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SUMMARY

Capture–recapture experiments are widely used to collect data needed to estimate the abun- 15

dance of a closed population. To account for heterogeneity in the capture probabilities, Huggins
(1989) and Alho (1990) proposed a semiparametric model in which the capture probabilities are
modelled by a parametric model and the distribution of individual characteristics is left unspeci-
fied. A conditional likelihood method was then proposed to obtain point estimates and Wald-type
confidence intervals for the abundance. Empirical studies show that the small-sample distribu- 20

tion of the maximum conditional likelihood estimator is strongly skewed to the right, which may
produce Wald-type confidence intervals with lower limits that are less than the number of cap-
tured individuals or even negative. In this paper, we propose a full empirical likelihood approach
based on Huggins (1989) and Alho (1990)’s model. We show that the empirical likelihood ratio
for the abundance is asymptotically chi-square with one degree of freedom, and the maximum 25

empirical likelihood estimator achieves semiparametric efficiency. Simulation studies show that
the empirical-likelihood-based method is superior to the conditional-likelihood-based method:
the empirical-likelihood-based confidence interval has much better coverage, and the maximum
empirical likelihood estimator has a smaller mean square error. We analyze three data sets to
illustrate the advantages of the proposed empirical likelihood method. 30
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1. INTRODUCTION

In fields such as biology, ecology, demography, epidemiology and reliability studies, it is im-
portant to know the abundance of a species, the size of a closed population, or the number of
defects in a system (Borchers et al., 2002, 2015). Mark–recapture or capture–recapture exper- 35

iments are widely used for this purpose. In these experiments, individuals or animals from the
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population of interest are captured, marked, and then released. At a later time, after the captured
animals have mixed with the others, another sample is taken.

Mark–recapture or capture–recapture experiments are extensively used when it is not prac-
tical to count all the individuals in the population. The method was originally developed for40

the estimation of animal abundance, but it has increasingly been applied to the estimation of
population parameters for demographic events. For example, the U.S. Census Bureau uses the
dual system estimation method, another name for the capture–recapture method (Seber, 1982), to
estimate the population (Hogan, 2000). This method produces valid population estimates provid-
ed certain assumptions hold. In epidemiological studies, the capture–recapture method is used45

to estimate the completeness of disease registers. For example, Boden & Ozonoff (2008) used
the capture–recapture method to estimate the level of reporting for the two most common U.S.
sources of information about nonfatal injuries and illnesses: workers’ compensation data and the
Bureau of Labor Statistics’ annual Survey of Occupational Injuries and Illnesses. Tilling et al.
(2001) applied the capture–recapture method with covariate adjustment to estimate the incidence50

of stroke in south London. The method has also become widespread in the past decade in nonin-
vasive genetic sampling; see Lukacs & Burnham (2005) for a detailed review. It has been used
in the context of software inspection (Barnard et al., 2003) to estimate the number of defects in
an inspected artifact. This estimate can be used to decide if the artifact requires reinspection to
improve the phase containment of defects.55

In this paper, we consider statistical inference for the abundance of a species based on capture–
recapture data. We take k samples from a closed population. Let N be the abundance, and let
X1, . . . , XN be the individuals’ characteristics, which are independent and identically distribut-
ed and have cumulative distribution function F (x) and probability density function f(x). Let
D = (D1, . . . , Dk)

T be the capture history of an individual, where Dj = 1 if the individual is60

captured on the jth occasion and Dj = 0 otherwise. There is observable population heterogene-
ity: individuals in different classes have different capture probabilities. To account for this, we
adopt the semiparametric model proposed by Huggins (1989) and Alho (1990), in which the
probability of capture on occasion j, gj(x) = pr(Dj = 1 | X = x), is modelled parametrically
and the distribution F (x) is left unspecified. Moreover, the Dj’s are assumed to be independent65

conditionally on X = x. Suppose n different individuals are observed, and their characteristic-
s are x1, . . . , xn. Let di = (di1, . . . , dik)

T be the capture history of the ith observation and let
di+ =

∑k
j=1 dij be the number of captures on the ith observation. Clearly, di+ > 0 for the n

observed individuals. We wish to make inference on the abundance N under Huggins (1989)
and Alho (1990)’s semiparametric model.70

Fully parametric methods for estimating N , where the form of F (x) is assumed to be known,
have been extensively discussed. Borchers et al. (1998) developed a likelihood framework. Few-
ster & Jupp (2009) derived the asymptotic properties of the maximum likelihood estimator of
N based on the full likelihood and those of the conditional maximum likelihood estimator of N
based on the conditional distribution of x1, . . . , xn given n. Semiparametric methods, where F (·)75

is modelled as a functional parameter, are also available. Huggins (1989) and Alho (1990) pro-
posed an estimator for N based on the conditional likelihood

∏n
i=1 pr(D = di | di+ > 0, X =

xi) under the logistic regression model for gj(x). His idea has been borrowed and extended
by many other researchers; see for example Borchers et al. (1998) and the references therein.
More detailed developments of the parametric and semiparametric approaches can be found in80

Borchers et al. (2002), Marques & Buckland (2004), and Fewster & Jupp (2009), among others.
To the best of our knowledge, parametric and semiparametric asymptotic results concentrate

on the asymptotic normality of the abundance estimator or log abundance estimator; these are
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used to construct Wald-type confidence intervals for the abundance. However, even in the sim-
plest case, the small-sample distribution of the maximum conditional likelihood abundance esti- 85

mator is strongly skewed to the right (Evans et al., 1994). Moreover, in a numerical study Evans
& Bonett (1994) found that the lower limit of the Wald-type confidence interval may be less than
the number of individuals captured, or even negative. Similar observations have been made in our
simulation studies and real-data analysis; see §3 and §4. These undesirable properties motivate
our work. 90

In this paper, we explore interval estimation for N based on the maximum full likelihood
ratio under Huggins (1989) and Alho (1990)’s semiparametric model. The empirical likelihood,
first introduced by Owen (1988, 1990) to mimic the parametric likelihood, is naturally involved
since it has many nice properties. Empirical likelihood confidence regions are Bartlett correctable
(DiCiccio et al., 1991), range preserving, and transformation respecting (Hall & La Scala, 1990); 95

they do not require estimation of the scale or skewness; and the empirical likelihood is more
robust to model mis-specification. Since the two seminal papers by Owen (1988, 1990), empirical
likelihood has been applied to biomedical studies, survey sampling, and economic research; see
Owen (2001) and Newey & Smith (2004) for further discussion.

Although empirical likelihood has been used widely, as far as we know, it has never been ap- 100

plied to abundance estimation under Huggins (1989) and Alho (1990)’s semiparametric model.
In our set-up, the semiparametric full likelihood contains three terms; see §2.1. The first term
involves the binomial likelihood for N , the second term is the conditional likelihood, and the
third term is the marginal empirical likelihood of the covariate information. Hence, the condi-
tional likelihood is only one component of the full likelihood. We plan to use the full likelihood, 105

which combines all three terms, to construct confidence intervals for the abundance N based on
the empirical likelihood ratio.

Developing the asymptotic properties of the empirical likelihood ratio for the abundance is
very challenging. Standard methods and results from maximum empirical likelihood theory are
not directly applicable because the support of n depends on the parameter N , which violates the 110

regularity conditions. Furthermore, we have to deal with the binomial coefficient for the abun-
dance parameter estimation in addition to selection-biased sampling. Mathematically, we need
to handle complex polygamma functions. In Huggins (1989) and Alho (1990)’s semiparametric
set-up, with tedious mathematical expansions, we are able to show that the empirical likeli-
hood ratio for the abundance N has an asymptotic chi-squared distribution with one degree of 115

freedom. Finite-sample simulation results indicate that the empirical likelihood ratio based con-
fidence interval for N has much better coverage than Wald-type confidence intervals based on
the maximum conditional likelihood abundance estimator. Furthermore, we have found that the
maximum empirical likelihood estimator of N has a smaller mean square error than the maxi-
mum conditional likelihood estimator of N . For the convenience of presentation, all proofs are 120

placed in the Supplementary Material.

2. EMPIRICAL LIKELIHOOD INFERENCE

2·1. Model set-up and empirical likelihood
Following Huggins (1989) and Alho (1990), we model the probability of capture on occasion

j (j = 1, . . . , k) by the logistic regression model gj(x) = g(x, βj), where 125

g(x, βj) =
exp{βT

j q(x)}
1 + exp{βT

j q(x)}
, (1)
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and q(x) is a prespecified b-variate function with its first component being 1. For example, when
x is a scalar, we may choose q(x) to be (1, x)T or (1, x, x2)T. Model (1) is an Mth model (Otis
et al., 1978; Seber, 1982; Borchers et al., 2002) because the capture probability varies not only
from individual to individual but also from capture occasion to capture occasion.

Let βT = (βT
1 , . . . , β

T
k ) and define φ(x, β) =

∏k
j=1{1− g(x, βj)}, which is the probability130

that an ideal observation X is not observed on any of the k occasions given X = x. Then α =∫
φ(x, β)dF (x) is the probability that an ideal observation is not observed on any of the k

occasions.
We now develop the full likelihood of (N, β, α, F ), which is the product of three components:

the likelihood from n, the likelihood from d1, . . . , dn conditional on x1, . . . , xn and given that135

the n individuals have been captured at least once, and the likelihood from x1, . . . , xn given that
the n individuals have been captured at least once.

First, note that n ∼ B(N, 1− α). Therefore, its contribution to the likelihood is(
N

n

)
(1− α)nαN−n =

Γ(N + 1)

Γ(n+ 1)Γ(N − n+ 1)
(1− α)nαN−n, (2)

where Γ(·) is the Gamma function. Second, given that the ith individual has been captured at
least once and has characteristic xi, the conditional probability of observing the capture history140

of the ith individual is

pr(D = di | di+ > 0, X = xi) =
pr(D = di, di+ > 0 | X = xi)

pr(di+ > 0 | X = xi)
=

pr(D = di | X = xi)

pr(di+ > 0 | X = xi)

=

∏k
j=1{1− g(xi, βj)}1−dij{g(xi, βj)}dij

1− φ(xi, β)
.

Hence, the likelihood, known as the conditional likelihood (Alho, 1990; Huggins, 1989), from
d1, . . . , dn conditional on x1, . . . , xn and given that the n individuals have been captured at least
once, is

Lc(β) =

n∏
i=1

∏k
j=1{1− g(xi, βj)}1−dij{g(xi, βj)}dij

1− φ(xi, β)
. (3)

Lastly, given that the ith individual has been captured at least once, the conditional probability
of observing xi is given by

pr(X = xi | di+ > 0) =
pr(di+ > 0 | X = xi)pr(X = xi)

pr(di+ > 0)
=
{1− φ(xi, β)} dF (xi)

1− α
.

Therefore, the likelihood from x1, . . . , xn given that the n individuals have been captured at least145

once is
n∏
i=1

{1− φ(xi, β)} dF (xi)

1− α
. (4)

When we combine (2)–(4), the full likelihood function of (N, β, α, F ) is

Γ(N + 1)

Γ(n+ 1)Γ(N − n+ 1)
αN−n ×

n∏
i=1

dF (xi)
k∏
j=1

{1− g(xi, βj)}1−dij{g(xi, βj)}dij

 . (5)

As pointed out by Fewster & Jupp (2009), although the parameter N is necessarily a positive
integer, the likelihood function (5) makes sense for any positive N , and there is negligible error
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in treating N as continuous for the asymptotics reported in this paper. Hence, we will treat N as 150

continuous.
Let pi = dF (xi). By the principle of empirical likelihood (Owen, 2001), we have the empirical

log-likelihood, up to a constant not dependent on the unknown parameters,

log

{
Γ(N + 1)

Γ(N − n+ 1)

}
+ (N − n) logα+

n∑
i=1

log pi

+
n∑
i=1

k∑
j=1

[dij log g(xi, βj) + (1− dij) log{1− g(xi, βj)}] ,

where the feasible pi’s satisfy

pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pi{φ(xi, β)− α} = 0.

We comment that the above formulation of the empirical likelihood ignores ties in x1, . . . , xn. If 155

ties occur, we should interpret pi as dF (xi)/mi, wheremi is the number of times that xi appears
in x1, . . . , xn. As discussed in §2.3 of Owen (2001), the resulting probability weights (6) and
profile empirical log-likelihood (7) do not change.

Given (β, α), the empirical log-likelihood achieves its maximum in general when

pi =
1

n

1

1 + λ{φ(xi, β)− α}
, (6)

where λ is the solution to
∑n

i=1
φ(xi,β)−α

1+λ{φ(xi,β)−α} = 0. When we profile out the pi’s, the profile 160

empirical log-likelihood of (N, β, α) is

`(N, β, α) = log

{
Γ(N + 1)

Γ(N − n+ 1)

}
+ (N − n) logα−

n∑
i=1

log[1 + λ{φ(xi, β)− α}]

+
n∑
i=1

k∑
j=1

[dij log g(xi, βj) + (1− dij) log{1− g(xi, βj)}] . (7)

The maximum empirical likelihood estimators of (N, β, α) are

(N̂ , β̂, α̂) = arg max
N,β,α

`(N, β, α). (8)

The empirical likelihood ratio functions of (N, β, α) and N are

R(N, β, α) = 2{ sup
N,β,α

`(N, β, α)− `(N, β, α)} = 2{`(N̂ , β̂, α̂)− `(N, β, α)}, (9)

R′(N) = 2{ sup
N,β,α

`(N, β, α)− sup
β,α

`(N, β, α)} = 2{`(N̂ , β̂, α̂)− `(N, β̂N , α̂N )}, (10)

where (β̂N , α̂N ) = arg maxβ,α `(N, β, α) given N .

2·2. Asymptotic properties: General case 165

In this section, we establish the limiting behaviour of the maximum empirical likelihood esti-
mators and the empirical likelihood ratios when no constraints are imposed on the βj’s.

We begin by defining some notation. Let N0, β0 = (βT
10, . . . , β

T
k0)

T, and α0 be the true
values of N , β, and α, respectively. Denote G1(x) = {g(x, β10), · · · , g(x, βk0)}T, G2(x) =
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diag{G1(x)}, and φ∗ = E[{1− φ(X,β0)}−1]. We use ⊗ to denote the Kronecker product op-170

erator. The following W matrix is closely related to the asymptotic variance matrix of the maxi-
mum empirical likelihood estimators,

W =

−V11 0 −V13
0 −V22 + V24V

−1
44 V42 −V23 + V24V

−1
44 V43

−V31 −V32 + V34V
−1
44 V42 −V33 + V34V

−1
44 V43

 , (11)

where

V11 = 1− α−10 , V13 = α−10 ,

V22 = E

[{
φ(X,β0)

1− φ(X,β0)
G1(X)GT

1 (X) +G2
2(X)−G2(X)

}
⊗ {q(X)q(X)T}

]
,

V23 = V T
32 = E

{
φ(X,β0)

1− φ(X,β0)
G1(X)⊗ q(X)

}
, V24 = V T

42 = (1− α0)
2V23,

V33 = φ∗ − α−10 , V34 = V43 = (1− α0)
2φ∗, V44 = (1− α0)

4φ∗ − (1− α0)
3.

We refer to Lemma 2 of the Supplementary Material for the meaning of Vij .

THEOREM 1. Assume that the support ofX is compact, the capture probability function gj(x)175

is g(x, βj) as defined in (1) and the vector-valued function q(x) is b-variate with linearly in-
dependent components. Let (N0, β0, α0) be the true value of (N, β, α) with α0 ∈ (0, 1). If W
defined in (11) is nonsingular, then as N0 goes to infinity, we have

(a) N0
1/2{log(N̂/N0), β̂

T − βT
0 , α̂− α0}T → N(0,W−1) in distribution;

(b) R(N0, β0, α0)→ χ2
bk+2 in distribution andR′(N0)→ χ2

1 in distribution, where k is the num-180

ber of capture occasions.

Based on the limiting chi-square distribution of the empirical likelihood ratio in Theorem 1,
we may construct a confidence interval for N0 at level 1− a as

I1 = {N : R′(N) ≤ χ2
1,1−a},

where χ2
1,1−a is the (1− a)th quantile of the χ2

1 distribution. Theorem 1 guarantees that I1 has
asymptotically correct coverage probability.185

While empirical likelihood estimation is new, maximum conditional likelihood estimation has
been investigated in the literature (Huggins, 1989; Alho, 1990). Denote by `c(β) = logLc(β) the
conditional log-likelihood given the observed data, where Lc(β) defined in (3) is the conditional
likelihood. The maximum conditional likelihood estimator of N is defined as

Ñ =

n∑
i=1

1

1− φ(xi, β̃)
,

where β̃ = arg maxβ `c(β).190

THEOREM 2. Under the assumptions in Theorem 1, as N0 goes to infinity, we have

(a) N̂ − Ñ = Op(1);
(b) (N̂ −N0)/N

1/2
0 , (Ñ −N0)/N

1/2
0 , N1/2

0 log(N̂/N0), and N1/2
0 log(Ñ/N0) all converge in

distribution to N(0, σ2), where σ2 = φ∗ − 1− V32V −122 V23.
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Theorem 2 is strongly analogous to Theorems 1 and 2 in Fewster & Jupp (2009); see their 195

Equations (A10) and (A17). It shows a close relationship between the maximum empirical like-
lihood estimator N̂ and the maximum conditional likelihood estimator Ñ under Huggins (1989)
and Alho (1990)’s semiparametric model. Fewster & Jupp (2009) presented similar results un-
der fully parametric models. Applying the theory of semiparametric efficient estimation, we can
show that the maximum empirical likelihood estimator N̂ is semiparametric efficient. A proof is 200

given in the Supplementary Material.
Fewster & Jupp (2013) proposed three types of confidence intervals for N—the likelihood

ratio, Wald, and the score test—under fully parametric models. Under Huggins (1989) and Alho
(1990)’s semiparametric model, the conditional log-likelihood `c(β) does not involve N . Hence,
it cannot be directly used to construct the likelihood-ratio-based and score-test-based confidence 205

intervals. Based on the profile empirical log-likelihood, we can construct a score-test-based con-
fidence interval forN . However, the profile empirical log-likelihood ofN does not have a closed
form, which complicates the calculation of the score test statistic. We do not currently have a
simple way to implement the score-test-based confidence interval for N based on the profile em-
pirical log-likelihood. We leave this to future research and do not consider it in our numerical 210

study.
Wald-type interval estimators ofN necessitate a consistent estimator of σ2. Based on the form

of σ2 in Theorem 2, an estimator of σ2 can be constructed as follows:

σ̂2 = φ̂∗ − 1− V̂32V̂ −122 V̂23, (12)

where φ̂∗ = Ñ−1
∑n

i=1{1− φ(xi, β̃)}−2 and

V̂23 = V̂ T
32 = Ñ−1

n∑
i=1

φ(xi, β̃)

{1− φ(xi, β̃)}2
G1(xi, β̃)⊗ q(xi),

V̂22 = −Ñ−1
n∑
i=1

[{
di −

G1(xi, β̃)

1− φ(xi, β̃)

}{
di −

G1(xi, β̃)

1− φ(xi, β̃)

}T]
⊗ {q(xi)q(xi)T}.

In the Supplementary Material, we show that σ̂2 is a root-N0 consistent estimator of σ2. Note 215

that φ̂∗, V̂23, and V̂22 are used to construct the Wald-type interval estimators of N based on Ñ
but not for the proposed I1. Hence, we use (β̃, Ñ) rather than (β̂, N̂) in φ̂∗, V̂23, and V̂22.

Because of the asymptotic normality in Theorem 2 and the consistency of σ̂2, both (Ñ −
N0)/(Ñ

1/2σ̂) and Ñ1/2 log(Ñ/N0)/σ̂ are asymptotically pivotal, which leads to two Wald-type
confidence intervals for N based on the conditional likelihood: 220

I2 = [Ñ − z1−a/2Ñ1/2σ̂, Ñ + z1−a/2Ñ
1/2σ̂],

I3 =
[
exp{log(Ñ)− z1−a/2Ñ−1/2σ̂}, exp{log(Ñ) + z1−a/2Ñ

−1/2σ̂}
]
,

where z1−a/2 is the (1− a/2)th quantile of the standard normal distribution.
An alternative way to construct the confidence interval for N is to use the transformation

log(Ñ − n), which was suggested by Burnham and proposed in Chao (1987). Using the results
in Theorem 2, we can show that

C(N0; Ñ) =
log(Ñ − n)− log(N0 − n)

[log{1 + Ñ σ̂2/(Ñ − n)2}]1/2
(13)
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is asymptotically distributed as N(0, 1). Hence, the third Wald-type confidence interval for N225

based on the conditional likelihood is

I4 = {N : |C(N ; Ñ)| ≤ z1−a/2}.

An advantage of I4 is that its lower limit is ensured to be larger than the number of captured
individuals n. In §3.1, we will use simulation to compare the performance of I1, . . . , I4.

2·3. Asymptotic properties: Special case where βj’s are all equal
When the βj’s are all equal, φ(x, β) reduces to φs(x, βs) = {1− g(x, βs)}k, where βs denotes230

the common value of the βj’s. This model is called the Mh model; see for example Borchers
et al. (2002) and Stoklosa et al. (2011). In this situation, the profile empirical log-likelihood
`s(N, βs, α) can be directly obtained from the profile empirical log-likelihood in (7):

`s(N, βs, α) = log

{
Γ(N + 1)

Γ(N − n+ 1)

}
+ (N − n) logα−

n∑
i=1

log[1 + λ{φs(xi, βs)− α}]

+
n∑
i=1

[di+ log g(xi, βs) + (k − di+) log{1− g(xi, βs)}] ,

where λ is the solution to
n∑
i=1

φs(xi, βs)− α
1 + λ{φs(xi, βs)− α}

= 0. (14)

With the profile empirical log-likelihood `s(N, βs, α), we define the maximum empirical235

likelihood estimators (N̂s, β̂s, α̂s) of (N, βs, α), the empirical likelihood ratio Rs(N, βs, α)
for (N, βs, α) and the empirical likelihood ratio R′s(N) for N similarly to the definitions of
(N̂ , β̂, α̂), R(N, β, α), and R′(N) in (8), (9), and (10). To present the asymptotics, we de-
fine a new W matrix, namely Ws, which is W with φ∗, V23, V24, and V22 in (11) replaced
by φs∗ = E[{1− φs(X,βs0)}−1] and240

V23s = E

{
φs(X,βs0)

1− φs(X,βs0)
kg(X,βs0)q(X)

}
, V24s = (1− α0)

2V23s,

V22s = E

[{
φs(X,βs0)

1− φs(X,βs0)
k2g2(X,β0) + kg2(X,β0)− kg(X,β0)

}
q(X)q(X)T

]
.

Here (N0, βs0, α0) is the true value of (N, βs, α).

COROLLARY 1. Assume that the support of X is compact, the capture probability function is
gj(x) = g(x, βs) with q(x) as in Theorem 1. Let (N0, βs0, α0) be the true value of (N, βs, α). If
Ws defined above is nonsingular, then as N0 goes to infinity, we have

(a) N0
1/2{log(N̂s/N0), β̂

T
s − βT

s0, α̂s − α0}T → N(0,W−1s ) in distribution;245

(b) Rs(N0, βs0, α0)→ χ2
b+2 in distribution and R′s(N0)→ χ2

1 in distribution.

Given the observations, the conditional log-likelihood is

`cs(βs) =

n∑
i=1

[di+ log g(xi, βs) + (k − di+) log{1− g(xi, βs)}]−
n∑
i=1

log{1− φs(xi, βs)}.
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Similarly to Huggins (1989) and Alho (1990), we define the maximum conditional likelihood
estimator of N as

Ñs =
n∑
i=1

1

1− φs(xi, β̃s)
,

where β̃s = arg maxβs `cs(βs). The following corollary is equivalent to Theorem 2 when the 250

βj’s are all equal.

COROLLARY 2. Under the assumptions in Corollary 1, as N0 goes to infinity, we have

(a) N̂s − Ñs = Op(1);
(b) (N̂s −N0)/N

1/2
0 , (Ñs −N0)/N

1/2
0 ,N0

1/2 log(N̂s/N0), andN0
1/2 log(Ñs/N0) all converge

in distribution to N(0, σ2s), where σ2s = φs∗ − 1− V32sV −122sV23s. 255

Similarly to σ̂2 in (12), a consistent estimator of σ2s can be constructed as

σ̂2s = φ̂s∗ − 1− V̂32sV̂ −122s V̂
T
32s, (15)

where φ̂s∗ = Ñ−1s
∑n

i=1{1− φs(xi, β̃s)}−2 and

V̂23s = V̂ T
32s = Ñ−1s

n∑
i=1

φs(xi, β̃s)

{1− φs(xi, β̃s)}2
kg(xi, β̃s)q(xi),

V̂22s = −Ñ−1s
n∑
i=1

{
di+ −

kg(xi, β̃s)

1− φs(xi, β̃s)

}2

q(xi)q(xi)
T.

It can be shown that σ̂2s is a root-N0 consistent estimator of σ2s .
The results in Corollaries 1 and 2 suggest four confidence intervals for N , which are similar

to I1, . . . , I4: 260

I1s = {N : R′s(N) ≤ χ2
1,1−a},

I2s = [Ñs − z1−a/2Ñ1/2
s σ̂s, Ñs + z̃1−a/2N

1/2
s σ̂s],

I3s =
[
exp{log(Ñs)− z1−a/2Ñ−1/2s σ̂s}, exp{log(Ñs) + z1−a/2Ñ

−1/2
s σ̂s}

]
,

I4s = {N : |Cs(N ; Ñs)| ≤ z1−a/2},

where Cs(N ; Ñs) is just C(N ; Ñs) in (13) with σ̂2 replaced by σ̂2s . 265

3. SIMULATION STUDY

This section investigates three aspects of the finite-sample performance of the proposed em-
pirical likelihood inference method. We study whether the χ2

1 distribution provides a good ap-
proximation to the finite-sample distribution of the empirical likelihood ratio statistic for N and
whether normal distributions provide good approximations to the finite-sample distributions of 270

the maximum conditional likelihood estimator ofN and its log scale. We compare the maximum
empirical likelihood estimator and the maximum conditional likelihood estimator ofN . We com-
pare four confidence intervals for N , i.e. that based on the empirical likelihood ratio calibrated
by the limiting χ2

1 distribution, I1 or I1s and the three Wald-type confidence intervals I2, I3, I4
or I2s, I3s, I4s based on the maximum conditional likelihood estimator of N . We calculate two 275
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mean square errors to evaluate the goodness of a generic estimator N̆ of N :

MSE1(N̆) = (N̆ −N0)
2/N0, MSE2(N̆) = N0{log(N̆/N0)}2.

We perform simulations for both the general case and the special case where the βj’s are all
equal. The numerical procedure for implementing the empirical-likelihood-based methods and
the R code are discussed in the Supplementary Material.

Throughout our simulations, the number of repetitions is 2000. We fix the population size280

to N0 = 200 or 400 for both the general case and the special case. The simulation results for
N0 = 100 and 150 are presented in the Supplementary Material. For the interval estimation of
N , we present only the two-sided coverage probability at the nominal level 95%. The one-tailed
coverage probabilites of the signed square root of the empirical-likelihood-ratio-based confi-
dence interval and the three Wald-type confidence intervals are presented in the Supplementary285

Material.
We first consider the general case. We fix the number of capture occasions to k = 2 or 3 and

generate data from the following two scenarios:

G1 The covariateX is univariate and follows the standard normal distribution. The capture proba-
bility function on the jth occasion is g(x, βj) in (1) with the true q(x) being q01(x) = (1, x)T.290

When k = 3, we set the true value of β to β0 = (0,−3,−1,−2,−2, 1)T, and the first four
components of β0 are taken as the true value of β for k = 2.

G2 The covariateX = (X1, X2)
T is bivariate, whereX1 follows the standard normal andX2 fol-

lows the Bernoulli distribution with success probability 0.5, and the capture probability func-
tion on the jth occasion is g(x, βj) with the true q(x) being q02(x) = (1, x1, x2)

T. We choose295

a binary X2 to mimic a discrete characteristic, such as sex, of an individual. When k = 3, we
set the true value of β to β0 = (0.1,−2.5,−0.15,−1.5,−1.5,−0.2,−0.5,−0.8,−0.1)T, and
the first six components of this vector are taken as the true value of β for k = 2.

Under Scenario G1, the probability of overall capture is 1− α0 = 0.573 when k = 2 and
0.676 when k = 3. Under Scenario G2, these values are 0.556 and 0.670 when k = 2 and 3.300

Recall that α0 denotes the overall probability of non-capture rather than capture. To implement
our method and the conditional likelihood method, we set q(x) in g(x, βj) to q01(x) and q02(x)
respectively for Scenarios G1 and G2. Table 1 gives the averages n̄ of the sample sizes, the
MSE1 and MSE2 values for both the proposed maximum empirical likelihood estimator N̂ and
the maximum conditional likelihood estimator Ñ , and the simulated coverage probabilities of305

I1, . . . , I4 for the abundance N at the nominal level 95% under Scenarios G1 and G2.
As expected, n̄ is very close to N0(1− α0) in every case. We also observed that the proposed

maximum empirical likelihood estimator N̂ has smaller mean square errors than the maximum
conditional likelihood estimator Ñ . AsN0 increases from 200 to 400 or k varies from 2 to 3, both
N̂ and Ñ become more accurate. In terms of the coverage precision, the empirical-likelihood-310

ratio-based confidence interval I1 has a clear advantage over the Wald-type confidence intervals
I2 and I3, and it has a moderate advantage over I4 under Scenario G1 with N0 = 200 and
k = 2. The gains of I1 in coverage probability range from 2% to 6%. We have similar findings
for Scenario G2 with N0 = 200 and k = 2. When N0 varies from 200 to 400 or k varies from 2
to 3, I1 has quite stable coverage probabilities, while the coverage probabilities of I2, I3, and I4315

increase. In terms of coverage accuracy, I2 is uniformly worse than I3, and I4 is uniformly better
than I3. This indicates that the log transformation on Ñ increases the coverage probabilities of
the Wald-type confidence intervals to close to the nominal levels, while the log transformation
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Table 1. Averages n̄ of sample sizes, two types of mean square errors of N̂ and Ñ , and coverage
probabilities in percentages of I1, . . . , I4 at nominal level 95% under Scenarios G1 and G2.

MSE1 MSE2 Level: 95%
Scenario N0 k n̄ N̂ Ñ N̂ Ñ I1 I2 I3 I4

G1 200 2 115 275 331 37 42 92.7 86.2 88.8 90.9
200 3 136 13 17 8 9 93.2 91.5 92.8 94.2
400 2 229 151 171 32 35 92.1 87.7 89.1 91.3
400 3 271 8 9 7 7 93.2 92.1 93.2 94.2

G2 200 2 111 277 329 40 44 92.7 86.7 89.4 91.9
200 3 134 9 11 6 7 94.8 93.5 94.4 95.5
400 2 222 155 179 37 40 93.0 89.9 91.6 92.7
400 3 268 6 7 5 6 95.7 94.2 94.8 95.8

on Ñ − n brings the coverage probabilities of the Wald-type confidence intervals closer to the
nominal level. 320

To give more insight into the simulation results, in Figures 1–2 of the Supplementary Ma-
terial we display quantile-quantile plots of the empirical likelihood ratio of N versus the
χ2
1 distribution, the pivotal (Ñ −N0)/(Ñ

1/2σ̂) versus the N(0, 1) distribution, the pivotal
Ñ1/2 log(Ñ/N0)/σ̂ versus theN(0, 1) distribution, and the pivotalC(N0; Ñ) versus theN(0, 1)
distribution for Scenario G1 withN0 = 200. The plots for the remaining cases are similar and are 325

omitted. These two figures indicate that the distribution of the empirical likelihood ratio is quite
close to χ2

1, and the distributions of (Ñ −N0)/(Ñ
1/2σ̂) and Ñ1/2 log(Ñ/N0)/σ̂ are not close

to normal. They also show that the distribution of C(N0; Ñ) is quite close to normal. These ob-
servations may explain why the empirical-likelihood-ratio-based confidence intervals I1 always
have more accurate coverage probabilities than the Wald-type confidence intervals I2 and I3 but 330

only a slight advantage over I4. The plots of N̂ versus Ñ and log N̂ versus log Ñ in Figure 3 of
the Supplementary Material show that the two abundance estimators Ñ and N̂ are indeed quite
close, although Ñ is slightly larger than N̂ in general.

We next study the special case where all the βj’s are equal. The population size is still N0 =
200 or 400, and the number of capture occasions is k = 2 or 8. We choose k = 8 because it 335

is comparable to the number of occasions, 5, 14, and 17, in the three real data sets in §4. We
generated data from another two scenarios:

S1 The covariateX is the same as for scenario G1, and the capture probability function is g(x, βs)
with the true q(x) function being q03(x) = (1, x, x2)T and βs0 = (−1, 2, 0.2)T.

S2 The covariateX = (X1, X2)
T is the same as for scenario G2. The capture probability function 340

is g(x, βs) with the true q function q04(x) = (1, x1, x2)
T and βs0 = (0.1,−2.5,−0.15)T.

Under Scenario S1, the probabilities of overall capture are 1− α0 = 0.493 and 0.762 when
k = 2 and 8. Under Scenario S2, the probabilities of overall capture are 0.616 and 0.803 when
k = 2 and 8. When implementing our method and the conditional likelihood method, we set q(x)
to q03(x) and q04(x) respectively in Scenarios S1 and S2. The simulation results are summarized 345

in Table 2.
Again n̄ is close to N0(1− α0) in every case. The maximum empirical likelihood estimator

is still uniformly more accurate than the maximum conditional likelihood estimator in terms of
MSE1 and MSE2. As k increases from 2 to 8, both the point estimators become noticeably more
accurate. In terms of coverage precision, the empirical-likelihood-ratio-based confidence interval 350
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Table 2. Averages n̄ of sample sizes, two types of mean square errors of N̂ and Ñ , and coverage
probabilities in percentages of I1s, . . . , I4s at nominal level 95% under Scenarios S1 and S2.

MSE1 MSE2 Level: 95%
Scenario N0 k n̄ N̂s Ñs N̂s Ñs I1s I2s I3s I4s

S1 200 2 96 989 1506 73 100 93.7 84.0 87.0 87.3
200 8 146 53 69 10 13 91.4 84.8 86.6 91.7
400 2 192 1364 1829 120 149 92.6 84.4 87.4 87.5
400 8 293 10 14 7 9 92.8 86.8 88.7 93.4

S2 200 2 122 304 369 34 40 92.6 86.7 89.6 90.9
200 8 161 3 4 2 3 90.3 86.6 87.8 92.3
400 2 243 88 109 29 34 93.3 89.6 91.0 92.4
400 8 321 3 4 3 3 90.8 88.4 89.1 91.5

I1s is much better than I4s in Scenarios S1 and S2 with k = 2 and N0 = 200 and in Scenario S1
with k = 2 and N0 = 400, although they are comparable in the other settings. The gain in cov-
erage probability of I1s against I4s can be as large as 6% under Scenario S1 with N0 = 200 and
k = 2. This number can be as large as 10% when N0 = 100; see Table 2 of the Supplementary
Material. Both I1s and I4s are uniformly more accurate than I2s and I3s. In general, the trans-355

formation log(Ñ − n) indeed improves the coverage of the Wald-type confidence intervals. We
notice that the empirical-likelihood-ratio-based confidence intervals I1s have reduced coverage
probabilities as k increases. This phenomenon persists when N0 is increased to 10000 but is less
severe whenN0 is increased to 1000. See the Supplementary Material for more simulation result-
s for N0 = 1000, 5000, 10000. A possible interpretation is that for fixed N0, the approximation360

of the limiting χ2
1 distribution to the finite-sample distribution of the empirical likelihood ratio

worsens as k increases. Nevertheless, the empirical-likelihood-ratio-based confidence intervals
still have better performance than I2s and I3s and comparable performance to I4s as k increases.
In the Supplementary Material, we propose a bootstrap procedure to improve the performance of
the empirical-likelihood-ratio-based confidence interval. For example, the coverage probability365

of I1s can be improved from 90.3% to 92.6% using the bootstrap procedure under Scenario S2
with N0 = 200 and k = 8.

4. REAL-DATA ANALYSIS

We illustrate the proposed empirical likelihood method by analyzing three real data sets: pos-
sum data (Heinze et al., 2004; Huggins & Hwang, 2007), mouse data (Stoklosa et al., 2011),370

and bird data (Hwang & Huang, 2003; Huggins & Hwang, 2010). The possum data, concerning
captures of the Mountain Pygmy Possum (Burramys parvus), were collected at Mount Hotham
in the snowfields of Victoria, Australia over five consecutive nights in November 2003. The body
weight (g) for each captured animal was measured. For this data set, n = 43 possums were cap-
tured at least once over k = 5 occasions. The mouse data record captures of the Harvest mouse375

(Micromys minutus) conducted at Wulin Recreation Area in Shei-Pa National Park, Taiwan, in
the summer of 2008, over k = 14 occasions. Each captured individual was weighed (g) and then
released. In total, n = 142 mice were captured at least once. The bird data contain the captures
and wing lengths of the bird species Prinia flaviventris; the data were collected at the Mai Po Bird
Sanctuary of Hong Kong in 1993 over 17 weekly capture occasions. For this data set, n = 164380

birds were captured at least once over k = 17 occasions. All three data sets are available in the
supplementary material of Stoklosa et al. (2011).
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In the data analysis, we useX to denote the body mass for the possum and mouse data and the
wing length for the bird data. We use the Mh model for all three data sets, as suggested by Stok-
losa et al. (2011). That is, for each data set, we assume that all the βj’s are equal to a common βs. 385

We choose q(x) = (1, x, x2)T as used by Stoklosa et al. (2011). Table 3 gives the point estimates
N̂s and Ñs and the 95% confidence intervals I1s, . . . , I4s. For all three data sets, N̂s and Ñs are
quite close to each other, and this is in accordance with the results of our simulation studies. The
confidence intervals are however quite different. For all three data sets, the empirical-likelihood-
ratio-based interval I1s has reliable performance and produces reasonable results. In contrast, the 390

two Wald-type intervals I2s and I3s are unstable and may produce unsatisfactory results. For the
mouse data, I2s and I3s are comparable to I1s. However, for the possum data the lower limits,
33 and 38, of I2s and I3s are below the number of observations, n = 43. This is also the case for
the bird data, where the lower limit of I2s is 92 and n = 164. The confidence interval I4s, which
is also preferable to I2s and I3s, seems close to I1s. 395

Table 3. Analysis results for the three real data-sets: n is the sample size; (N̂s, β̂s, α̂s) is the
maximum empirical likelihood estimate of (N, βs, α); λ̂s is the solution to (14) with (β̂s, α̂s)
in place of (βs, α); (Ñs, β̃s) is the maximum conditional likelihood estimate of (N, βs); I1s
is the empirical-likelihood-ratio-based confidence interval for N ; I2s, I3s, I4s are Wald-type
confidence intervals for N .

Data set Point estimate 95% confidence interval Estimates of βs and σ2s
possum N̂s = 55 I1s = [45, 127] β̂s = (−41.51, 2.14,−0.03)

n = 43 Ñs = 59 I2s = [33, 84] β̃s = (−45.36, 2.34,−0.03)
I3s = [38, 91] σ̂2s = 2.95

I4s = [47, 109] α̂s = 0.23, λ̂s = −1.24

mouse N̂s = 175 I1s = [159, 200] β̂s = (−4.19, 0.29,−0.001)

n = 142 Ñs = 176 I2s = [158, 195] β̃s = (−4.25, 0.30,−0.002)
I3s = [159, 197] σ̂2s = 0.53

I4s = [162, 201] α̂s = 0.19, λ̂s = −1.22

bird N̂s = 657 I1s = [394, 2360] β̂s = (−357.81, 15.12,−0.16)

n = 164 Ñs = 675 I2s = [92, 1257] β̃s = (−368.44, 15.57,−0.17)
I3s = [284, 1600] σ̂2s = 131.00

I4s = [341, 1636] α̂s = 0.75, λ̂s = −4.01

Table 3 also gives the maximum empirical likelihood estimate (β̂s, α̂s), the maximum con-
ditional likelihood estimate β̃s, and λ̂s, which is the solution to (14) with (β̂s, α̂s) in place of
(βs, α). We observe that λ̂s ≈ −1/(1− α̂s) for all three data sets, which is quite reasonable s-
ince we showed in our theoretical analysis that α̂s = α0 + op(1) and λ̂s = −1/(1− α0) + op(1)

for some α0 ∈ (0, 1). The estimates β̂s and β̃s are also close to each other for all three data sets, 400

as are the corresponding estimated capture probability functions. Figure 1 shows the estimated
capture probability functions based on β̂s. It also gives histograms of the covariates and the usual
kernel density estimates, which are defined as

f̂u(x) =

n∑
i=1

(nh)−1K{(xi − x)h−1},
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where h is a bandwidth and K(x) is a kernel function, usually chosen to be the standard normal
density function. We choose the bandwidth h by rule of thumb: h = 1.06σ̂xn

−1/5, where σ̂2x is405

the sample variance of the covariates (xi’s).
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Fig. 1. Capture probability functions and kernel density
estimates of the covariates for three real data sets. Plots
(a)–(c), the estimated capture probability functions of the
possum, mouse, and bird data-sets; plots (d)–(f), the his-
togram, the usual kernel density estimates (dotted line),
and the weighted estimates (solid line) of the possum
body weights, the mouse body weights, and the bird wing

lengths.

Since the observed covariates from F (x) are subject to selection bias, the naive kernel density
estimator f̂u(x) is a biased estimator of f(x). Hence, neither the histogram nor f̂u(x) reflects the
underlying true distribution of X . The selection bias can be corrected by the proposed empirical
likelihood method. Given the maximum empirical likelihood estimators β̂s and α̂, we get the410

maximum empirical likelihood estimators of the covariate distribution F (x),

F̂ (x) =

n∑
i=1

p̂siI(xi ≤ x),

where the maximum empirical likelihood estimators of the probability weights are

p̂si =
1

n

1

1 + λ̂s{φs(xi, β̂s)− α̂s}
,



Maximum empirical likelihood estimation for abundance 15

and λ̂s is the solution to
∑n

i=1
φs(xi,β̂s)−α̂s

1+λ{φs(xi,β̂s)−α̂s}
= 0. Using these probability weights, we con-

struct a weighted kernel estimator of the covariate density function,

f̂w(x) =

n∑
i=1

p̂siK{(xi − x)h−1}h−1,

where the bandwidth h = 1.06σ̂xn
−1/5 is as in f̂u(x). 415

PROPOSITION 1. Assume that the conditions of Corollary 1 hold and K(x) is a bounded,
symmetric, and continuous density function. Further, f(x) > 0 for the given x. As N0 goes to
infinity, if h = o(1) and N0h

2 →∞, then

f̂w(x) = f(x) + op(1), f̂u(x) = (1− α0)
−1{1− φs(x, β0)}f(x) + op(1).

Proposition 1 indicates that as estimators of f(x), the weighted kernel density estimator f̂w(x)

is consistent while the usual kernel density estimator f̂u(x) is inconsistent unless g(x, βs) is
independent of the covariate x. The weighted kernel density estimates are also plotted in Figure
1. The bias correction can be observed in Figure 1. Compared with the usual kernel density
estimate, the weighted estimate places more probability at x where the capture probability is 420

small and less probability at x where the capture probability is large. This coincides with our
intuition: observations with higher capture probabilities are more easily observed than those with
lower capture probabilities. Our empirical likelihood method succeeds in correcting this bias.

When comparing the estimated covariate density function and the empirical one in the second
row of Figure 1, we observe that they are close to each other for the possum and mouse data sets 425

but not for the bird data set. A possible reason is that most of the animals were caught in the first
two data sets, i.e. n = 43 versus N̂ = 55 for the possums, and n = 142 versus N̂ = 175 for the
mice. In contrast, the bird data have n = 164 versus N̂ = 657, i.e. only a small proportion was
caught.
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SUPPLEMENTARY MATERIAL

The Supplementary Material contains detailed proofs for Theorems 1–2, Corollaries 1–2, the
semiparametric efficiency of N̂ , and Proposition 1 and establishes the consistency of σ̂2 in
(12) and σ̂2s in (15). It also includes the numerical procedure for implementing the empirical-
likelihood-based methods and the R code, a bootstrap procedure to improve the performance of 440

the empirical-likelihood-ratio-based confidence intervals, and more simulation results.
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