limiting distribution of

the empirical likelihood ratio statistic is derived. The underlying distribution function of each

component can also be estimated semiparametrically. Analogously to the full parametric ap-

proach, we develop an expectation and maximization algorithm for finding the semiparametric

maximum likelihood estimator. Simulation results and a real cancer application indicate that

the proposed semiparametric method works much better than parametric methods.
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1 Introduction

Finite mixture models have been widely used in psychological, social, and medical research, and

more recently in biomedical and genetic studies; see for example Sham (1998), Ott (1999), and

Efron (2010). A finite mixture model is a probabilistic model for the presence of finitely many

subpopulations within an overall population, when the observed data do not have direct informa-

tion on which subpopulations they come from. For an observed dataset, one needs to find the

subpopulation origin using appropriate statistical modeling methods.

The finite mixture models of particular interest in this paper come from the backcross design,

which has recently become popular in animal study and plant research. In the backcross design,

the hybrid and the progenies in subsequent generations are repeatedly backcrossed to one of the

parents. Backcrossing may be deliberately employed in animals to transfer a desirable trait in an

animal of inferior genetic background to an animal of superior genetic background. As a result,

the genotype of the backcross progeny becomes increasingly similar to that of the recurrent parent.

In backcrossing studies, the collected data often follow complex mixtures of distribution functions

where the mixing proportions are known (Hoff, 2000a; Zou et al., 2002). Hoff (2000a), Hoff

(2000b), and Hoff et al. (2002) discussed the application of this type of mixture model in cancer

genetic studies. Suppose mice with the DD genotype have phenotypes distributed according to

f (x); while mice with the Dd genotype have phenotypes distributed according tog(x). A kindred

founder mouse with the Dd genotype is bred to one with the DD genotype to produce a new

population. The mice in this new population are referred to as subkindred founders; see Fig. 1. The

law of Mendelian inheritance implies that the genotype of each subkindred founder is Dd or DD,

each with probability 50%. The subkindred founders are then mated with a separate population

with the DD genotype. The population of the resulting offspring is referred to as the NF population.

The phenotypes of this population are then recorded. The data consist of the phenotypes of the
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offspring ofN subkindred founders, i.e., the phenotypes of anN-litter of mice,

x1 = (x11, . . . , x1n1), . . . , xN = (xN1, . . . , xNnN)

where within theith litter, the number of offspringni is a random variable.

The Mendelian law tells us that conditioning on the litter sizeni the densities of the phenotypes

of theni offspring have a joint mixture density with mixture proportion 0.5:

h(xi) = 0.5
ni∏

j=1

f (xi j ) + 0.5
ni∏

j=1

{0.5 f (xi j ) + 0.5g(xi j )}. (1.1)

In this case the main interest is to estimatef andg or some functionals off andg. Hoff (2000a)

discussed a technique for calculating the maximum likelihood estimation of probability measures

when it is assumed that the measures are constrained to a compact convex set. More on the ap-

plication of model (1.1) and some variations in genetic studies can be found in Section 4 of Hoff

(2000a).

A natural choice forf (x) andg(x) is the normal distribution. However, in practice these distri-

butions may not be continuous, let alone normal: in the example given by Hoff (2000b) and Hoff

et al. (2002), the phenotype is the tumor count. In the genetics literature little is known about the

finite mixture model when the underlying distributions are not fully parametrized. However, model

misspecification is a major concern for geneticists since it may lead to biased estimation; see, for

example, Sham (1998). It is therefore desirable to make inference on the underlying parameters

under minimal assumptions on the underlying component distributions.

Anderson (1979) introduced the semiparametric exponential tilting model into the finite mix-

ture model. In this model the underlying densities of the two components are assumed to satisfy

an exponential tilting model. Specifically,

g(x)/ f (x) = exp(α + βx), (1.2)

where the forms off andg are not specified beyond this ratio. This model is analogous to the

popular two-sample Lehmann’s alternative and the Cox proportional hazard, where the two under-

lying hazard functions are not specified but the ratio of the hazards has a known parametric form.
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Many familiar exponential families satisfy this model, for example, two normal distributions with

different means but a common variance; two exponential distributions; and two negative binomial

distributions with different means but the same shape or dispersion parameter. A quadratic term

is needed in the model if the two normal distributions have different variances. Moreover, the

exponential tilting model has a natural connection to logistic regression if one treatsδ = 0,1 as

indicators for the groups with the DD and Dd genotypes, respectively. Among others, Anderson

(1979) and Qin (1999) observed that the exponential tilting model is equivalent to the logistic

regression model by using the fact that

P(δ = 0|x) =
1

1+ exp(α∗ + βx)
,

whereα∗ = α + log{P(δ = 1)/P(δ = 0)}. Therefore, the exponential tilting approach can be used

to predict the genotype for a given phenotype.

Kay and Little (1987) found that the exponential tilting model in (1.2) can be used in various

transformed versions. For example,

g(x)/ f (x) = exp(α + β log x) = xβ exp(α).

This is a biased sampling problem discussed by Vardi (1985). In the special casesβ = 1,2,3 it

corresponds to the case where the probability of being sampled is proportional to the associated

length, area, or volume, respectively (Cox, 1969; Patil and Rao, 1978; Vardi, 1982).

In this paper we adapt Anderson (1979)’s approach to the genetic mixture model in (1.1).

Throughout this paper, unless otherwise stated, all developments are conditional on the litter size

ni. Under model (1.2), the joint densities of the phenotypes of theni offspring become

h(xi) =


0.5+ 0.5(1+ni )

ni∏

j=1

{1+ exp(α + βxi j )}




ni∏

j=1

f (xi j ). (1.3)

Note that the underlying parameters cannot be identified from the marginal density

hm(xi j ) = {0.75+ 0.25 exp(α + βxi j )} f (xi j )
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if the density f is not specified, since the finite-dimensional parametersα andβ are absorbed by

the nonparametric densityf (Zou et al., 2002). In this paper, we require that on average the litter

size should be at least two, so that the parameters (α, β, f ) can be identified from model (1.3). In

fact,h(xi) andhm(xi j ) can be consistently estimated by empirical densities. Therefore,

h(xi)∏ni
j=1 hm(xi j )

=
0.5+ 0.5(1+ni )

∏ni
j=1{1+ exp(α + βxi j )}

∏ni
j=1{0.75+ 0.25 exp(α + βxi j )}

can be identified. As a result, (α, β) and the cumulative distribution functionF of f can be consis-

tently estimated.

The exponential tilting model has been investigated extensively in the literature due to its flex-

ibility and efficiency. Recently, Chen and Liu (2013) have found an application of this model in

the study of Canadian lumber. Liu et al. (2013) used the model to link the scalar scores of HIV

patients with viral failure and those with viral suppression. Carvalho and Davison (2014) applied

the model to study the dependence between extreme air temperatures under the forest canopy and

in a nearby open field at 14 sites in Switzerland. It is worth pointing out that all these studies

considered only situations with a standard convergence rate, i.e.,N−1/2. The results in this paper

disclose an estimator ofβ with anN−1/4 convergence rate when the true value ofβ is zero.

In the proposed inference procedure, we handle the nonparametricf (x) by the well-known

empirical likelihood method (Owen, 2001). Compared with the previous approaches of Anderson

(1979), Qin (1999), Zou et al. (2002), and Tan (2009), our application of empirical likelihood to

the exponential tilting mixture model has three major differences:

1) We have only a single random sample in the mice application. Hence, there are no direct

observations fromf andg or multiple mixture samples off andg as considered in Zou et al. (2002)

and Tan (2009). In other words, the model considered in this paper is fundamentally different from

those in Zou et al. (2002) and Tan (2009), which results in different asymptotic properties of the

maximum empirical likelihood estimator ofβ when the true value ofβ is zero. More details are

given in Section 2.3.
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2) Even in the literature on empirical likelihood and selection biased sampling problems (Vardi,

1985), there is a lack of general large-sample theory for the summation of random numbers of ran-

dom variables. Our mice application involves the number of offspring within a litter or the cluster

size, which is a bounded random variable. The theoretical derivation becomes rather complex and

tedious; see the proofs in the supplementary material.

3) Since the Fisher information is degenerate under the nullf = g or β = 0, a fourth-order

Taylor expansion for the likelihood ratio statistic is required to derive its limiting distribution. As a

result, the proof is extremely complex compared with existing proofs for related problems, where

a second-order Taylor expansion suffices.

The organization of this paper is as follows. In Section 2, we present the empirical likelihood

inference approach for the mice genetic mixture model in (1.1) under the exponential tilting model

assumption in (1.2). An EM-algorithm is suggested for finding the maximum empirical likelihood

estimates of the unknown parameters/functions. We show that the limiting distribution of the

empirical likelihood ratio test for testingH0 : β = β0 is 0.5χ2
0 + 0.5χ2

1, an equal mixture of a

distribution with point mass at zero and aχ2
1 distribution, if the true valueβ0 of β is 0; and it isχ2

1 if

β0 , 0. Further, the convergence rate of the maximum empirical likelihood estimator ofβ is N−1/4

whenβ0 = 0; and it becomesN−1/2 whenβ0 , 0. Whenβ0 , 0, the maximum empirical likelihood

estimator of (α, β) has an asymptotic joint normal distribution, and the underlying distribution

function of each component can also be estimated with the rateN−1/2. We present a simulation

study in Section 3 and discuss a real example in Section 4. Section 5 provides concluding remarks.

For convenience of presentation, all the proofs are given in a supplementary document.
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2 Semiparametric likelihood for genetic mixture model

2.1 Parameter estimation

Let pi j = dF(xi j ). Then it follows from model (1.2) thatdG(xi j ) = exp(α + βxi j )pi j . Based on the

givenxi j ’s, the empirical likelihood of (α, β, F) is defined as

LN(α, β, F) =

N∏

i=1





[
0.5+ 0.5(1+ni )

ni∏

j=1

{1+ exp(α + βxi j )}
] ni∏

j=1

pi j




. (2.4)

The feasiblepi j ’s satisfy

pi j ≥ 0,
N∑

i=1

ni∑

j=1

pi j = 1,
N∑

i=1

ni∑

j=1

pi j {exp(α + βxi j ) − 1} = 0, (2.5)

which implies that the empirical likelihood modelsF by F(x) =
∑N

i=1

∑ni
j=1pi j I (xi j ≤ x).

Inferences about (α, β) are usually made through the profile empirical likelihood or log-likelihood

function, lN(α, β) = supF log{LN(α, β, F)}, where the maximum is taken under constraint (2.5)

given (α, β). By the Lagrange multiplier method, we find that

pi j = pi j (α, β) =
1

∑N
i=1 ni

1
1+ γ(eα+βxi j − 1)

,

whereγ is the solution to

N∑

i=1

ni∑

j=1

eα+βxi j − 1
1+ γ(eα+βxi j − 1)

= 0.

The resulting profile empirical log-likelihood is

lN(α, β) =
N∑

i=1

log




0.5+ 0.5(1+ni )

ni∏

j=1

(1+ eα+βxi j )




−

N∑

i=1

ni∑

j=1

log{1+ γ(eα+βxi j − 1)}. (2.6)

Let the maximum empirical likelihood estimator of (α, β) be (α̂, β̂) = arg supα,β lN(α, β). We

then estimate the cumulative distribution functionsF(x) andG(x) by

F̂(x) =
N∑

i=1

ni∑

j=1

p̂i j I (xi j ≤ x) and Ĝ(x) =
N∑

i=1

ni∑

j=1

p̂i j e
α̂+β̂xi j I (xi j ≤ x),
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respectively, where ˆpi j = pi j (α̂, β̂). We further estimate the population meansμF andμG of F(x)

andG(x) respectively by

μ̂F =

N∑

i=1

ni∑

j=1

p̂i j xi j and μ̂G =

N∑

i=1

ni∑

j=1

p̂i j e
α̂+β̂xi j xi j ,

and the population variancesσ2
F andσ2

G of F(x) andG(x) respectively by

σ̂2
F =

N∑

i=1

ni∑

j=1

p̂i j (xi j − μ̂F)2 and σ̂2
G =

N∑

i=1

ni∑

j=1

p̂i j e
α̂+β̂xi j (xi j − μ̂G)2.

The explicit forms of ( ˆα, β̂) and the ˆpi j ’s are unknown in general. In the next subsection, we present

an EM-algorithm to search for these estimates.

2.2 EM-algorithm

Since the genotype of each observation is missing, we need to deal with the complicated mix-

ture structure in the likelihood (2.4), which makes the maximization of (2.6) difficult. The EM-

algorithm naturally fits into our problem. We first define the missing data. Letzi j = 1 if the

jth mouse in theith litter has the Dd genotype, and 0 if thejth mouse in theith litter has

the DD genotype. That is, thezi j ’s are the missing labels for all the observations. Further, let

X = (x11, ∙ ∙ ∙ , xNnN) be the observed phenotypes,Z = (z11, ∙ ∙ ∙ , zNnN) be the missing labels, and

Θ = (α, β, p11, ∙ ∙ ∙ , pNnN).

Conditional onzi j = 1 or 0, xi j has the cumulative distribution functionG(x) or F(x), respec-

tively. Further thexi j ’s are conditionally independent given thezi j ’s. It can be verified that

P(zi1 = ∙ ∙ ∙ = zini = 0) = 0.5+ 0.5ni+1 andP(zi1 = ai1, . . . , zini = aini ) = 0.5ni+1

for ai j = 0 or 1, and (ai1, . . . , aini ) , (0, . . . , 0). Hence, based on the complete data{X,Z}, the

log-likelihood ofΘ has the following form (up to a constant not depending onΘ):

lc(Θ) =
N∑

i=1

ni∑

j=1

{(1− zi j ) logdF(xi j ) + zi j logdG(xi j )} =
N∑

i=1

ni∑

j=1

{zi j (α + βxi j ) + log(pi j )},

9
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where we have used the exponential tilting model assumption in (1.2). The concise form of the

complete log-likelihood makes it convenient to develop the EM algorithm.

The core of the EM-algorithm is the EM-iteration, which contains an E-step and an M-step.

We useΘ(r−1) = (α(r−1), β(r−1), p(r−1)
11 , ∙ ∙ ∙ , p(r−1)

NnN
) to denote the value ofΘ afterr − 1 EM-iterations,

r = 1,2, . . .. Whenr = 1,Θ(0) denotes the initial value ofΘ.

In the E-step of therth iteration, we need to calculate

Q(Θ|Θ(r−1)) = E
{
lc(Θ)|X,Θ(r−1)

}
=

N∑

i=1

ni∑

j=1

{E(zi j |xi ,Θ
(r−1))(α + βxi j ) + log pi j },

where the expectation is with respect to the conditional distribution ofZ givenX and usingΘ(r−1)

for Θ. Let w(r)
i j = E(zi j |xi ,Θ

(r−1)). In the supplementary material, we show that

w(r)
i j =

∏ni
k=1(0.5+ 0.5eα

(r−1)+β(r−1)xik)

1+
∏ni

k=1(0.5+ 0.5eα(r−1)+β(r−1)xik)
∙

eα
(r−1)+β(r−1)xi j

1+ eα(r−1)+β(r−1)xi j
. (2.7)

In the M-step of therth iteration, we updateΘ byΘ(r), which maximizes

Q(Θ|Θ(r−1)) =
N∑

i=1

ni∑

j=1

{w(r)
i j (α + βxi j ) + log(pi j )}

with respect toΘ under the constraints in (2.5). Using the approach of Zhang (2002), we can

perform the above maximization in the following steps (see the detailed explanation in the supple-

mentary material):

Step 1. Update

p(r)
i j (α, β) =

1
∑N

i=1 ni

1
1− γ(r) + γ(r) exp(α + βxi j )

,

whereγ(r) =
∑N

i=1

∑ni
j=1 w(r)

i j /
∑N

i=1 ni .

Step 2. Substitutep(r)
i j (α, β) into theQ-function to get

Q(r)(α, β
)

=

N∑

i=1

ni∑

j=1

[
w(r)

i j (α + βxi j ) + log
{
p(r)

i j (α, β)
}]

=

N∑

i=1

ni∑

j=1

[
w(r)

i j (α + βxi j ) − log{1− γ(r) + γ(r) exp(α + βxi j )}
]
+ constant,

10
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where the constant does not depend on (α, β). MaximizeQ(r)(α, β
)

to get (α(r), β(r)).

Step 3. Updatepi j via

p(r)
i j =

1
∑N

i=1 ni

1
1− γ(r) + γ(r) exp(α(r) + β(r)xi j )

.

The E-step and M-step are iterated until convergence.

We make two remarks about the above EM-algorithm. First, following the proof in Dempster,

Laird, and Rubin (1977) and that in Zhang (2002), we can show that the empirical likelihood

LN(α, β, F) does not decrease after each iteration. That is, forr ≥ 2

LN(α(r), β(r), F(r)) ≥ LN(α(r−1), β(r−1), F(r−1)).

Further, note thatLN(α, β, F) =
∏N

i=1

{
0.5

∏ni
j=1 pi j + 0.5

∏ni
j=1(0.5pi j + 0.5qi j )

}
≤ 1 andLN(α, β, F)

is a continuous function of all the unknown parameters. Then the sequence
{
LN(α(r), β(r), F(r))

}

eventually converges to a stationary value ofLN(α, β, F) for a given initial valueΘ(0) (Wu, 1983).

However, this stationary value may not be a global maximum. Even in the full parametric mixture

model, there is no guarantee that the EM algorithm leads to the global maximum. The semipara-

metric approach has the same problem. To increase the possibility of finding the global maximum,

we recommend using multiple initial values. Our simulation results demonstrate that this method

works well. Second, in practice, we may stop the algorithm when the increment in the log empiri-

cal likelihood after an iteration is no greater than, say, 10−6. The EM-algorithm converges very fast

according to our simulations. For instance, for the real data analyzed in Section 4, the algorithm

stops after 21 iterations starting from (α(0), β(0)) = (1,−1). Further, it takes less than one second for

the above calculation in an IMAC with a 3.4-GHz Intel Core i7 processor.

11
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

E
as

t C
hi

na
 N

or
m

al
 U

ni
ve

rs
ity

] 
at

 2
1:

43
 2

0 
Ju

ly
 2

01
6 



ACCEPTED MANUSCRIPT

2.3 Asymptotic properties

One problem of practical and scientific interest is whether or not the phenotype distributions of

the mice with the DD genotype and those with the Dd genotype are the same, or equivalently

β = 0 or β , 0. In this subsection, we first investigate the asymptotic properties of the empirical

log-likelihood ratio test (ELRT) under model (1.3) for the null hypothesisH0 : β = 0.

Define the empirical log-likelihood ratio function ofβ as

RN(β) = 2{lN(α̂, β̂) − sup
α

lN(α, β)}.

The following theorem presents the limiting distribution ofRN(0) underH0.

Theorem 1. Suppose2 ≤ ni ≤ C for some given positive integer C, the xi j ’s take at least two

values and are independent of ni, and
∫

eβx f (x)dx < ∞ in a neighborhood ofβ = 0. Under the

null hypothesis H0 : β = 0, as N→ ∞ we have

(a) β̂ = Op(N−1/4);

(b) the limiting distribution of RN(0) is 0.5χ2
0+0.5χ2

1, an equal mixture of a distribution with point

mass at zero and aχ2
1 distribution.

For presentational continuity, the proofs of Theorem 1 and those for Theorems 2 and 3 are

given in the supplementary document. The assumption that
∫

eβx f (x)dx < ∞ in a neighborhood

of β = 0 implies the existence of the moment generating function ofxi j and therefore all its finite

moments. This fact will be used in our proofs of Theorems 1 and 2.

If the true value ofβ is not equal to 0, the large-sample properties of the empirical likelihood

estimatorβ̂ and the empirical log-likelihood ratio for testingH0 : β = β0 for β0 , 0 are different

from those in Theorem 1.

Theorem 2. Let (α0, β0) denote the true value of(α, β) and assume(α0, β0) , (0,0). Suppose

2 ≤ ni ≤ C for some given positive integer C, the xi j ’s take at least two values and are independent

12
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of ni, and
∫

eβx f (x)dx< ∞ in a neighborhood ofβ = β0 andβ = 0. LetΣ be the matrix defined in

Equation(A.1), and assumeΣ is positive definite . As N→ ∞,

(a) the limiting distribution of
√

N(α̂ − α0, β̂ − β0)τ is N(0,Σ);

(b) the limiting distribution of RN(β0) is χ2
1.

We now give some insight into the difference between the asymptotic results in Theorems 1

and 2. In the proof of Theorem 1, we encounter two types of irregularities. First,β = 0 implies

thatα = 0, which means thatα andβ are not completely free at the null hypothesisH0 : β = 0.

This irregularity was first pointed out by Zou et al. (2002) when they applied the exponential tilting

model to mixtures of two univariate distributions with known mixing proportions. To overcome

this irregularity, Zou et al. (2002) proposed a partial empirical likelihood method. They further

showed that the maximum partial likelihood estimator ofβ is
√

N consistent and asymptotically

normal whether or notβ = 0, and the profile log-likelihood ratio for testingβ = 0 has aχ2
1 limiting

distribution. Their results are in sharp contrast to our Theorem 1. This is because of the second type

of irregularity, degenerate Fisher information atβ = 0, in our set-up. LetplN(β) = supα lN(α, β). It

can be verified that

E

[
d2plN(β)

dβ2

∣∣∣∣
β=0

]

= 0.

This implies that after profiling outα, the Fisher information ofβ is degenerate atβ = 0. Tan

(2009) showed that afterα is profiled out, the Fisher information ofβ is not degenerate under the

set-up of Zou et al. (2002) whether or notβ = 0. Hence,
√

N consistency and an asymptoticχ2
1

limiting distribution are expected for the maximum partial likelihood estimator ofβ and the profile

log-likelihood ratio for testingβ = 0, respectively. However, in our set-up, degenerate Fisher

information atβ = 0 results in the second-order Taylor expansion being insufficient to approximate

lN(α, β) in the neighborhood of (0,0). In the supplementary material, we show that it is necessary

to use a fourth-order Taylor expansion to approximatelN(α, β), and hence the convergence rate of

β̂ becomesN−1/4 instead ofN−1/2 when the true value ofβ is 0. When the true valueβ0 of β is

13
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not equal to 0, the above two types of irregularity do not exist. Therefore, a second-order Taylor

expansion is sufficient to find the leading term oflN(α, β) in the neighborhood of (α0, β0). The

quadratic approximation oflN(α, β) enables us to derive theχ2
1 limiting distribution ofRN(β0) and

the joint asymptotic normality of ( ˆα, β̂).

Now we consider the asymptotic properties of the proposed estimatorsF̂(x) andĜ(x) of F(x)

andG(x) when (α0, β0) , (0,0). Because of the
√

N-consistency and joint asymptotic normality

of (α̂, β̂), we have the following results for̂F(x) andĜ(x), which imply thatF̂(x) andĜ(x) are

consistent and have the convergence rateN−1/2.

Theorem 3. Assume the conditions of Theorem 2. As N→ ∞, we have that
√

N{F̂(x)−F(x), Ĝ(y)−

G(y)} converges weakly to a bivariate Gaussian processB(s) with zero mean, independent incre-

ment, and covariance structureΩ(s1, s2) defined in(A.2). Here s = (x, y)τ, s1 = (x1, y1)τ, and

s2 = (x2, y2)τ.

3 Simulation study

3.1 Setup

In this section, we conduct Monte Carlo simulation to provide insight into the following questions:

(a) When testingH0 : β = 0, does the limiting distribution provide an accurate approximation

to the finite-sample distribution of the ELRT? Is the ELRT comparable to the parametric

likelihood ratio test (PLRT) when the model is correctly specified and more powerful when

the model is misspecified?

(b) If the true value ofβ is nonzero, are the proposed maximum EL estimators forμF, μG, σ2
F,

σ2
G, F(x), andG(x) comparable to those based on the correct model, and more efficient than

those based on the misspecified model?
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In our simulation studies, we use a tumor-count dataset (Hoff, 2000b) that contains the tumor

counts of 21 litters of mice. Drinkwater and Klotz (1981) and Hoff et al. (2002) suggested using a

negative binomial distribution to model this dataset. To generate data from Model (1.1), we need

to specify f (x), g(x), and the distribution ofni. We consider two scenarios forf (x) andg(x) below.

Scenario I:We choosef (x) andg(x) to be the probability mass functions of two negative

binomial distributions with the common shape or dispersion parameterη and meansμF and

μG, respectively. That is,

f (x) =
Γ(x+ η)

Γ(x+ 1)Γ(η)

( η

η + μF

)η( μF

η + μF

)x
, (3.8)

g(x) =
Γ(x+ η)

Γ(x+ 1)Γ(η)

( η

η + μG

)η( μG

η + μG

)x
. (3.9)

Then log{g(x)/ f (x)} = α + βx with

α = η log
η + μF

η + μG
andβ = log

μG(η + μF)
μF(η + μG)

. (3.10)

Therefore, the ratiog(x)/ f (x) satisfies the exponential tilting model in (1.2).

Scenario II:We first fit the tumor-count dataset in Hoff (2000b) by the proposed estimation

procedure and obtain the maximum empirical likelihood estimatorf̂ (x) of f (x), the probabil-

ity mass function for the phenotype of mice that are noncarriers of the particular allele. The

cumulative distribution function of̂f (x) is given in Section 4. We then setf (x) to f̂ (x) and

g(x) such thatg(x)/ f (x) satisfies the exponential tilting model in (1.2). The specific value of

β will be given later.

In all scenarios, theni ’s are randomly generated from the set{3,4,4,5,8,8,8,8,9,9,10,13,

15,16,16,17,17,18,19,20,22}; these are the litter sizes of the 21 litters of mice in the tumor-count

dataset.
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We fit the data generated from each scenario by the exponential tilting model in (1.2) with the

empirical likelihood, and the parametric model in (3.8)–(3.9) with the parametric likelihood, re-

spectively. It is worth mentioning that the exponential tilting model assumption is always satisfied

in both scenarios. However, the parametric model in (3.8)–(3.9) is valid only in Scenario I. Hence,

the parametric model is misspecified in Scenario II for any estimation and testing procedures.

3.2 TestingH0 : β = 0

The purpose of this subsection is to address question (a). We first check the performance of the

limiting distribution. We setη = 5,μF = μG = 4 in Scenario I, andβ = 0 in Scenario II. We choose

N = 20, which is close to the number of litters in the tumor-count dataset. We calculate the type I

error rates of the ELRT under the exponential tilting model assumption (1.2) and of the PLRT under

the parametric model assumption in (3.8)–(3.9) based on 50,000 repetitions. Recall that for both

scenarios, the model is correctly specified for the ELRT, while for the PLRT the model is correct

under Scenario I but misspecified under Scenario II. At the 5% and 1% levels, the simulated type I

error rates of the ELRT are respectively 5.9% and 1.3% under Scenario I, and 6.2% and 1.4% under

Scenario II. In comparison, those for the PLRT are respectively 6.2% and 1.3% under Scenario I,

and 23.2% and 8.8% under Scenario II. Clearly, the limiting distribution of the ELRT provides a

satisfactory approximation to the finite-sample distribution under both scenarios. If the parametric

model is correct (i.e., Scenario I), the limiting distribution of the PLRT also works reasonably well,

but if the model is misspecified (i.e., Scenario II), this distribution is stochastically much smaller

than the finite-sample distribution. Hence, in this case the type I error rates of the PLRT based on

the limiting distribution are much larger than the corresponding true values.

Next we compare the powers of the ELRT and PLRT under alternative models. In Scenario I,

we setη = 5, μG = 4, and choose 10 values ofβ: −0.05, . . . ,−0.5 with μF being determined by

(3.10). The same 10 values forβ are considered in Scenario II. For a fair comparison, we take the
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simulated distributions of the ELRT and PLRT under the null hypothesis based on 50,000 repeti-

tions as reference distributions, and we calculate their P-values and critical values. The powers of

the ELRT and PLRT under the alternative models are calculated based on 2000 repetitions. We

still consider the sample sizeN = 20. The results under the 5% and 1% significance levels are

plotted in Fig. 2. We can see that if the model is correctly specified for both the ELRT and PLRT

(i.e., Scenario I), then the ELRT and PLRT have almost the same power for detecting a difference

betweenf (x) andg(x). However, if the model is misspecified (i.e., Scenario II) for the PLRT, then

the PLRT is less powerful than the ELRT.

3.3 EstimatingμF , μG, σ
2
F , σ

2
G, F(x), and G(x)

We now address question (b). We chooseη = 5, μG = 4, μF = 12, 18, and 24 in Scenario I, and

β = −0.3,−0.45,−0.6 in Scenario II. In Scenario II,μF = 19.58; the values ofμG corresponding to

β = −0.3, −0.45, and−0.5 are 6.96, 4.84, and 3.47, respectively. We consider two choices ofN:

20 and 200.

We first compare the estimation of (μF , σ
2
F) and (μG, σ

2
G). We use (ˆμF,p, σ̂

2
F,p) and (μ̂G,p, σ̂

2
G,p) to

denote the estimates of (μF , σ
2
F) and (μG, σ

2
G), respectively, under the parametric model assumption

in (3.8)–(3.9). Tables 1 and 2 give the bias, variance (Var), and mean square error (MSE) for

each estimator based on 2000 repetitions under the two scenarios. As expected, the parametric

maximum likelihood estimators of (μF , σ
2
F) and (μG, σ

2
G) based on the correct model (i.e., Scenario

I) are more efficient than the maximum empirical likelihood estimators. We also observe that the

maximum empirical likelihood estimator of (μF , σ
2
F) is comparable to the maximum likelihood

estimator when the sample size is large. When the parametric model is misspecified (i.e., Scenario

II), the maximum empirical likelihood estimators of (μF , σ
2
F) and (μG, σ

2
G) are more efficient (in

most cases) than or at least comparable to the maximum parametric likelihood estimators. For both

methods, asN increases, the MSEs decrease, as expected.
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Now we turn to the estimation ofF(x) andG(x). We useF̂p(x) andĜp(x) to denote the respec-

tive estimators ofF(x) andG(x) under the parametric model. The Kolmogorov–Smirnov distance

between the estimated and true cumulative distribution functions is used as a basis for comparison.

Table 3 gives the average Kolmogorov–Smirnov distance based on 2000 repetitions. When the

parametric model is correct (Scenario I), the parametric estimators ofF(x) andG(x) are more ac-

curate than the proposed distribution estimators. If the parametric model is misspecified (Scenario

II), the proposed estimators become more accurate. This provides evidence for the robustness of

the proposed estimators. Finally, the Kolmogorov–Smirnov distances of both methods decrease as

N increases under each model.

In the supplementary material, we consider one more scenario in addition to Scenarios I and

II, in which the parametric model is correctly specified while the exponential tilting model is

misspecified. We summarize the observations as follows:

• model misspecification on the exponential tilting model seems to have no effect on the type

I error rate and the power of the ELRT for testingH0 : β = 0;

• as expected, model misspecification deteriorates the performance of the maximum empirical

likelihood estimators of (μF , σ
2
F), (μG, σ

2
G), F(x), andG(x).

We comment that since the exponential tilting model assumption is weaker than the full parametric

model, in general we are not likely to misspecify the exponential tilting model but correctly specify

the parametric model.

4 Real example

Hoff (2000b) analyzed a tumor-count dataset collected from 74 subkindreds, with tumor counts

from 968 mice. His analysis was based on the tumor counts from 21 randomly selected litters.

Following Hoff (2000b), we also analyzed the observations from these 21 litters.
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Panel (a) of Figure 3 presents the estimates ofF(x) andG(x) under the exponential tilting model

assumption in (1.2) and the parametric model assumption in (3.8)–(3.9). Panel (b) of Figure 3 dis-

plays three estimates of the marginal distribution of the tumor countsxi j , 0.75F(x)+0.25G(x): the

marginal empirical distribution, the proposed estimate 0.75F̂(x)+ 0.25Ĝ(x) based on the exponen-

tial tilting model, and the estimate 0.75F̂p(x) + 0.25Ĝp(x) based on the parametric model. We can

see in panel (a) that the two estimates ofG(x) are almost the same, while the two estimates ofF(x)

are apparently different whenx is between 30 and 50. In panel (b), we observe that the proposed

estimate is almost the same as the marginal empirical distribution ofxi j , and both are apparently

different from the parametric estimate whenx is between 30 and 50. Therefore, the exponential

tilting model is more suitable than the parametric model for modeling the tumor counts. We con-

clude that the proposed estimatesF̂(x) andĜ(x) are more reliable than the parametric estimates

F̂p(x) andĜp(x).

Further, we apply the ELRT to testH0 : β = 0. The test statistic is found to be 57.738, which

gives a P-value around 0 calibrated by the limiting distribution. For (μF , σ
2
F) and (μG, σ

2
G), un-

der the exponential tilting model, we get ( ˆμF , σ̂
2
F) = (19.58,128.11) and (μ̂G, σ̂

2
G) = (4.32,9.67).

The above results provide strong evidence thatF(x) andG(x) are different, and furtherμG < μF,

i.e., the mean of the phenotype of mice with the Dd genotype is smaller than that of mice with

the DD genotype. This finding is in accordance with scientific knowledge that the particular al-

lele d suppresses the tumor-causing effects (Hoff, 2000b). Under the parametric model, we get

(μ̂F,p, σ̂
2
F,p) = (18.09,85.16) and (μ̂G,p, σ̂

2
G,p) = (4.23,7.89). According to our simulation experi-

ence and Fig. 3, the estimates based on the exponential tilting model are more reliable.

Based on the estimates ofF(x) andG(x) under the exponential tilting and parametric models,

we calculate the posterior probability that a subkindred founder carries the alleled. Panel (a) of

Figure 4 compares the posterior probabilities for all 21 subkindred founders under the two models.

To have a clearer picture of the lower-left and upper-right corners of Panel (a), we further compare

the posterior probabilities for the eight subkindred founders under the lower left corner of Panel
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(a) in Panel (b) and those for the seven subkindred founders under the upper right corner of Panel

(a) in Panel (c). The posterior probabilities from the exponential tilting model are larger than those

from the parametric model. Since the exponential tilting model provides a better fit, we believe

that the posterior probabilities from this model are more reliable.

5 Concluding remarks

In this paper we have explored a semiparametric approach to the genetic mixture model. The the-

oretical results show that the semiparametric approach has many nice statistical properties that are

analogous to those of the full parametric likelihood. Moreover, the numerical results demonstrate

that the efficiency loss from the semiparametric mixture model compared to the full parametric

model is small if the underlying full parametric model is correctly specified. On the other hand,

the semiparametric method is more robust than the full parametric approach. The results of the

mice data analysis strongly support our semiparametric approach.

The methods discussed in this paper can be generalized to other applications of mixture models.

For example, Hoff (2000a) proposed an alternative model for the data presented in the Introduction.

This model considers both azygoticeffect and amaternaleffect of alleled. A mouse in the NF

population experiences the zygotic effect if the animal has the Dd genotype and experiences the

maternal effect if the animal’s mother has the Dd genotype. This gives rise to four categories of

animals with four potentially different tumor count distributions. The tumor count of a mouse in

the NF population is distributed according to

• f1(x) if the animal is subject to both maternal and zygotic effects, i.e., the animal and its

mother both have the Dd genotype;

• f2(x) if the animal is subject to the maternal effect only, i.e., the animal has the DD genotype

and its mother has the Dd genotype;
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• f3(x) if the animal is subject to the zygotic effect only, i.e., the animal has the Dd genotype

and its mother has the DD genotype;

• f4(x) if the animal is subject to neither, i.e., the animal and its mother both have the DD

genotype.

If the ith subkindred founder is female, then conditional onni, the joint density ofxi is

0.5
ni∏

j=1

f4(xi j ) + 0.5
ni∏

j=1

{0.5 f1(xi j ) + 0.5 f2(xi j )}; (5.11)

if the ith subkindred founder is male, then conditional onni, the joint distribution ofxi is

0.5
ni∏

j=1

f4(xi j ) + 0.5
ni∏

j=1

{0.5 f3(xi j ) + 0.5 f4(xi j )}. (5.12)

We can modelfk(x)/ f4(x) for k = 1,2,3 by the exponential tilting model

fk(x)/ f4(x) = exp(αk + βkx).

The empirical likelihood method can then be used to estimate (αk, βk) andFk(x), the cumulative

distribution function of fk(x). We plan to investigate the asymptotic properties of the resultant

estimators in future research.

Since we have made only the assumption that the two-component density ratio satisfies the

exponential tilting model, our method can also be applied to any F2 or recombinant inbred-line

experiments as long as there are repeated observations or there are direct observations from each

of the component distributions. An example is the set-up of Anderson (1979). In general, without

training samples or repeated observations, the density ratio is not identifiable.
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Appendix: Forms of Σ andΩ(s1, s2)

Form of Σ

Let θ = (α, β)τ, yi j = (1, xi j )τ, andψi(θ) =
∏ni

j=1{0.5+ 0.5 exp(θτyi j )}. We useθ0 to denote the true

value ofθ andψi = ψi(θ0). We note that the profile empirical log-likelihood in (5) can be written

aslN(α, β) = inf γ l(θ, γ) with

l(θ, γ) =

N∑

i=1

log{0.5+ 0.5ψi(θ)} −
N∑

i=1

ni∑

j=1

log{1+ γ(eθ
τyi j − 1)}.

Equivalently,lN(α, β) = l(θ, γ) with γ being the solution to∂l(θ, γ)/∂γ = 0.

The form ofΣ depends on the second derivatives ofl(θ, γ) with respect toθ andγ, which are

given below:

∂2l(θ, γ)
∂θ∂θτ

=

N∑

i=1

ψi(θ)
{1+ ψi(θ)}2

ni∑

j=1

eθ
τyi j

1+ eθ
τyi j

yi j

ni∑

k=1

eθ
τyik

1+ eθ
τyik

yτik

+

N∑

i=1

ψi(θ)
1+ ψi(θ)

ni∑

j=1





eθ
τyi j

(1+ eθ
τyi j )2

yi j y
τ
i j




−

N∑

i=1

ni∑

j=1

γ(1− γ)eθ
τyi j

{1+ γ(eθ
τyi j − 1)}2

yi j y
τ
i j ,

∂2l(θ, γ)
∂γ2

=

N∑

i=1

ni∑

j=1

{eθ
τyi j − 1}2

{1+ γ(eθ
τyi j − 1)}2

,

∂2l(θ, γ)
∂θ∂γ

= −
N∑

i=1

ni∑

j=1

eθ
τyi j

{1+ γ(eθ
τyi j − 1)}2

yi j .

ThenΣ is defined to be

Σ = (D12D−1
22D21− D11)

−1, (A.1)

whereD11 = E
{

1
N
∂2l(θ0,γ0)

∂θ∂θτ
}
, D12 = Dτ

21 = E
{

1
N
∂2l(θ0,γ0)

∂θ∂γ

}
, D22 = E

{
1
N
∂2l(θ0,γ0)

∂γ2

}
, andγ0 = 0.25. The

meaning ofγ0 is discussed in Section 3 of the supplementary document.
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Form of Ω(s1, s2)

Let w(xi j ) = 0.5+ 0.5eθ
τ

0yi j and

ΔN,F(x) =





N∑

i=1

ni∑

j=1

I (xi j ≤ x)

NE(n1)
1

0.5+ 0.5w(xi j )
− F(x)




−C1,x(γ̂ − γ0) − Cτ

2,x(θ̂ − θ0)

with C1,x = E
[
I (xi j ≤ x)(eθ

τ

0yi j − 1){0.5 + 0.5w(xi j )}−2] and C2,x = E
[
I (xi j ≤ x)γ0e

θτ0yi j {0.5 +

0.5w(xi j )}−2yi j

]
. Further, let

ΔN,G(x) =





N∑

i=1

ni∑

j=1

I (xi j ≤ x)

NE(n1)
eθ

τ

0yi j

0.5+ 0.5w(xi j )
−G(x)




−C3,x(γ̂ − γ0) − Cτ

4,x(θ̂ − θ0)

with C3,x = E
[
I (xi j ≤ x)eθ

τ

0yi j (eθ
τ

0yi j − 1){0.5+ 0.5w(xi j )}−2
]
andC4,x = E[I (xi j ≤ x)(1−γ0)e

θτ0yi j {0.5+

0.5w(xi j )}−2yi j ].

It is shown in the supplementary material that

F̂(x) − F(x) = ΔN,F(x) + Op(N
−1), Ĝ(x) −G(x) = ΔN,G(x) + Op(N

−1).

Further, letΔN(s) =
(
ΔN,F(x),ΔN,G(y)

)τ with s= (x, y)τ. ThenΩ(s1, s2) is defined as

Ω(s1, s2) = lim
N→∞

NE{ΔN(s1)Δ
τ
N(s2)}. (A.2)
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Table 1: Comparing the biases, variances, and mean square errors (MSEs) of the estimators of
(μF , σ

2
F) and (μG, σ

2
G) under the exponential tilting and parametric models under Scenario I, in

which the model is correctly specified for ( ˆμF , σ̂
2
F , μ̂G, σ̂

2
G) and (μ̂F,p, σ̂

2
F,p, μ̂G,p, σ̂

2
G,p)

Exponential tilting Parametric model
(μF , μG) Summary ˆμF σ̂2

F μ̂G σ̂2
G μ̂F,p σ̂2

F,p μ̂G,p σ̂2
G,p

Scenario I:N = 20
(12,4) Bias -0.164 -0.542 0.457 1.972 -0.054 -0.184 0.197 1.058

Var 0.908 40.368 4.343 74.405 0.513 34.001 1.415 40.867
MSE 0.935 40.656 4.551 78.284 0.516 34.031 1.454 41.982

(18,4) Bias -0.063 0.043 0.167 1.078 0.002 -0.145 0.069 0.294
Var 0.841 137.934 1.616 60.541 0.619 123.792 0.402 9.539

MSE 0.845 137.919 1.644 61.695 0.619 123.798 0.407 9.624
(24,4) Bias -0.030 -0.154 0.088 0.757 0.007 -0.712 0.036 0.147

Var 1.067 381.684 0.579 35.795 0.934 329.812 0.292 9.766
MSE 1.068 381.684 0.587 36.366 0.934 330.298 0.293 9.787

Scenario I:N = 200
(12,4) Bias -0.004 -0.033 0.011 0.045 -0.002 -0.033 0.009 0.031

Var 0.035 3.250 0.040 0.690 0.034 3.088 0.031 0.289
MSE 0.035 3.251 0.040 0.692 0.034 3.088 0.031 0.290

(18,4) Bias 0.001 -0.040 0.008 0.044 0.004 -0.051 0.005 0.015
Var 0.059 12.900 0.033 0.786 0.057 11.750 0.023 0.186

MSE 0.059 12.900 0.033 0.787 0.057 11.751 0.023 0.187
(24,4) Bias -0.003 -0.071 0.007 0.054 -0.001 -0.095 0.003 0.009

Var 0.091 35.523 0.029 0.847 0.087 31.685 0.019 0.149
MSE 0.091 35.525 0.029 0.849 0.087 31.692 0.0190.149
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Table 2: Comparing the biases, variances, and mean square errors (MSEs) of the estimators ofμF

andμG under the exponential tilting and parametric models under Scenario II, in which the model
is correctly specified for ( ˆμF , σ̂

2
F , μ̂G, σ̂

2
G) but misspecified for ( ˆμF,p, σ̂

2
F,p, μ̂G,p, σ̂

2
G,p)

Exponential tilting Parametric model
(μF , μG) Summary ˆμF σ̂2

F μ̂G σ̂2
G μ̂F,p σ̂2

F,p μ̂G,p σ̂2
G,p

Scenario II:N = 20
(19.58, 6.96) Bias -0.275 -2.504 0.761 6.852 -0.701 -11.059 2.015 20.546

Var 2.516 577.984 11.033 967.372 3.691 536.907 21.558 2482.113
MSE 2.592 584.219 11.612 1014.265 4.182 659.167 25.617 2904.099

(19.58, 4.84) Bias -0.051 -0.035 0.145 1.036 -0.302 -4.890 0.351 2.673
Var 1.092 467.747 1.127 67.078 1.168 399.889 2.269 235.196

MSE 1.094 467.719 1.148 68.148 1.259 423.772 2.392 242.324
(19.58, 3.47) Bias -0.037 -0.237 0.088 0.594 -0.274 -6.389 -0.032 -0.384

Var 0.988 467.540 0.676 33.071 0.931 374.797 0.652 42.580
MSE 0.989 467.568 0.684 33.422 1.006 415.590 0.653 42.725

Scenario II:N = 200
(19.58, 6.96) Bias -0.006 -0.074 0.014 0.091 -0.222 -6.157 0.646 5.850

Var 0.103 46.587 0.095 3.350 0.105 34.594 0.121 4.690
MSE 0.103 46.590 0.095 3.358 0.154 72.499 0.539 38.918

(19.58, 4.84) Bias -0.001 -0.051 0.007 0.042 -0.244 -5.253 0.139 0.726
Var 0.089 45.202 0.051 1.497 0.090 36.733 0.058 1.080

MSE 0.089 45.202 0.051 1.498 0.149 64.330 0.077 1.607
(19.58, 3.47) Bias 0.001 -0.042 0.003 0.022 -0.250 -6.506 -0.107 -0.885

Var 0.084 45.891 0.032 0.803 0.082 35.727 0.029 0.265
MSE 0.084 45.890 0.032 0.803 0.145 78.055 0.0401.048

28
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

E
as

t C
hi

na
 N

or
m

al
 U

ni
ve

rs
ity

] 
at

 2
1:

43
 2

0 
Ju

ly
 2

01
6 



ACCEPTED MANUSCRIPT

Table 3: Kolmogorov–Smirnov distance between the estimated cumulative distribution function
and true cumulative distribution function under exponential tilting and parametric models

Exponential tilting Parametric model
(μF , μG) ||F̂ − F||∞ ||Ĝ −G||∞ ||F̂p − F||∞ ||Ĝp −G||∞

Scenario I:N = 20
(12, 4) 0.071 0.127 0.043 0.079
(18, 4) 0.065 0.107 0.035 0.063
(24, 4) 0.069 0.102 0.034 0.056

Scenario I:N = 200
(12, 4) 0.019 0.031 0.012 0.021
(18, 4) 0.019 0.031 0.011 0.018
(24, 4) 0.019 0.030 0.010 0.017

Scenario II:N = 20
(19.58, 6.96) 0.073 0.131 0.078 0.146
(19.58, 4.84) 0.064 0.109 0.064 0.106
(19.58, 3.47) 0.062 0.105 0.060 0.097

Scenario II:N = 200
(19.58, 6.96) 0.020 0.032 0.043 0.059
(19.58, 4.84) 0.019 0.032 0.043 0.048
(19.58, 3.47) 0.019 0.031 0.042 0.060
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Figure 1: Genotypes of the mice in the backcross design of interest.
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Figure 2: Power comparison between the ELRT and PLRT under Scenarios I and II at the sig-
nificance levels 5% and 1%: the powers are calculated based on 2000 repetitions, and 50,000
repetitions under the null model are used to calculate the P-values of the ELRT and PLRT.
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Figure 3: Panel (a) compareŝF(x) and F̂p(x) in the lower part andĜ(x) andĜp(x) in the upper
part; panel (b) compares the marginal empirical distribution ofxi j , 0.75F̂(x) + 0.25Ĝ(x), with
0.75F̂p(x) + 0.25Ĝp(x).
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Figure 4: Panel (a) compares the posterior probabilities for all 21 subkindred founders; Panel (b)
compares the posterior probabilities for the eight subkindred founders under the lower left corner
of Panel (a); Panel (c) compares the posterior probabilities for the seven subkindred founders under
the upper right corner of Panel (a).
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