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The mean fixation time is often not accurate for describing the timescales of fixation probabilities
of evolutionary games taking place on complex networks. We simulate the game dynamics on top
of complex network topologies and approximate the fixation time distributions using a mean-field
approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation
time is sufficient in characterizing the evolutionary timescales when network structures are close to
the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks
become sparse. The approximation accuracy is determined by the network structure, and hence by the
suitability of the mean-field approach. The numerical results show good agreement with the theoretical
predictions.
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1 Introduction

Frequency-dependent selection processes are traditional
models for evolutionary game theory [1, 2]. Previously,
these models have been mainly concentrated on well-
mixed populations [3], which are based on the so-called
replicator equation describing the variations of frequen-
cies of the strategies in the population [2]. Deterministic
replicator equations are helpful to understand the dy-
namics of infinite, homogeneous, and well-mixed popu-
lations. In a population of two strategies, fixation refers
to the probability for one strategy to take over the entire
population, causing the extinction of the other strategy
[4]. In structured populations, fixation appears as a con-
sequence of spatial constraints because the underlying
governing dynamics are stochastic [4, 5]. More specifi-
cally, assuming that a population has N players and that
s1 and s2 are two strategies for each player, the quan-
tity of interest in this evolutionary process is the fixation
probability that ends up in a state of N s1-players given
an initial state of n s1-players (out of N players). Ob-
viously, the characteristic timescales also play a crucial
role in fixations because they might occur very slowly or

rapidly [5, 6].
Recently, many results have uncovered the importance

of heterogeneous population structures on individuals
strategy updating behaviors [5, 7]. In particular, much
progress has focused on game models on complex net-
works [8, 9]. Faced with finite-sized populations of het-
erogeneous connectivity patterns, stochastic approaches
have been employed to investigate the dynamic process
of fixation [4, 10–15]. The difference between deter-
ministic and stochastic modeling was further compared
in Refs. [16–18], and systematically shown in Ref. [19].
Other factors that are important for fixations include
noise effects [20–23], population structures, and spatial
constraints [24–26].

To characterize the fixation processes, we need to com-
pute the probabilities of fixations and to determine their
associated timescales. Concerning the speed of fixations,
one important quantity that the majority of existing
studies have focused on is the computation of mean fix-
ation time that the system needs to reach the final ab-
sorbing state. We emphasize that, in many cases, the
mean fixation time can provide good estimates [13, 27].
However, it has been recently shown that the mean fixa-
tion time is insufficient when the distributions of fixation
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Fig. 1 Mean fixation times ⟨t⟩/N to pure s1-players in pairwise comparison processes, depending on the initial density ρ0.
The payoff matrix is a11 = 1.2, a12 = 0, a21 = 0.8, a22 = 1 and κ = 0.1. The dots are numerical simulations, while the solid
lines are from the theory. The network size is N = 100 in all cases, (a) all-to-all connected (well mixed, A2A) population,
(b) Erdos–Renyi (ER) random networks, and (c) scale-free networks. In (b, c), the network mean degree ⟨k⟩ = 40(N), 10(⋆).

times are broad or skewed [28, 29]. As shown in Fig. 1,
the theoretical estimation of the mean fixation times
demonstrates large deviations from numerical simula-
tions. This becomes particularly pronounced when sim-
ulating coordination game dynamics on networks and,
for instance, the initial frequency of one type of player is
close to the unstable interior point. Recently, an alter-
native has been to compute the distribution of fixation
times in terms of the spectrum in eigenspace [29]. More
specifically, they have proposed to construct eigenspace
representations of the original fixation time distribu-
tions, which reduced the computation to forward-only
processes in each time step.

In this work, we study the effects of network structures
on fixation by implementing game models on Erdos–
Renyi (ER) random networks and scale-free networks,
compared the case of all-to-all connected N nodes. As it
is known, a complex network is a convenient way to rep-
resent the heterogeneous interacting population struc-
ture in human society [9]. Various network dynamics
have been studied on top of a complex network, includ-
ing synchronization and epidemic spreading processes,
among others [8, 9, 30–35]. The degree k measures the
connections node i has and the mean degree of the net-
work is ⟨k⟩. Currently, it remains unknown how the
network size N and mean degree ⟨k⟩ influence the dis-
tribution functions of fixation times, the clarification of
which will be the task of this work.

This paper is organized as follows: In Section 2, we
introduce the basics for the game models on complex
networks, and point out the inaccuracies of the numer-
ical estimation of the mean fixation times. The general
stochastic framework is proposed in Section 3, explicitly
showing the distribution functions of fixation times. In
this section, we also revisit the mean fixation times and
all m-order moments of the distribution functions. We
numerically show the accuracy of our theories to estimate
the distribution functions of fixation times in Section 4.
The conclusions are summarized in Section 5.

2 Problem statement

Game model and strategy updating rules: Population
structure is introduced into the game models by assum-
ing that strategy updating is only possible between con-
nected nodes [8, 11]. More specifically, we consider that
each link represents a game and the two nodes attached
to this link are two players in the game. The number
of games in which a player participates varies over the
population because the nodes of the network have po-
tentially different degrees k. We assume that each link
of the network represents a symmetric two-player game
and the payoff matrix is expressed as

A =

 s1 s2
s1 a11 a12
s2 a21 a22

 . (1)

Each player has two strategies, either s1 or s2. Depend-
ing on the payoff matrix A, there are four generic cases
[11]: (i) Dominance. Either s1 dominates s2 (a11 > a21
and a12 > a22) or s2 dominates s1 (a11 < a21 and
a12 < a22), for instance, prisoner’s dilemma; (ii) bista-
bility (a11 > a21, a22 > a12); (iii) coexistence (a11 < a21
and a12 > a22); and (iv) neutrality (a11 = a21 and
a12 = a22).

An initial fraction ρ0 of s1 players is assigned ran-
domly and time is divided into discrete periods. After
one iteration step, the payoff of player i is accumulated
from all games in which i is involved in i’s neighbor-
hood. A proper strategy updating rule is introduced be-
fore moving to the next step. There are many updating
rules in the literature, most of which are based on imi-
tation and learning [8, 36, 37]. In this work, we consider
a pairwise comparison (Fermi process) of synchronized
updating rule [11], which is as follows:

The payoff ui is accumulated in the neighborhood of
i as ui =

∑N
l=1,l∈Ni

AilsiAsl, where A is the payoff ma-
trix and Ni is the set of neighbors of node i. At the end of
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each iteration, player i decides whether to keep its cur-
rent action or to adopt the action of one of its neighbor-
ing players j, depending on the current payoff difference
between i and j, ui−uj . Then, player i randomly selects
one neighbor j from its neighborhood Ni and switches
to j’s action in the next round with a probability

wsi→sj =
1

1 + e(ui−uj)/κ
, (2)

where κ denotes the noise amplitude characterizing the
level of rationality of individuals, which is often chosen
as κ = 0.1 following previous works [36]. A smaller κ cor-
responds to a stronger influence of j on i. The larger the
payoff difference between i and j, the higher probability
i tends to adopt j’s action in the next round.

Fixation probabilities and fixation times: In a well-
mixed population where each individual is equally likely
to interact with any other individual, the density of in-
dividuals adopting the strategy of s1 is denoted by ρ (or
equivalently, frequency of s2 players is 1−ρ) [10]. In the
case of coordination games, there are three equilibrium
points: two absorbing boundary points ρ = 0 and ρ = 1,
and one unstable interior fixed point ρ∗, which reads

ρ∗ =
a22 − a12

a11 + a22 − a12 − a21
. (3)

Note that the system is bistable and the stable state
ρ = 0 is separated from ρ = 1 by ρ∗. For initial fre-
quencies above ρ∗, the population evolves toward 100%
of pure s1 individuals, namely, ρ = 1 [10, 17]. On the
contrary, the system is absorbed to ρ = 0 if ρ0 < ρ∗,
showing an abrupt transition at ρ∗. In the case in which
s2 dominates s1 (i.e., prisoner’s dilemma), the only sta-
ble equilibrium is ρ = 0 because s2 is a Nash equilibrium
and therefore, ρ = 0 is an evolutionarily stable strategy.

To characterize the evolutionary process, one often
uses the fixation probability B that the system reaches
the absorbing boundary at ρ = 1, and the correspond-
ing asymptotic expectation times ⟨t⟩. We note that the
finite size N of the populations and the underlying net-
work structures are crucial to the dynamics [19]. In our
previous work [19], we mainly focused on the fixation
probabilities B. However, as demonstrated in Fig. 1,
we find there are large deviations in the mean fixation
times when the initial densities of s1-players (ρ0) are
close to the unstable fixed point ρ∗. This discrepancy
becomes larger when considering network structures, for
instance, scale-free networks [Fig. 1(c)], and the mean
degrees (connectivity) of networks [Fig. 1(d)].

3 Theory

Without loss of generality, we suppose that at time
t, the probability to have n nodes out of N players

with s1 strategy is ϕn = f(n, t). There are N + 1
possible states ϕ0, ϕ1, · · ·, ϕn, · · ·, ϕN . The network state
at time t is hence represented by a vector f(n, t) =
(f(0, t), f(1, t), · · ·, f(n, t), · · ·, f(N, t)), which fulfills the
normalization

∑N
n=0 f(n, t) = 1. There are two absorb-

ing states: (i) f(0, t) corresponds to the case of 0 players
with strategy s1 (or all are s2 players), and (ii) f(N, t)
means that the whole network is full of s1 players. The
network state at time t+ 1 is represented by

f(n, t+ 1) = f(n, t)M, (4)

where M is the transition matrix of the network state.
In the next step, we study the dynamics based on M .

We start in the situation of the well-mixing limit. At
time step t, we assume there are n out of N players with
s1 strategy. Therefore, the payoffs of each strategy are
as follows:
us1 = a11n+ a12(N − n), (5)
us2 = a21n+ a22(N − n). (6)

Furthermore, we define the frequency of s1 players as
ρ = n/N ,
us1 = N [a11ρ+ a12(1− ρ)], (7)
us2 = N [a21ρ+ a22(1− ρ)]. (8)
We assume that, in the neighborhood of node i, there

is a fraction n/N of players in state s1. Namely, at time
t, we have

ρi =
#{s1 players in Ni}

k
, ρ =

n

N
, (9)

where Ni and k are the neighborhood and degree of node
i, respectively. Under the mean-field assumption, we re-
place N with ⟨k⟩ in Eqs. (7) and (8) in the following
analysis.

3.1 Transition probabilities and mean fixation times

Before obtaining the distribution functions of fixation
times, we follow our previous stochastic approach in ob-
taining the mean fixation times on complex networks
[19]. Note that the previous work [19] only considered
coordination game models. In this work, we assume that
there are two absorbing states and derive the uncondi-
tional fixation time distributions. Our numerical results
will be performed on different games models, including
coordination and prisoner’s dilemma models.

Note that there are no differences in the results be-
low if one replaces the subscript s1 by s2; therefore, we
omit these in the following. In the next round t+ 1, the
transition (hopping) probability that the number of s1
players is increased to n+ 1 is expressed as

T+(n) = (1−ρ)ρ
∞∑
k=0

P (k)
∞∑

k′=0

P (k′|k)w(u+
k , u

+
k′), (10)
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where k is the degree of node i; P (k) is the probability
to have a node of degree k; P (k′|k) is the conditional
probability that a link from a node of degree k points to
a node of degree k′; and w(u+

k , u
+
k′) is the probability to

switch to s1 in the next round where u+
k is the payoff of

degree k when taking action of s2 and u+
k′ is the payoff

of degree k′ when taking action of s1. More specifically,

w(u+
k , u

+
k′) = 1/{1 + exp[(u+

k − u+
k′)/κ]}, (11)

u+
k = k[ρa21 + (1− ρ)a22], u+

k′ = k′[ρa11 + (1− ρ)a12].

(12)

When obtaining Eq. (10), we assume that the strategy
updating of player i is independent of its degree k. The
mean-field approximation further requires that the vari-
ance of the degree sequence ki is small; for instance, the
mean degree of a network ⟨k⟩ should not be too small.
Our numerical simulations below show that sparser net-
works of small values of ⟨k⟩ show good agreement with
the theoretical predictions as well.

In a full analogy, in the next iteration t+ 1, the tran-
sition probability that the number of s1 players is de-
creased to n− 1 reads

T−(n) = ρ(1−ρ)

∞∑
k=0

P (k)

∞∑
k′=0

P (k′|k)w(u−
k , u

−
k′), (13)

where w(u−
k , u

−
k′) is the probability to switch to s2 in the

next round; in particular,

w(u−
k , u

−
k′) = 1/{1 + exp[(u−

k − u−
k′)/κ]}, (14)

u−
k = k[ρa11 + (1− ρ)a12], u−

k′ = k′[ρa21 + (1− ρ)a22].

(15)

The probability to keep n s1-players unchanged at time
t+ 1 is given by

T0(n) = 1− T+(n)− T−(n). (16)

We note that T+(0) = T−(N) = 0 because the two
boundary states are absorbing.

In the case of the well-mixing limit, we have k′ = k =
N−1 and P (k′) = P (k′|k) = 1. Equations (10) and (13)
are further simplified as

T+(n) = (1− ρ)ρw(u+
k , u

+
k′), (17)

T−(n) = ρ(1− ρ)w(u−
k , u

−
k′). (18)

Therefore, we retrieve the results that were reported in
Refs. [10, 13]. In this case, one defines the ratio of the
transition probabilities as qn = T−(n)/T+(n), which was
used to compute the average fixation times based on the
recursive expression of the distributions of fixation times
[13]. Here we take a different approach to compute the
distribution functions of fixation times.

With T+(n) and T−(n), we obtain the transition ma-
trix M , the details of which are provided in the Ap-
pendix. Transition matrix M of the Markov process is
tridiagonal and the dimension of M is (N +1)× (N +1).
Furthermore, M can be decomposed into three blocks,
namely, (i) I2 represents the absorbing states, (ii) R is
the transition probability that the system reaches the
absorbing states in 1 step, and (iii) Q characterizes the
transition probabilities from any transient states. In our
previous work [19], we have shown that the fixation prob-
abilities and the average times that is necessary for the
system to reach the absorbing states are determined by
the fundamental matrix H = (IN−1−Q)−1, where IN−1

is the identity matrix [12]. Furthermore, we define the
matrix B = HR, which has dimension (N−1)×2. Start-
ing from any initial state of n ∈ [1, N − 1] s1 players (or
N − n s2 players), Bn2 and Bn1 are the probabilities
that the system is attracted to the absorbing state of
all s1 players and all s2 players, respectively. The two
probabilities Bn2 and Bn1 fulfill the normalization

2∑
j=1

Bnj = 1. (19)

Furthermore, the mean fixation time for the system to
be attracted to the absorbing state from any initial state
of n s1-players is given by

⟨tn⟩ =
N−1∑
m=1

Hnm. (20)

For the purpose of comparison between networks of dif-
ferent sizes, one normalizes it by the number of nodes in
the network, namely, ⟨tn⟩/N .

3.2 Unconditional fixation time distribution

When 1 ≤ n ≤ N−1 (any transient states), the dynamic
equations of the system [Eq. (4)] at time step t + 1 are
represented by

f(n, t+ 1) = f(n, t)Q. (21)

The stochastic dynamics of the network are described by
the master equation as
∆f(n, t)

∆t
= f(n, t+ 1)− f(n, t). (22)

Substituting Q [Eq. (A2) in Appendix A] into the above
Eq. (22), we have
∆f(n, t)

∆t
= f(n, t)(Q− IN−1). (23)

In the limit of ∆t → 0, N → ∞ and the notation of
the fundamental matrix H = (IN−1 −Q)−1, we have

df(n, t)
dt = −f(n, t)H−1, (24)
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and the solution reads

f(n, t) = f(n, 0)e−H−1t. (25)

Therefore, the attraction of the transient state to the
absorbing state of n = 0 (all are s2 players) in one step,
to the absorbing state of n = N − 1 (all are s1 players),
is represented by
f(0, t)

dt = f(1, t)T−(1) = T−(1)[f(n, 0)e−H−1t]1,1, (26)

f(N, t)

dt = f(N − 1, t)T+(N − 1)[f(n, 0)e−H−1t]1,N−1.

(27)

Thus, the probability for the transient state to be at-
tracted to the absorbing states is computed as

Pt =
f(0, t)

dt +
f(N, t)

dt
= T−(1)[e−H−1t]n,1 + T+(N − 1)[e−H−1t]n,N−1. (28)

We note that Pt describes the fixation time distribution
function of the system from any initial condition of n
s1-players.

3.3 Mean fixation times: Revisited

From the distribution function Eq. (28), the mean fixa-
tion time [Eq. (20)] for the system to reach the absorbing
states is alternatively expressed as follows:

⟨tn⟩ =
∫ +∞

0

tPtdt

= T−(1)

[∫ +∞

0

te−H−1tdt
]
n,1

+T+(N − 1)

[∫ +∞

0

te−H−1tdt
]
n,N−1

= T−(1)(H
2)n,1 + T+(N − 1)(H2)n,N−1

= T−(1)
N−1∑
j=1

HnjHj1+T+(N − 1)
N−1∑
j=1

HnjHj(N−1)

=
N−1∑
j=1

Hnj [T−(1)Hj1 + T+(N − 1)Hj(N−1)]

=
N−1∑
j=1

Hnj

2∑
l=1

Bjl. (29)

Owing to Eq. (19) (details are in Appendix A), we have

⟨tn⟩ =
N−1∑
j=1

Hnj

2∑
l=1

Bjl =
N−1∑
j=1

Hnj , (30)

which has exactly the same form as Eq. (20).

3.4 Mean conditional fixation time

If one considers the fixation time to all s1 players given
an initial condition of n s1-players, the mean conditional
fixation time is derived from the distribution [Eq. (28)],
which reads

⟨ts1n ⟩ =
∫ +∞

0

tP s1
t dt

= T+(N − 1)

[∫ +∞
0

te−H−1tdt
]
n,N−1

Bn2

= T+(N − 1)
(H2)n,N−1

Bn2
. (31)

3.5 Standard deviation and all moments

In addition, the variance σ2 of the fixation time distri-
bution is

σ2 = ⟨t2⟩ − ⟨t⟩2

=

∫ +∞

0

t2Ptdt−

N−1∑
j=1

Hnj

2

= 2(T−(1)(H
3)n,1 + T+(N − 1)(H3)n,N−1)

−

N−1∑
j=1

Hnj

2

. (32)

We obtain all moments of m-order as follows:

⟨tmn ⟩=
∫ +∞

0

tmPtdt

=T−(1)

[∫ +∞

0

tme−H−1tdt
]
n,1

+T+(N − 1)

[∫ +∞

0

tme−H−1tdt
]
n,N−1

=(m!)[T−(1)(H
m+1)n,1+T+(N−1)(Hm+1)n,N−1].

(33)

4 Numerical results

For better comparison purposes, we perform simulations
on populations of (i) all-to-all connections, (ii) Erdos–
Renyi (ER) random networks, and (iii) scale-free net-
works generated by the Barabási and Albert’s algorithm
(BA). The selection strength is κ = 0.1 for both models.
The network sizes are specified in the figure captions.
Initially, we randomly choose a fraction of ρ0 from N
network nodes to be s1-players.

Li-Min Ying, et al., Front. Phys. 13(1), 130201 (2018)
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Fig. 2 Probability density functions of unconditional fixation times for coordination games. Three representative initial
conditions are indicated by legends ρ0 = 0.45, 0.71 (ρ∗), and 0.9. The dots are numerical simulations and the black bold
lines are theoretical predictions by Eq. (28). The network sizes are N = 100 for (a–c): (a) all-to-all connected population,
(b) ER random networks, (c, d) scale-free networks, (d) three different sizes of scale free networks 100, 200, and 500. In (b,
c, d), the network mean degree is ⟨k⟩ = 40.

4.1 Coordination games

In the coordination game model, the payoff matrix is
chosen as a11 = 1.2, a12 = 0, a21 = 0.8, and a22 =
1, such that ρ∗ ≈ 0.71. The mean fixation times, as
shown in Fig. 1, suggest that the numerical estimations
show large deviations from the theoretical estimations,
especially when ρ0 is close to the unstable interior point
ρ∗. Therefore, we focus on the special case of ρ0 = 0.71,
comparing to the other two cases of initial conditions
(ρ0 = 0.45, and 0.9). In Fig. 2, we first show Pt [Eq. (28)]
for three different values of ρ0. The dependence of σ
on ρ0 and the mean degree of the networks ⟨k⟩ will be
checked in Figs. 3 and 4, respectively.

Distribution functions of fixation times: We show Pt

of coordination games in Fig. 2. In all cases, i.e., all-
to-all connected, ER, and BA networks, Pt is shown to

Fig. 3 Standard deviations versus initial conditions of ρ0
for coordination games. (a) The network size is N = 100
for all-to-all connected population (•), ER random networks
(N), and BA scale-free networks (�). In both ER and BA
networks, the mean degree is ⟨k⟩ = 40. (b) Three different
network sizes for scale-free networks: 100 (�), 200 (N), and
300 (•). The dots are numerical simulations and the black
bold lines are theoretical predictions by Eq. (32). The vertical
dashed lines correspond to the position of ρ∗ = 0.71.

be asymmetric with much longer tails (Fig. 2). When
ρ0 = 0.71, the theoretical prediction by Eq. (28) shows
large deviations from the numerical results for the BA
networks. However, these discrepancies are reduced when
large network sizes are used, as shown in Fig. 2(d).

Standard deviations: Depending on the initial condi-
tions ρ0, we show the standard deviations of fixation time
distribution functions in Fig. 3. We find that there are
no significant changes in σ in the well-mixing limit, as
shown in Fig. 3(a). In the case of ER random networks,
an increased σ has been observed only when the ρ0 values
are close to the unstable point of ρ∗. On the contrary,
the σ values are significantly increased in the case of BA
scale-free networks because the fixation time distribution
functions are much broader than the other two cases. In
addition, we find relatively large discrepancies between
the numerical estimations and theoretical predictions, es-
pecially for BA networks, as shown in Fig. 3(a). It turns

Fig. 4 Standard deviations versus networks average de-
grees ⟨k⟩ (divided by size N = 100) for coordination games
when ρ0 = 0.71. (a) ER random networks (N), BA scale-free
networks (�). (b) Three different network sizes for scale-free
networks: 100 (N) 200 (�), and 300 (•). The dots are nu-
merical simulations and the continuous lines are theoretical
predictions by Eq. (32).
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Fig. 5 Mean fixation times ⟨t⟩/N to pure s1-players in Prisoner’s dilemma model. The dots are numerical simulations,
while the solid lines are from the prediction [Eq. (31)]. The network size is N = 100 in all cases: (a) all-to-all connected
(well-mixed) population, (b) ER random networks, and (c) scale-free networks. The mean fixation times are sufficient when
networks average degrees ⟨k⟩ are large in both ER and scale-free networks, which are compared using ⟨k⟩ = 10 (N), 40 (�).

out that these discrepancies become more pronounced
when the network size increases, as shown in Fig. 3(b).
These discrepancies are related to a possible inadequacy
of the well-mixed state assumption in the scale-free net-
work when the analytical expression of σ is derived.

In addition, we have checked the dependence of σ on
the average connectivity (degree) of networks, which is
shown in Fig. 4. We conclude that the predictions by
Eq. (32) do not show pronounced differences from the nu-
merical estimations if the mean degrees ⟨k⟩/N are larger
than 0.2.

4.2 Prisoner’s dilemma games

In the prisoner’s dilemma model, we choose a11 = 1.2,
a12 = 1.0, a21 = 0.8, and a22 = 0. In this case, s2
dominates s1 in the payoff matrix [Eq. (1)] and it is a
strict Nash equilibrium. The only stable equilibrium is
ρs1 = 0, because s2 is an evolutionarily stable strategy
while s1 is not.

The results in Fig. 5 suggest that it may be sufficient
to compute the mean fixation time to characterize the
dynamic process in ER random networks, which is fur-
ther supported by Pt in Fig. 6. More specifically, we
show Pt in Fig. 6 for two typical initial values, ρ0 = 0.45
and 0.9. In addition, Figs. 7(a, b) and (c, d) show σ

Fig. 6 Pt for prisoner’s dilemma games on ER and BA
networks, where the networks mean degrees are ⟨k⟩ = 40 and
the network size is N = 100 in both cases. (a) ρ0 = 0.45 and
(b) ρ0 = 0.9. The black lines are from the theory.

depending on, respectively, the initial values ρ0 and the
mean network degrees ⟨k⟩/N . Based on both Figs. 6 and
7, we conclude that the mean fixation time is sufficient
in the case of the prisoner’s dilemma when simulations
are performed on all-to-all connected populations and
ER random networks. However, the numerical simula-
tion shows relatively large deviations from the theoret-
ical prediction in Pt in BA networks, particularly when
ρ0 = 0.9 [Fig. 6(b)].

5 Conclusions

Simulations of game models on top of complex networks
show that mean fixation times ⟨t⟩ are often insufficient

Fig. 7 σ for prisoner’s dilemma games versus (a, b) initial
conditions of ρ0 and (c, d) average degrees ⟨k⟩ of networks.
(a, c) The network sizes are N = 100 for both ER and scale-
free networks, and (b, d) three different network sizes for BA
networks: (100 (�), 200 (N), and 300 (•)).
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to characterize the evolutionary processes. In the case
of coordination games, ⟨t⟩ shows large deviations when
the initial frequencies of one strategy are close to the un-
stable interior fixed point. Based on the mean-field as-
sumption, we have obtained explicit expressions for the
probability distribution functions of fixation times Pt.
More importantly, all m-order moments of the distribu-
tion functions are derived. In the numerical simulations,
we focused on the standard deviations depending on the
initial frequency of one strategy ρ0 and the average con-
nectivity ⟨k⟩/N . When increasing the average network
degrees, the results are convergent to the case of all-to-
all connections. The difference between the theoretical
mean fixation time and the numerical simulation is due
to the connectivity heterogeneity, which is typical for
scale-free networks. It shows large deviations when the
average network degrees are small.

Although our discussions are focused on pairwise com-
parison processes, our results can be easily generalized to
Moran processes. At each discrete time step of Moran
processes, an individual is chosen randomly from the
population for reproduction proportional to its fitness,
and another individual is chosen at random for death and
replaced by the new offspring. In this case, we have two
slightly different ways of replacing neighbors when the
offspring is produced; in particular, either in the neigh-
borhood of the chosen player or in the whole network.
Our theory relies on a mean-field approximation; there-
fore, it works slightly better if the replacing takes place
on the network-wide scale. A more systematic analysis
of the replacing rules will be done in future work. One
of more challenging tasks is to generalize the present in-
vestigation from one structured population to two in-
teracting (coupled) populations, where more interesting
dynamic behaviors will be observed [38].
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Appendix A Transition matrix MMM

The transition matrix of the evolutionary process is ob-
tained as

M =


1 0 0 0 · · · 0

T−(1) T0(1) T+(1) 0 0

0 T−(2) T0(2) T+(2) 0
... . . . ...
0 0 0 0 · · · 1


=

(
I2 0

R Q

)
, (A1)

where

I2=

(
1 0

0 1

)
, R =


T−(1) 0

0 0
...

...
0 T+(N − 1)

 ,

Q=


T0(1) T+(1) 0 · · ·
T−(2) T0(2) T+(2)

... . . . ...
0 0 0 · · · T0(N − 1)

 ; (A2)

I2 represents the two absorbing states, R is the probabil-
ity for the system to reach the absorbing states in 1 step,
and Q is the transition probabilities for any transient
states. We further denote the following two matrices

H = (IN−1 −Q)−1 (A3)

=


T+(1) + T−(1) −T+(1) 0 · · ·

−T−(2) T+(2) + T−(2) −T+(2)
... . . . ...
0 0 0 · · · T+(N − 1) + T−(N − 1)


−1

, (A4)

B = HR =


H11T−(1) H1(N−1)T+(N − 1)
H21T−(1) H2(N−1)T+(N − 1)

...
...

H(N−1)1T−(1) H(N−1)(N−1)T+(N − 1)

 . (A5)

Note that the matrix IN−1−Q is tridiagonal, the inverse
of which determines the stochastic dynamics of the sys-
tem, namely, the fixation probabilities and the average
times necessary for the system to reach the absorbing
states [12, 19]. More specifically, starting from any ini-

tial state SI(0), I ∈ [1, N − 1], we have probabilities
of Bn2 and Bn1 that the system is attracted to the ab-
sorbing states of, respectively, all s1 players and all s2
players. The two probabilities Bn2 and Bn1 fulfill the
normalization

130201-8
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2∑
j=1

Bnj = 1. (A6)

Furthermore, the mean fixation time for the system to
be attracted to the absorbing state from any initial state
of n s1-players is given by

⟨tn⟩ =
N−1∑
m=1

Hnm. (A7)

For the purpose of comparison between networks of dif-
ferent sizes, one normalizes this by the number of nodes
in the network, namely, ⟨tn⟩/N .

With the notations of Eqs. (A3) and (A5), the fun-
damental matrix H of the stochastic process is H =
(IN−1 − Q)−1, where IN−1 is the identity matrix of di-
mension N − 1 [19].
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