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Abstract
Wepresent theoretical results when applying theCartesian product of twoKuramotomodels on
different network topologies. By a detailedmathematical analysis, we prove that the dynamics on the
Cartesian product graph can be described by the canonical equations as theKuramotomodel.We
show that the order parameter of theCartesian product is the product of the order parameters of the
factors. On the product graph, we observe either continuous or discontinuous synchronization
transitions. In addition, under certain conditions, the transition from an initially incoherent state to a
coherent one is discontinuous, while the transition from a coherent state to an incoherent one is
continuous, presenting amixture state offirst and second order synchronization transitions. Our
numerical results are in a good agreementwith the theoretical predictions. These results provide new
insight for network design and synchronization control.

1. Introduction

Synchronization in nonlinear sciences is an emergent property that occurs in a broad range of dynamical
systems, including neural signaling, the beating of the heart, fire-fly light waves, or power grids [1]. Kuramoto
phasemodel is a paradigmatic example in synchronization analysis [2, 3]. Thismodel consists of self-sustained
phase oscillators rotating at heterogeneous intrinsic frequencies coupled through the sine of their phase
differences [4, 5]. A transition from an initially incoherent state to a fully coherent state takes placewhen the
coupling strength exceeds a critical threshold, which explainsmany collective behaviors in nature, science,
society and technology [1, 3]. There have been rapid developments in the study of theKuramotomodel focusing
on the effects of network structures on synchronization, e.g., from the traditional all-to-all coupling to
heterogeneous complex network topologies [6, 7]. In the case of complex network structures, severalmodels
have been proposed to study effects of small-world structures, communities, degree correlations andmulti-layer
network structures [8]. Recent findings of the Kuramotomodel on different network topologies have been
reviewed in [9].

It is important to emphasize thatmost likely continuous synchronization transitions can be observed in
these Kuramotomodels on top of networks. Namely, the order parameter which characterizes the degree of
synchronization grows continuously when the coupling strength passes the critical threshold. In otherwords,
when the coupling strength is increased progressively, the sizes of the synchronized clusters grow gradually [10].
Thefindings of discontinuous phase transition to synchronization (also known as abrupt explosive
synchronization) have triggered several rapid investigations [11–14], which is a consequence of correlations
between network structure and local dynamics. Themost intriguing phenomenon is that hysteresis has been
largely observed in explosive synchronization [11].More specifically, the network shows an explosive jump from
an incoherent state to a coherent onewhen the coupling strength is increased adiabatically, which is
conveniently called forward continuation curve below. In addition, it shows a sudden drop from the coherent
state to the incoherent state when the coupling strength is decreased progressively (backward continuation
curve). There is a clear hysteresis area because these two curves (forward and backward) do not overlap. In the
case of continuous synchronization transitions, the forward and backward curves are overlapped.Hysteresis is a
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fundamental property of afirst order phase transition, which shares some analogies with explosive percolation
[15]. The hysteresis behavior at the onset of synchronization has beenwidely observed in various situations, such
as scale-free networks [11, 16], electronic circuits [12, 17], time delayed systems [18], and a second order
Kuramotomodel [19]. Recent studies also focused on the importance of the frequency distribution [20], noise
effects [21], various generalizations of the coupling patterns [22, 23], andmulti-layer networks [14].

Usually, the continuous and discontinuous synchronization transitions are separately discussed in the
literature [15], because of the different requirements of network configurations and local dynamics. Here, we
propose an algorithmbased on graph product operation, which allows for discussing continuous and
discontinuous synchronization transitions in a unified framework. In particular, we construct the Kuramoto
model by theCartesian product, which is one of the basic operations on a graph [24]. This graph operation helps
tofind hysteretic synchronization transitionswithmore intriguing phenomena. In particular, we find that the
forward transition curve is discontinuouswhile the backward transition is continuous. Note that the effects of
graph operations on the synchronization behavior remained largely unclear, although some discussions on the
synchronizabilities have been presented in terms eigenspectra [25, 26]. To the best of our knowledge, ourwork is
thefirst attempt to address the effects of the Cartesian product on the synchronization behavior of the Kuramoto
model, resulting in amixture state of both continuous and discontinuous transitions.

Let us start by considering theKuramotomodel on a complex network.We consider n phase oscillators on
top of a complex networkG in the following frameworkwithout loss of generality

t
A i n

d

d
sin , 1, 2, , , 1i

i
j

n

ij j i
1

åq
w l q q= + - =

=

( ) ( ) ( )

where iw are the natural frequencies taken from a certain distribution,λ is the coupling strength, andAij is the
adjacencymatrix of the network. Oscillator i is coupledwith j if there is a link between node i and j, namely,
A 1ij = . Otherwise, A 0ij = means that i and j are not connected. TheKuramoto order parameterR is defined as

R
n

1
e , 2

j

n

t1

i jå= q

=

( )

where the notation t∣·∣ denotes the time average of the absolute value over t 1 . Small values ofR indicate
incoherent behavior. In contrast, as R 1 we encounter a highly coherent state.

2. Product ofKuramotomodels

We start by introducing themethod of Cartesian product of graphs, which is an important way to construct a
bigger graph and plays an important role in network design and analysis.

Given two nonempty graphs G V E,1 1 1= ( ) and G V E,2 2 2= ( ), the Cartesian product G G1 2 of the two
graphs is a graph such that: (i) the vertex set of G G1 2 is the Cartesian productV V1 2´ . For example, given
vertices i of G1 and k of G2, we denote the vertex of G G1 2 as ik ;á ñ (ii) two vertices iká ñand jlá ñare connected in
G G1 2 if and only if (a) i=j and k is adjacent with l in G2, or (b) k=l and i is adjacent with j in G1. The graphs
G1 and G2 are called factors of the product G G1 2 [24]. Infigure 1(a), we give an example of theCartesian
product of two chains and the resulting graph is a regular lattice. Further examples of the Cartesian product
graphs are illustrated by two factor subgraphs of stars (Figure 2(a)), two rings (Figure 2(e)), and one star and one
ring (figure 2(i)).

TheCartesian product of graphs is a commutative, associative binary operation on graphs [27]. It hasmany
useful properties,most of which can be derived from the factors. In particular, the adjacencymatrix of G G1 2 is

Figure 1.Panel (a): Cartesian product of two factors (chains) G1 and G2. Panel (b) product of two phase oscillators using the
Kronecker sum.
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the Kronecker sumof the adjacencymatrices of G1 and G2, namely, A A AG G G G1 2 1 2 = Å( ) ( ) ( ) (see
appendix A for details on theKronecker product and sumofmatrices).

Theorem.Given two independent Kuramotomodels on factor graphs G1 and G2 (n1 oscillators on G1 and n2

oscillators on G2, respectively), the definition of the phase of the node iká ñas ik i k
1 2q q q= +á ñ

( ) ( ) yields the canonical
equations of the Kuramotomodel on the Cartesian product graph G G1 2 . The natural frequency of oscillator iká ñ is

ik i k
1 2w w w= +á ñ

( ) ( ) and the n n1 2 oscillators are coupled through the sine functions of their phase differences.

Proof.An example of constructing Cartesian product from two chainmodels is shown infigure 1(b). For two
independent graphs G1 and G2, the adjacencymatrices are A 1( ) and A 2( ) respectively. TheKuramotomodels on
the respective factors arewritten as

G
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Wedefine ik i k
1 2q q q= +á ñ

( ) ( ), then the time derivatives of the phases ikqá ñ on theCartesian product G G1 2 are

Figure 2.Numerical results for synthetic synchronization transitions. Panels (a)–(d): discontinuous transitions, (e)–(h) continuous
transitions, and (i)–(l)mixture of continuous transition for the backward direction and discontinuous transition for the forward
direction. Equal sizes for factor graphs G1 and G2 are used (n n 101 2= = ). Cartesian product graph G G1 2 of (a): two stars; (e) two
rings; and (i) G1 is a star and G2 is a ring. Panels (b), (f) and (j) are order parameters for synchronization transition curves on the factor
G1, where the red curve is the forward curve and the blue is the backward curve. The similar curves for factor G2 are shown in panels
(c), (g) and (k). Panels (d), (h) and (l) are order parameters for synchronization transition curves on the product G G1 2 graph.
Vertical dashed lines are theoretical predictions as summarized in table 3.
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The result of equation (9) has exactly the same expression as the equation of theKuramotomodel. Furthermore,
it is easy to recognize that the natural frequencies are ik i k

1 2w w w= +á ñ
( ) ( ). é

Remark 1.There are no interactions between the two factorsG1 andG2 and thedynamics of oscillators onG1

evolves independentlywithoscillators onG2. The oscillator dynamics on theCartesian product graphG G1 2 is
reconstructed bymeans of the summation of the respective phases onG1 andG2. The advantage of defining the
phase of the node on theproduct graph as the summation of the respective phases of the factor subgraphs yields the
canonical equations of theKuramotomodel onG G1 2 . In addition, theCartesian product operation can be easily
generalized to the case of n subgraphs becauseG G1 2 andG G2 1 are isomorphic (the operation is commutative).
Furthermore this operation is associative. For instance, given three factor subgraphsG1,G2 andG3, the phase
summation of three factors results in the traditional equations as theKuramotomodel on theproduct graph as
G G G1 2 3 ( ) andG G G1 2 3 ( ) are isomorphic.With the commutative and associative properties of the phase
summation,we generalize the theorem to the case of n factor subgraphs straightforwardly.

Lemma.The order parameter R on the Cartesian product graph of G G1 2 is the product of the order parameters R1

and R2 of two independent factors, namely, R R R1 2= .

Proof.The order parameter R on theCartesian product graph is computed as follows:

R
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Therefore, we prove that the order parameterR is fully determined by the two factors R1 and R2. Furthermore,R
does not converge if any of the order parameters of the two factors (either R1or R2)does not converge.

In addition, for n factor subgraphs, it is straightforward to show that the order parameterR on the product
graph is the order parameters of n factors. For instance, given three factors G1, G2 and G3, the order parameterR
of the product G G G1 2 3  is R R R R1 2 3= .

3. Kuramotomodel on star and ring structures

Before showing themain results of this work, we discuss the synchronization transitionswhen implementing the
Kuramotomodels on single star and ring structures (see appendix E for further results on chain structures and
appendix F for trees). Both stars, rings, chains and trees of oscillators have been studied extensively in
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synchronization analysis because they are considered to bemotifs to build complex networks [28–35]. Here, we
show the critical coupling threshold values for synchronization on these topologies.

First, taking into accountdifferentnetwork topologies,we rewrite theKuramotomodel (equation (1)) in termsof
link representation in the following.Assume that there arennodes andm links in anetworkwhich is representedby
the adjacencymatrix A n nÎ ´ . In general, the link incidencematrix B m nÎ ´ of adirectednetwork is defined as

B
i

i

1 is the starting node of link ,

0 otherwise,
1 is the end node of link ,

14i

a

a
=

+

-
a

⎧
⎨⎪
⎩⎪

( )

whereα is the link and i is the oscillator. Note that no difference appears when using the abovematrix B to
represent an undirected network. Therefore, the Kuramotomodel (equation (1)) is rewritten in the following
compactmatrix form

B B
t

d

d
sin , 15Tq w ql= - ( )

where , , , n
T

1 2q q q q= ¼( ) , , , , n
T

1 2w w w w= ¼( ) , andT is the transpose operation to the corresponding
vectors. Furthermore, the sine function acts on the phase vector one by one, e.g., we
define sin , , sin , sin , sinT T

1 2 3 1 2 3q q q q q q( ) ( ) .
It is straightforward to show that the compact form representation of theKuramotomodel (equation (15)) is

identical to the canonical equations (equation (1)) (in appendix B, we show the equivalence for the two
expressions).We then compute the average phase of all oscillators as

n i
n

i
1

1q q= å =
¯ , which further suggests that

the population rotates at the same average frequency w̄ as follows
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Synchronization is achievedwhen the phase difference between all oscillators is a constant. Therefore, the
synchronization condition is equivalently represented by

B B
t

0
d

d
sin , 17Tq q w w ql

-
= - - =

( ¯ ) ¯ ( )

where , , , , , , ,T Tq wq q q w w w= = ¯ (¯ ¯ ¯) ¯ ( ¯ ¯ ¯ ) representing each oscillator has the same frequency as the
population averaged frequency. Thus, synchronization suggests that there is a solution q in the following equation:

B Bsin . 18T q w wl = - ¯ ( )
In appendixD,we provide detailed discussions on the existence and uniqueness of the solutions to the linear
equation (18). In addition, we prove that a solution always exists for connected networks.We summarize the
results for two typical networks in terms of the following corollaries:

Corollary 1. For n oscillators coupled in a star topology, the necessary condition of synchronization is
maxc i n i2  l l w w= -∣ ¯ ∣, where w̄ is the average frequency and themaximum function runs over all leaf nodes i.

Proof.The hubnode in the network has index 1 and leaf nodes are n2, 3, ,¼ . The incidencematrix is
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and theMoore–Penrose pseudo-inverse (see appendix C for definitions) reads
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Anecessary condition for synchronization is

B Bmax max , 22c
T T

i n
i

2


 
w wl l w w= = = -a a

+
¥

+  ∣[ ] ∣ ∣ ¯ ∣ ( )

where themaximum function runs over all leaf nodes i. é

Remark 2. If all leaf nodes have the same frequency n2 3w w w w= = = = and the hub node has
n 11w w= -( ) , we obtain the synchronization threshold c

n

n

2l w= - which is the same as reported in [13, 36].

Remark 3.TheKuramotomodel on either a star or a chain can be generalized to amore general framework of a
tree structure. The necessary condition to synchronization of theKuramotomodel on a tree is

maxc m i A i1  l w wå -a Î a
∣ ( ¯ )∣, where themaximum function runs over all links that are included in the

connected componentAα if linkα is removed. The details are provided in appendix F.

Corollary 2. For n oscillators coupled in a ring, if n is an even number and i i n 2w w= - + , a necessary condition for
synchronization is B Bmaxc

T T w wl l = = a
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For the notation convenience below, we denote the first rowof B T+ as b , , ,n

n

n

n

n

n

1

2

3

2

1

2
= - -- - -( ). Then,

the second rowof B T+ has a recursive relationship by putting the last entry to the beginning of b. Introducing a
permutationmatrix P that shifts the last entry to the beginning, the second row is denoted as bPT .With this
notation, we re-write theMoore–Penrose pseudo-inverse as

B b Pb P b P b, , , , . 25T T T T n T T2 1=+ -( ) ( )
In addition, we have

B b Pb P b P b, , , , . 26T T T T T T T T n T T2 1w w w w w=+ -( ) ( )

Note that the summation of the phase difference between two neighboring oscillators along the ring structure is
zero.We consider a special case that n is an even number and i i n 2w w= - + , which is equivalent to that

Pn 2w w= - . Thismeans that summation of all terms of arcsin B Tw
l

+
is zero. Therefore, a necessary condition

for synchronization is

B Bmax , 27c
T Tw wl = = a a

+
¥

+  ∣[ ] ∣ ( )

where themaximum function runs over all linksα. é

Remark 4. Suppose sini
i

n

2w = p and n=10, we have sin sin 1.539c 5

2

5
l = + »p p .

4. Product of synchronization transitions

In the following, wefirst summarize the results of the synchronization transitions of theKuramotomodel on a
single network (star and ring).

(i) For n oscillators coupled in a star structure.
We consider the special case of explosive transitions to synchronization [13, 36]. In particular, we assume
that the hub node has the frequency n 11w w= -( ) and all leaf nodes have the same frequency

n2 3w w w w= = = = . A necessary condition for synchronization yields the critical coupling
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threshold c
b n

n

2l w= - [13, 36]. Starting froman incoherent state and increasing the coupling strength, the

network experiences a transition to synchronization at the critical coupling c
f n

n

2

2 1
l = -

-
[36]. Both

synchronization transitions are discontinuous and the crucial property of the two transition thresholds is
that c

f
c
bl l> , which leads to a clear hysteretic area c

f
c
bl l lD = - .We refer the readers to the [13, 36] for

the detailed derivations of the critical coupling c
fl for the forward transition to synchronization.

(ii) For n oscillators coupled on a ring structure.
According to corollary 2, we consider the special case that there is an even number of n oscillators and
frequency is i i n 2w w= - + . The systempresents a continuous synchronization transition at cl . No
hysteresis exists since both the backward and forward transition curves are overlapped.

In this work, we focus on the dynamics of the Kuramotomodel when performing theCartesian product
from two factor graphs. It is certainly an interesting topic to discuss the structural properties of the resulting
product graph, which however is outside the scope of the present work. Given two independent networks of
phase oscillators on G1 and G2 (e.g., G1 is a star and G2 is a ring), the synchronization transitions on theCartesian
product G G1 2 graph are summarized in the following:

(i) Adiscontinuous synchronization transition is obtained if both G1 and G2 are star networks.
Suppose that ,c

b
c
f

1 1l l are two threshold values for G1 and, furthermore, c
f

c
b

1 1l l> , which yields the

hysteretic size c c
f

c
b

1 1 1l l lD = - . In a full analogy, thresholds for G2 are assumed to be c
f

c
b

2 2l l> and

c c
f

c
b

2 2 2l l lD = - . On theCartesian product G G1 2 , we obtain discontinuous synchronization transition
and the hysteretic area lD is summarized in table 1.

(ii) A continuous synchronization transition is obtained if both G1 and G2 are ring networks.
Suppose that c1l is the critical coupling threshold value for G1, and respectively, c2l is for G2. The critical
coupling on the product graph G G1 2 is max ,c c c1 2l l l= { }.

(iii) Amixture of continuous and discontinuous synchronization transition is obtained if G1 is a star and G2 is a
ring network.
Again, we suppose that ,c

b
c
f

1 1l l are two thresholds for G1 and the hysteresis size is c
f

c
b

1 1l l lD = - . For G2,
the threshold is c2l . On the product G G1 2 , the synchronization transitions are summarized in table 2. If

c2l is smaller than c
b
1l , both the forward and backward curves collide with the synchronization transitions

on G1. Namely, only discontinuous transitions are observed for G G1 2 .
If c

b
c c

f
1 2 1l l l< , the forward transition is discontinuous at c

f
1l and the backward transition is continuous

at c2l . If c c
f

2 1l l , only continuous transitions are possible at c2l . For the numerical studies below, we

consider the case of c
b

c c
f

1 2 1l l l< whenwe observe amixture state of synchronization transitions.

For a numerical simulation purpose, we choose equal sizes n n 101 2= = for the factors G1 and G2. In the
case of star networks, the natural frequency is chosen as 9,1, , 1 T1w = ( )( ) for G1 and 0.62 1w w=( ) ( ) for G2. In
the case of rings, the frequency is chosen as nsin 2 ii

1
1w p= ( )( ) for G1 and n0.6 sin 2 ii

2
2w p= ( )( ) for G2. The

choice of natural frequencies yields different critical coupling thresholds for G1 and G2, which are listed in table 3
and are further illustrated infigure 2. In particular, we observe discontinuous transitions in both forward and
backward directions if the product graph G G1 2 is obtained from two star networks, wherewe find a clear
hysteresis as shown infigures 2(a)–(d). If the product G G1 2 is reconstructed from two ring networks, only

Table 1.Hysteresis area lD on G G1 2 if
both factors G1 and G2 are stars.

Regime c
f

c
f

1 2l l> c
f

c
f

1 2l l<

c
b

c
b

1 2l l> c
f

c
b

1 1l l- c
f

c
b

2 1l l-

c
f

c
f

1 2l l< c
f

c
f

1 2l l- c
f

c
f

2 2l l-

Table 2. Synchronization types on G G1 2 if factor G1 is a star and G2 is a ring.

Case c c
b

2 1l l< c
b

c c
f

1 2 1l l l< c c
f

2 1l l
Thresholds ,c

f
c
b

1 1l l of G1 c
f
1l of G1 and c2l of G2 c2l of G2

Sync type Only discontinuous

transitions

Discontinuous transition for the forward curve and con-

tinuous transition for the backward curve

Only continuous

transitions
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continuous transitions are observed infigures 2(e)–(h). In addition, if G1 is a star and G2 is a ring, the product
graph G G1 2 presents amixture state of continuous transition for the backward direction and a discontinuous
one for the forward direction, showing hysteretic behavior as shown infigures 2(i)–(l). In all these cases, the
theoretical predictions for synchronization transitions are perfectly validated by our numerical simulations,
which are highlighted by vertical dashed lines.

5.Discussion

In summary, we have provided theoretical analysis on effects of graph operations on synchronization transitions
in theKuramotomodels, in particular with theCartesian product. Given two independent Kuramotomodels on
different topologies, where the individual systems present either continuous or discontinuous transitions to
synchronization. Taking into account different network topologies (star, chain, ring, and tree), we proposed a
unified framework in obtaining necessary conditions for synchronization in each network structure, which is
based on a detailed analysis of the existence of solutions to linear equations (18). Under the phase summation
assumption, the results as summarized in the theorem and lemma can be easily generalized to the case of n factor
subgraphs because of the commutative and associative properties of the Cartesian product operation.

Rich synchronization transitions have been obtained for theCartesian product graph. Depending on the
relation between the critical coupling thresholds, there are three different synchronization scenarios on the
Cartesian product graph: (i) both the forward and backward transitions are discontinuouswith a clear hysteresis
area, (ii) both the forward and backward transitions are continuous and these two curves are overlapped and,
hence, without hysteresis, and (iii) the forward transition froman incoherent state to a coherent one is
discontinuous and the backward transition from a coherent state to an incoherent one is continuouswith a
hysteretic behavior.

In this work, our theoretical approaches aremainly focused on star, chain and ring structures because the
necessary conditions of synchronization transitions have been analytically obtained in the same framework.
From the viewpoint of numerical simulations, the phase summation operation on theCartesian product
graph can be performed for general network settings as well. For instance, given two independent factors G1 and
G2 presenting continuous synchronization transitions at respective critical couplings c1l and c2l , the
synchronization on the product graph G G1 2 is fully determined by the product R R R1 2= . Therefore, the
critical coupling on G G1 2 is max ,c c c1 2l l l= { }.

TheCartesian product can be performed recursively, for instance, byKronecker power, which is one of the
graph operations in generating a big graph from twoormore small factor graphs [37]. This generativemodel
presents some properties that are often observed in real networks, e.g., in heavy-tailed degree distributions and
small diameters etc. From the viewpoint of illustration, it shares some similarities with generatingmulti-layer
networks [8]. Therefore, our results provide some novel insight in network design and synchronization control.
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AppendixA. Kronecker product andKronecker sum

Definition (Kronecker product ofmatrices).Given twomatrices A aij
1 1= [ ]( ) ( ) and A aij

2 2= [ ]( ) ( ) of sizes m n´
and r s´ respectively, the Kronecker productmatrix A A1 2Ä( ) ( ) of dimensions mr ns´ is given by

Table 3.Critical coupling thresholds on G G1 2 as shown infigure 2.

Star Ring One star and one ring

G1 0.8, 1.84c
b

c
f

1 1l l= = 1.54c1l = 0.80, 1.84c
b

c
f

1 1l l= =
G2 0.48, 1.10c

b
c
f

2 2l l= = 0.92c2l = 0.92c2l =
G G1 2 0.80, 1.84c

b
c
fl l= = 1.54cl = 0.92, 1.84c

b
c
fl l= =

Hysteresis Yes No Yes
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A A

A A A

A A A

A A A

a a a

a a a

a a a

. A.1

n

n

m m mn

1 2

11
1 2

12
1 2

1
1 2

21
1 2

22
1 2

2
1 2

1
1 2

2
1 2 1 2

Ä =

¼

¼

¼
   

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

Each element of the productmatrix is hence represented by A Aij kl
1 2( ) ( ).

Definition (Kronecker sumofmatrices). Suppose twomatrices A 1( ) and A 2( ) of sizes m m´ and n n´
respectively, the Kronecker summatrix A A1 2Å( ) ( ) has dimensions mn mn´ , which is given by

A A A I I A , A.2n m
1 2 1 2Å = Ä + Ä ( )( ) ( ) ( ) ( )

where Im, In are identitymatrices of dimension m m´ and n n´ respectively. Each element of the summatrix
is hence represented by A Aij kl ij kl

1 2d d+( ) ( ), where ijd areKronecker delta functions.

Appendix B. Equivalence between equations (15) and (1)

Proof.We show the coupling terms of both representations are identical. Suppose two phase oscillators attached
to the linkα are denoted as a+ and a-, where a+ is the starting point while a- is the end point respectively. Thus
we have the notation Bq q q= -a a a+ -[ ] . Therefore, the coupling term for the node i is expanded as

B B Bsin sin . B.1T
i

m

i
1

åq q q= -
a

a a a
=

+ -[ ] ( ) ( )

If oscillator i is the starting point i a= +, and j is the end point j a= -

B sin sin . B.2i i jq q q q- = -a a a+ -( ) ( ) ( )

On the other hand, if i is the end point i a= -, and j is the starting point j a= -, we have

B sin sin sin . B.3i j i i jq q q q q q- = - - = -a a a+ -( ) ( ) ( ) ( )

Therefore the coupling term of node i is simplified as

B Asin sin . B.4
m

i
j

n

ij i j
1 1

å åq q q q- = -
a

a a a
= =

+ -( ) ( ) ( )

This proves the statement that the coupling terms are identical in equations (15) and (1). é

AppendixC.Moore–Penrose pseudo-inverse

Herewe give a brief introduction to theMoore–Penrose pseudo-inverse, a generalization of the inverse of a
matrix. TheMoore–Penrose pseudo-inverse is defined for anymatrix and is unique, which brings conceptual
clarity to study the solutions of arbitrary systems of linear equations.

Definitions. Suppose A m nÎ ´ . Then Ax x nÎ{ ∣ } is a linear subspace of m , which is called the image space
of A and denoted as AIm . x Ax 0nÎ ={ ∣ } is a linear subspace of n , which is called the kernel ofA and
denoted as Aker . In addition, due to the Fredholm theory, we have A AIm ker T=^( ) and A Aker Im T=^( ) ,
where⊥ is the orthogonal complement space.

For A m nÎ ´ , there exists a uniquematrix X n mÎ ´ which is called theMoore–Penrose pseudo-inverse
of A if and only if the following four criteria are satisfied: (i) AXA A= , (ii) XAX X= , (iii) AX AXT =( ) , (iv)
XA XAT =( ) .We denote theMoore–Penrose pseudo-inverse of A as A+. Note that A+ exists for anymatrix A
and furthermore A+ is equivalent to the inverse A 1- if A has full rank. In addition, we denote the transpose of A+

as A T+ andwe have A AT T=+ +( ) ( ) . Additional property of pseudo-inverse is A Aker ker T=+ .
TheMoore–Penrose pseudo-inverse theorem is effectively for studying the solution of arbitrary systems of

linear equations. For a linear system Ax b= , A m nÎ ´ and b mÎ . (i)No solution exists if
A A brank rank , ;< ( ) (ii)unique solution exists if A A b nrank rank ,= =( ) and the solution reads x A b;= +

(iii) infinite number of solutions exist if A A b nrank rank ,= <( ) and the solutions read
x A b I A A u= + -+ +( ) where u nÎ is an arbitrary vector, and I A A u Aker- Î+( ) .
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AppendixD. Solutions to linear equations (18)

Wefirst consider a general solution x to the system

B x , D.1T w w= - ¯ ( )

where x Bsin ql= . A solution always exists if the condition BIm Tw w- Î¯ holds, or equivalently if the
condition Bkerw w- ^¯ holds (Fredholm expression).

Corollary 3.A solution always exists for connected networks.

Proof. For a connected network, we have B 1ker span= { }and

1 0. D.2T

i

n

i
i

n

1 1
å åw w w w- = - =
= =

( ¯ ) ¯ ( )

Therefore, the condition Bkerw w- ^¯ holds. é

In the following, we consider two cases:

Case 1. B n mrank 1T = - = , which holds for any tree topologywithout any loops. Because B Bker kerT =+

and B 0Tw =+ ¯ , a unique solution reads

x B . D.3Tw= + ( )

Since the incidencematrix B is row full rank, the general solution in terms of q to the linear system reads

B
B

I B Barcsin , D.4
T

nq w n
l

= + -+
+

+( ) ( )

where I B B B 1ker spann n- Î =+( ) { }, and n is an arbitrary vector. Note that the arbitrary vector n adds a
constant to each phase component, which is equivalent to use a rotating framewith this constant to the ensemble
of oscillators. Neglecting the termof arbitrary vector n , the synchronized solution reads

B
B

arcsin . D.5
T

q w
l

= +
+

( )

Since the sine functions are bounded, the existence condition for synchronization is

B Bmax , D.6c
T T w wl l = = a a¥  ∣[ ] ∣ ( )

where themaximumnorm runs over all linksα.

Case 2. B n mrank 1T = - < , which is typical for a general complex network topologywith loop structures.
Considering B 0Tw =+ ¯ , an infinite number of solutions reads

x B I B B u. D.7T
m

T Tw= + -+ +( ) ( )

where u is an arbitrary vector. In terms of q, the solution reads

B
B I B B u

arcsin . D.8
T

m
T T

q w
l

=
+ -+ +( ) ( )

Solutions of q do not always exist because B is not row full rank. In addition, the summation of phase difference
between two neighboring oscillators along the loop structure is zero, which suggests that the choice of u can not
be arbitrary.

If synchronization exists ( cl l ), a general solution of q reads

B
B I B B u

I B Barcsin . D.9
T

m
T T

nq w n
l

=
+ -

+ -+
+ +

+( ) ( ) ( )

Note that, as in the case (i), the arbitrary vector n adds a constant to each phase component, which is equivalent
to use a rotating framewith this constant to the ensemble of oscillators. Neglecting the termof arbitrary vector
n , the synchronized solution reads
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B
B I B B u

arcsin . D.10
T

m
T T

q w
l

=
+ -+

+ +( ) ( )

Because sine functions are bounded, the existence of synchronization solutions yields the necessary condition as

B I B B u , D.11c
T

m
T T wl l = + -+ +

¥ ( ) ( )

where · is themaximumnorm.

Appendix E. Kuramotomodel on a chain

Corollary 4. For n oscillators coupled in a chain, the necessary condition of synchronization
is maxc k n i

k
i1 1 1  l l w w= å -- =∣ ( ¯ )∣.

Proof.The incidencematrix

B

1 1 0 0 0
0 1 1 0 0

0 0 0 1 1

E.1=

- ¼
- ¼

¼ -
     

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )

and theMoore–Penrose pseudo-inverse reads

B . E.2T

n

n n n n
n

n

n

n n n

n n n

n

n

1 1 1 1

2 2 2 2

1 1 1 1

=

- - ¼ -

- - ¼ -

¼ -

+

-

- -

-
    

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

In addition, we have

B
2

. E.3T

n

1

1 2w

w w
w w w

w w

=

-
+ -

-

+



⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

¯
¯

¯

( )

Hence the necessary condition of synchronization is

max . E.4c
k n i

k

i
1 1 1


 

ål w w= -
- =

¯ ( )

Remark 5. For a special case of three oscillators coupled in a chain, we have the critical coupling strength for
synchronization as max ,c 1 3l w w w w= - -{∣ ¯ ∣ ∣ ¯ ∣}where 31 2 3w w w w= + +¯ ( ) , which is the same as the
case of corollary 1.

Appendix F. Kuramotomodel on a tree—a universalmodel for star and chain structures

A tree structure becomes two disjoint componentsA andBwhen any linkα is removed.We denote the two
oscillators attached to the linkα by a in the componentA and, respectively, b in the componentB.With the
notations of the average phase of all oscillators q̄ and the average frequency w̄ (equation (16)), the compact form
of synchronization (equation (17)) in the componentsA andB are expressed as

t t

d

d

d

d
sin , F.1

i A

i

i A
i b aå åq q

w w l q q- = - + -
Î Î

⎛
⎝⎜

⎞
⎠⎟

¯
( ¯ ) ( ) ( )

t t

d

d

d

d
sin . F.2

i B

i

i B
i a bå åq q

w w l q q- = - + -
Î Î

⎛
⎝⎜

⎞
⎠⎟

¯
( ¯ ) ( ) ( )

It is sufficient to consider equation (F.1) only since the sumof the above two equations ((F.1) and (F.2)) is zero.
Furthermore, synchronization is achievedwhen the phase difference between each oscillator and the average

phase is a constant, namely, we have 0
t t

d

d

d

d
i - =q q̄ . Therefore, the equation (F.1) in the componentA is rewritten

as

sin 0, F.3
i A

i b aå w w l q q- + - =
Î

( ¯ ) ( ) ( )
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which is further simplified as

sin . F.4
i A

i b aå w w l q q- = - -
Î

( ¯ ) ( ) ( )

Because the sine function is bounded, the synchronization solution exists if the following condition

F.5
i A

i ål l w w= -a
Î

( ¯ ) ( )

is fulfilled. Performing the same analysis for each linkα in the componentA, we obtain the necessary condition
for synchronization as

max max . F.6
m m i A

i
1 1


   

ål l w w= -
a

a
a Î a

( ¯ ) ( )

Note that the equation (F.6) has the explicit formof equation (22) for a star and equation (E.4) for a chain,
respectively.
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