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Abstract

The responses of complex dynamical systems to external perturbations are of both theoretical
importance and practical significance. Different from the conventional studies in which perturbations
are added on to the system variables, here we consider the scenario of perturbed couplings.
Specifically, by the scheme of periodic coupling in which the coupling strength varies periodically with
time, we investigate how the synchronization behaviors of an ensemble of phase oscillators are affected
by the properties of periodic coupling, including the coupling frequency and amplitude. It is found
that, by comparison with the constant coupling scenario, the presence of period coupling will suppress
synchronization in general and, with a decrease in the frequency (or the increase of the amplitude) of
the periodic coupling, the synchronization performance gradually deteriorates. The influences of
periodic coupling on synchronization are demonstrated by numerical simulations in different
network models, and the underlying mechanism is analyzed by the method of dimension reduction.

1. Introduction

The fact that realistic systems are inevitably influenced by their surrounding environments and the finding that
the dynamics of nonlinear systems is sensitive to small perturbations make the dynamical responses of complex
nonlinear systems to external perturbations an outstanding problem in science and engineering. In biological
and neural systems, a question of particular interest is how the system collective behaviors are influenced by
externally added periodic signals, e.g. the effects of seasonal variations on ecological processes [1], the influences
of circadian rhythm on neural activities [2], the impacts of diurnal cycles on gene expressions [3], and the
influences of electrical and magnetic stimulations on brain functions [4]. In particular, with the development of
modern techniques in medicine and neuroscience (e.g. the transcranial electrical /magnetic stimulations), in
recent years tremendous efforts have been paid to the treatment of neurological disorders, or the improvement
of brain functions, by noninvasive electrical and magnetic simulations [5, 6]. Despite the significant progresses
achieved in experiment, the mechanisms behind the interaction between external simulations and neural
activities remains mysterious [4—6].

A typical collective behavior observed in complex systems is synchronization, in which an ensemble of
oscillators are observed to be moving in a coherent fashion when the coupling between them exceeds certain
critical strength [7, 8]. As the dynamical basis for the function and operation of many realistic systems,
synchronization behaviors have been extensively studied by researchers from different fields over the past
decades [9-11]. In exploring oscillator synchronization, one of the focusing issues is about the robustness of
synchronization to external perturbations, including environmental noises and periodic drivings [12-21]. Due
to the nonlinear feature of the system dynamics, intriguing phenomena could be generated in the presence of
external perturbations, e.g. the enhancement of synchronization by random noise [19, 20], the control of
synchronization by periodic signals [14, 15], the manipulation of synchronization by periodic drivings [16], and
the inducing of synchronization by configuring initial conditions [21]. It is noted that in these studies, the
perturbation signals are normally added on the system variables. While this setting is appropriate for many
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realistic situations, there do exist situations where external perturbations are acting on the couplings. For
instance, in brain stimulations, the electromagnetic signals affect also the conductance of the synapses, leading to
the plasticity of neural connections [5, 6]. Similar concerns exist also in ecosystems (where the interactions
between species are varying with seasons) and metabolic systems (where gene expressions are modulated by
diurnal cycles) [1, 3]. With these concerns, a question raises naturally is: how the synchronization behaviors of
coupled oscillators are affected by periodic couplings?

Inspired by the above question, we investigate in the present work the impacts of periodic coupling on the
synchronization of coupled phase oscillators. More specifically, by adopting periodic coupling in the classical
Kuramoto model [22], we investigate how the degree of synchronization is affected by the frequency and
amplitude of the periodic coupling. We are able to demonstrate numerically and argue theoretically that the
adoption of periodic coupling will suppress synchronization in general, with the suppression degree dependent
of the coupling frequency and amplitude. Specifically, the smaller (larger) the coupling frequency (amplitude) is,
the stronger the synchronization suppression will be. In addition, it is found that the central frequency of the
oscillators, which characterizes the time scale of the synchronous motion, has no influence on synchronization.
These findings shed lights on the responses of complex dynamical systems to external drivings, and provides a
timely contribution to the study of stimulation-related system functions, e.g. brain stimulations [4—6].

In section 2, we will present the model of coupled phase oscillators and investigate numerically the
influences of periodic coupling on synchronization. By the method of dimension reduction, in section 3 we will
conduct a theoretical analysis on the impacts of periodic coupling on synchronization, and explore the
underlying mechanism by the scheme of on—off coupling. Generalizations to other network models, including
the random complex network and the neural network of nematode C. elegans, will be presented in section 4.
Discussions and conclusion will be given in section 5.

2. Model and numerical results

Our model of coupled phase oscillators reads
N
0 = w; + %Z a;i sin(0; — 0y, (D
=1

with
K(t) = Ko[1 + sin(27ft)]. 2)

Here, i, j = 1, ..., Nare the oscillator (node) indices, 6(¢) is the instant phase of the ith oscillator at time ¢, and w;
is the natural frequency of the ith oscillator. The natural frequency follows the distribution g(w). The coupling
relationship of the oscillators is captured by the adjacency matrix A = {a;;}, with a;; = a;; = 1ifoscillatorsi
and j are directly connected by alink, otherwise a;; = 0. The quantity d; = ) ; @ij denotes the number of
connections associated to oscillator , i.e. its degree. Different from existing models, we make the coupling
strength vary periodically with time, as described by equation (2). The frequency and amplitude of the periodic
coupling are represented by fand Ky, respectively. If f = 0, we have K = K and the model is identical to the
generalized Kuramoto model with constant coupling [9, 11]. Furthermore, if the oscillators are globally
connected (i.e. a;; = 1 for all the non-diagonal elements in matrix A), equation (1) describes the classical
Kuramoto model. The main task of our present work is to investigate how the variations of fand K, will affect the
synchronization degree of the oscillators.

We start by demonstrating the impacts of periodic coupling on synchronization based on numerical
simulations. To make the model theoretical tractable, we employ the structure of global coupling (the results for
complex network structures will be discussed later). Following [23, 24], we choose the natural frequency w; of the
oscillators randomly from the Lorentzian distribution

gy =2 ! 3)

T (w— wy)? + A2
with wy the central frequency and A the scale parameter of the distribution. (We note that the main phenomena
to be reported are independent of the specific form of the frequency distribution, which has been checked
numerically for the Gaussian, uniform and triangle frequency distributions.) Without loss of generality, we set
wo = 0and A = 1. The initial phases of the oscillators are randomly chosen within the range (0, 27). The degree
of synchronization is evaluated by the order parameter

R = (RO) = (13 "),
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Figure 1. The impacts of periodic coupling on the synchronization of N = 1 x 10° globally coupled phase oscillators. (a) The
variation of the synchronization order parameter, R, with respect to the coupling amplitude, Ky, for different cases. Black squares:
constant coupling with f = 0. Blue circles: low-frequency coupling with f = 0.2. Pink up-triangles: low-frequency coupling with
f= 0.2andwy, = 1.0. Blue diamonds: low-frequency coupling with f = 0.2 and wy = 27f = 0.47. Red down-triangles: high-
frequency coupling with f = 2.0. Solid lines are the analytic results plotted according to equation (10). (b) The variation of R with
respect to the coupling frequency ffor different values of Ko and wy. Black squares: Ky = 1. Red circles: Ky = 3. Blue up-triangles:
Koy = 5.Pink down-triangles: Ky = 5and wy = 1.0. Colored symbols and lines stand for the numerical and theoretical results,
respectively. Each result is averaged over 100 frequency realizations.

where |-| and (-) denote, respectively, the module and time averaged functions, and R(¢) is the instant order
parameter. Wehave R € [0, 1], withR = 0and 1 corresponding to the completely incoherent and global
synchronization states, respectively. In numerical simulations, we fix the system sizeas N = 1 x 10%,and
update equations (1) and (2) by the fourth-order Runge—Kutta algorithm, with the time step being chosen as
8t = 5 x 1072 In obtaining the order parameter, R, we first evolve the system for a transient period of

Ty = 6 x 10, and then average the instant order parameter, R(¥), over a period of T = 200.

By numerical simulations, we plot in figure 1(a) the variation of R with respect to K, for the special case of
constant coupling ( f= 0) and for two typical cases of periodic coupling (f = 0.2 and 2.0). We see that when Kj is
small (Ky < K, =~ 2.0), the values of R are almost identical for all the cases. However, as K, increases from K,
the value of R for the case of low-frequency periodic coupling (f = 0.2) is clearly smaller to that of constant
coupling, signifying that synchronization is suppressed by low-frequency couplings. Furthermore, as K,
increases from K, the gap between the two curves is gradually enlarged. For instance, we have
AR = R(f=0) — R(f=0.2) = 0.1atK, = 3, whichisincreased to AR ~ 0.2 at K, = 4. However, for the
case of high-frequency periodic coupling (f = 2.0), we see that the value of R is almost identical to that of
constant coupling for the whole region, indicating that synchronization is less affected by high-frequency
couplings.

To investigate systematically the influence of coupling frequency on synchronization, we plot in figure 1(b)
the variation of R with respect to ffor different K. We see that for small coupling amplitude (K, = 1), despite
the variation of f, the value of R is staying always around 0. This observation is consistent with the finding in
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figure 1(a) that Ris independent of fin the region of K, < K_. For larger coupling amplitudes (K, = 3 and 5), we
see that as fincreases from 0, the value of R is suddenly decreased first, then increases gradually and approaches
finally the value generated by constant coupling [R(f = 0)]. This observation is also consistent with the finding
in figure 1(a) that synchronization is more suppressed by low-frequency than high-frequency couplings.

In previous studies on the synchronization of periodically coupled chaotic oscillators, an interesting finding
is that when the time scale of the nodal dynamics is comparable to that of periodic coupling, the
synchronizability of the system could be significantly affected [25, 26]. In particular, it is shown that at some
characteristic frequencies of the periodic coupling, the upper boundary of the synchronization region in the
parameter space of the coupling strength can be significantly extended. For our model of periodically coupled
phase oscillators, the averaged time scale of the nodal dynamics is characterized by the central frequency, wy, in
the Lorentzian distribution. This arouses our interest of the influence of w, on the synchronization of
periodically coupled phase oscillators. Changing wy to 1.0 (wy & 27f) and 0.47 (wy = 27f), we plot in
figure 1(a) again the variation of R with respect to K, for the case of low-frequency coupling (f = 0.2). We see
that the results of wy = 1.0 and 0.4 are identical to that for wy = 0. Numerical results thus suggest that, unlike
periodically coupled chaotic oscillators, the synchronization performance of periodically coupled phase
oscillators is independent of the time scale of the nodal dynamics (the central frequency of the Lorentzian
distribution). The independence of R on wy is also observed in the variation of R with respect to f, as depicted in
figure 1(b) (the case of K = 5and wy = 1.0). (As predicted in [26], the characteristic frequencies observed in
periodically coupled chaotic oscillators lies in the nonlinear response of the temporal stability of the local
dynamics, which are absent in coupled one-dimensional oscillators. Our present study confirms this
prediction.)

In numerical studies of Kuramoto-type models, an important concern is whether the observed phenomena
is dependent of the system size, namely the finite-size effect [27, 28]. To check the size-effect, we plot in figure 2
the variation of R with respect to N for different values of K and f. We see that for small coupling amplitudes
(Ko < K,),as Nincreases, the value of R is decreased to 0 by roughly the power-law scalings (figures 2(a)—(d));
while for large coupling amplitude (K, > K,), the value of R is size-independent (figures 2(e) and (f)). In
particular, comparing with the results of f = 0 (figure 2(e)) and f = 0.2 (figure 2(f)), we see that the value of R is
decreased by nearly the same amount (AR ~ 0.1) for different values of N. Numerical simulations thus suggest
that the phenomenon we have observed, i.e. synchronization is suppressed by periodic coupling, is independent
of the system size.

To gain insights on the influence of periodic coupling on synchronization, we continue to study the
temporal behavior of the order parameter. By the parameter Ky = 1, we plotin figure 3(a) the time evolution of
R(2) for the cases of constant, low-frequency (f = 0.2) and high-frequency ( f= 2) couplings. We see that as time
increases, the value of R(#) is quickly decreased and is staying around 0 with small fluctuations for all three cases.
Increasing K, to 5, we plot in figure 3(b) the time evolution of R(#) again. We see that, different from the cases of
small coupling amplitude (figure 3(a)), the time evolution of R(#) is clearly affected by the coupling frequency.
Specifically, for the case of constant coupling, the value of R(#) is increased with time gradually and saturated at
about 0.75 with almost no fluctuation; for the case of low-frequency coupling (f = 0.2), R(¢) is oscillating
periodically with a large amplitude, with the oscillating frequency identical to that of periodic coupling; for the
case of high-frequency coupling (f = 2.0), R(¢) is also varying periodically, but with a smaller amplitude. We
thus infer from figure 3 that under large-amplitudes periodic coupling (K > K,) the instant order parameter, R
(¢), becomes oscillatory, with the oscillating frequency identical to that of periodic coupling and the oscillating
amplitude dependent of the coupling frequency.

3. Theoretical analysis

We move on to explore the dynamical mechanism underlying the observed phenomena, based on the method of
dimension reduction proposed by Ott and Antonsen [23, 24]. In the case of thermodynamic limit,i.e. N — oo
in equation (1), the state of the system at time ¢ can be described by a continuous probability density function p
(6, w, 1), with p (0, w, t)dOdw the fraction of oscillators with phases between # and § + df and natural
frequencies between wand w + dw. The evolution of p(6, w, t) is governed by the continuity equation

op(0, w, t) n Olvgp (0, w, 1)]

=0, 4
ot 00 )

with
K(t)

> [Z(De ™ — Z¥1)e"], )
1

UQ(H’ W, t) =w+
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Figure 2. The effect of system size on synchronization performance. (a) Ky = landf = 0, R oc N~'/2.(b)K; = landf = 0.2,
Rox N2 (c)Ky =K, ~ 2.0andf =0, R oc N"V/4.(d)Ky = 2.0andf = 0.2, R o« N"7.(e) Ky = 3andf= 0, R = 0.58.(f)
Ko = 3andf= 0.2, R ~ 0.46. The results are averaged over 50 frequency realizations.

and
2T +oo
Z(t) = R(t)e? = dé dwp(8, w, t)el. 6
() =RWe" = [~ a0 [ dup®, w, e ©)

Here, i = +/—1 and Z*(t) stands for the complex conjugate of Z(¢). Expanding p(6, w, t) as a Fourier series in
0, we have
(w) ad . d .
p(0, w, 1) = gz—[l + 3 pp(w, De ™ + 3™ giw, 1el]. (7)
m n=1 n=1
Utilizing the Ott—Antonsen ansatz [23, 24]:
pu(w, t) = a(w, ", |a(w, )] < 1,

and substituting equation (7) into equations (5) and (6), we obtain

Oa . K@)
— + wa +

"z 2 Z* —
o 5 (Z(t)a ("1 =0 )
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Figure 3. The temporal behavior of the synchronization order parameter, R(¢), under (a) the weak coupling amplitude K, = 1.0 and
(b) the large coupling amplitude K, = 5.0 for different coupling frequencies. Black squares: constant coupling. Red circles: low-
frequency coupling with f = 0.2. Blue up-triangles: high-frequency coupling with f = 2.0.

and
Z(t) = f " dwa(w, HgW). ©)

To evaluate the integral that gives Z*(t), we analytically continue w to the complex w-plane and carry out
contour integration [23, 24], where the analyticity of a holds in the lower half plane of the complex variable w.
For large negative values of Im(a), equation (8) can be approximated as da/0t = Im(w)a,sowehavea — 0
for Im(w) — —o0. Following the setting of numerical simulations, we have

gw) = 1/@2m)[(w — wy — i6)"! — (w — wy + 16)"!] for the Lorentzian frequency distribution. The pole of
the lower half plane is w = wy — iA. We thus obtain Z (t) = a*(wy — 14, t). Substituting this expression into
equation (8), we get the following nonlinear equation for the order parameter

ar | [A - —K(t)]R 4+ KO g, (10)
dr 2 2
For the case of constant coupling, K (t) = Kj, equation (10) is the Bernoulli equation whose solution is [23, 24]
R2 Ko
R(t) = Ro{1 + (—2 — Dex(1-%)}-172, 11
() o{l +( R(0)? ) 1 (11)

with Ry = /1 — 2/Kj and R(0) the initial order parameter. Equation (11) predicts that under constant
coupling the value of R approaches 0 for Ky < K, = 2.0, and approaches R, for Ky > K_. These predictions of
constant coupling are in good agreement with the numerical results, as shown in figures 1(a) and 2(a), (), (e).
We continue to analyze the case of periodic coupling. When periodic coupling is adopted, equation (10) can
not be solved analytically. We thus turn to numerical simulations. By solving equation (10) numerically, we plot
in figure 1 the variation of R with respect to K, for different values of . We see that the theoretical results given by
equation (10) are in good agreement with the results of direct simulations. Furthermore, equation (10) indicates
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phase portraits of the ‘on’ (dR/dt = —R’) and ‘off’ (dR/dt = —R) states. (a2) Ky, = 1. The time evolution of the synchronization
order parameter, R(¢), for the cases of low-frequency (f = 0.2) and high-frequency (f = 2) couplings. (b1) K, = K, = 2. The phase
portraits of the ‘on’ (dR/dt = R — 2R?) and ‘off states. R, = 1/+/2 denotes the stable point of the ‘on’ state. (b2) The time evolution
of R(¥) for different coupling frequencies. (c1) Ky = 5. The phase portraits of the ‘on’ (dR/dt = 4R — 5R?)and ‘off’ states.

R, = /0.8 is the stable point of the ‘on’ state. R, = /0.6 is the order parameter generated by the constant coupling strength K. (c2)
Ky = 5. The time evolution of R(¢) for different coupling frequencies. For illustration purpose, the initial synchronization order
parameter, R(0), is chosen as 0.8 in (a2), (b2), and (c2).

that the evolution of R(¥) is independent of the central frequency, wy, which is also in consistent with the
numerical observation in figure 1 (i.e. the changes of w, from 0 to 1 and 0.47 do not affect the values of R).
Equation (10) can be also used to trace the time evolution of R(#), as depicted in figure 3. We see that the
theoretical results calculated from equation (10) fit the numerical results very well for both the cases of low-
frequency and high-frequency couplings.

Havingjustified the efficiency of the method of dimension reduction in characterizing the dynamics of the
synchronization order parameter, we next exploit this method to investigate the mechanism behind the
observed phenomenon, i.e. synchronization is suppressed by periodic coupling. To facilitate the analysis, here
we consider the simple case of square wave coupling, K (t) = 2K sgn[sin(27ft)], with sgn[...] the sign
function. That s, the coupling strength is alternating between 0 and 2K, periodically with the same duration.
Square wave coupling is also known as on—off coupling [25], which has been widely used in literature as
approximations of pulsed couplings (in neural systems) and diurnal-cycle-based interactions (in ecosystems).
To be consistent with numerical studies, we set A = 1 in the following analysis.

We first analyze the situation of weak coupling amplitude, Ky = 1. In this situation, the coupling strength, K
(1), is alternating between 2 (the ‘on’ state) and 0 (the ‘off state), and equation (10) is simplified to dR/dt = —R
and dR/dt = —R’ for K(f) = 0and 2, respectively. Figure 4(al) shows the phase portraits of the two states. As
dR/dt < 0 forboth states, we see that R(¢) approaches the stable point R, = 0 monotonically with time for both
the cases of low-frequency and high-frequency couplings (figure 4(a2)). We next analyze the situation of critical
coupling amplitude, K, = 2. In this situation, the ‘on’ state is governed by the equation dR/dt = R — 2R®
which has the stable point R, = 1/~/2 (figure 4(b1)). As time increases, the value of R(t) is approaching 1 /+/2
and 0 during the episodes of ‘on’ and ‘off’ states, respectively. This leads to the oscillation of R(#), as depicted in
figure 4(b2). Since dR/dt < R during the whole process (i.e. the origin is always more stable than R;), we see that
R(?) is finally attracted to 0. Like the situation of weak coupling (figure 4(a2)), here the role of fis also reflected in
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affecting the oscillating amplitude of R(#): the smaller the coupling frequency is, the larger the oscillating
amplitude will be.

We go on to analyze the situation of strong coupling amplitude, Ky = 5, with which the coupling is
switching between 0 (the ‘off state) and 10 (the ‘on’ state). The dynamics of R(¢) in the ‘on’ state is governed by
the equation dR/dt = 4R — 5R?, which has the stable point R; = J0.8 (figure 4(c1)). Setting dR/dt = R, we
have the equilibrium point R, = /0.6 where the attracting of the origin and R is balanced with each other. Due
to the equilibrium point R,, the value of R(¢) is no longer attracted to the origin like the case of weak coupling
(figures 4(al) and (a2)), but will be oscillating around R, (figure 4(c2)). Please note that R, is also the stable point
associated with the constant coupling K, = 5. (As a matter of fact, the relation R, = R(Ky) holds for any
coupling strength larger than 2K_.) So, under the periodic coupling, the value of R(#) is oscillating around
R{(Ky)—the order parameter generated by the constant coupling of strength Kj. If the coupling frequency is high
enough, e.g. f = 2, the value of R(#) will be trapped in the vicinity of R,. As a result of this, R(¢) is oscillating
around R, roughly in a symmetric fashion, resulting in R(f = 2) ~ R(f = 0). This explains why
synchronization is less affected by high-frequency couplings. The symmetric oscillation, however, is broken
when the coupling frequency is low, e.g. f = 0.2. As depicted in figure 4(c2), in this case the oscillation of R(¢) is
truncated at R, during the ‘on’ episode, but is approaching 0 continuously during the ‘off’ episode. Itis just the
asymmetric oscillation of R(#) that results in the suppressed synchronization under low-frequency couplings.
With the decrease of f (or the increase of Kj), the asymmetric feature of the oscillation becomes more prominent,
making the synchronization order parameter gradually decreased. This understanding explains the numerical
results shown in figure 1.

4, Generalizations

We finally check the generality of the observed phenomena in systems of complex network structures. The first
system we investigate is the Erdgs—Renyi (ER) random network [29]. The ER network is generated by connecting
nodes in the system randomly with the probability p = 0.6. Besides the structure, the other settings of the ER
network are the same to that of the globally connected network studied in figures 1 and 3, including the network
size, the frequency distribution, and the coupling forms figure 5(a) shows the variation of R with respect to K for
the cases of constant coupling (f = 0) and low-frequency coupling (f = 0.2) with on—off and sinusoidal
coupling functions. We see that before the onset of synchronization (which occurs atabout K. = 3), the values
of R for all three cases are very close; after the onset point, the value of R for the case of f = 0.2 is clearly below to
that of constant coupling and, with the increase of Ky, the difference between the two cases is gradually enlarged.
These results are consistent with the results obtained in globally connected network (figures 1 and 3). It should
be note that due to the sparse connectivity of the ER network, the dynamics of the synchronization order
parameter is not precisely described by equation (10) [23, 24]. However, the dynamical mechanism we have
revealed (figure 4) is general, which is independent of the network structure. Figure 5(a) shows also the variation
of Rwith respect to K for the case of on—off periodic coupling (f = 0.2). We see that comparing to the case of
sinusoidal coupling, network synchronization is more suppressed by on—off coupling.

The second system we investigate is the neural network of the nematode C. elegans, which consists 0of 297
nodes and totally 2148 links [30]. The natural frequencies of the oscillators are still chosen randomly from the
Lorentzian distribution, with the parameters identical to those used in the model of globally connected network
(figures 1 and 2). Figure 5(b) shows the variation of R with respect to K for the cases of constant, sinusoidal, and
on—off couplings. We see that, similar to the results of ER network (figure 5(a)), the values of R are diverged from
each other after the onset of synchronization (which occurs at about K, = 30); and, comparing to the case of
constant coupling, synchronization is suppressed by periodic couplings.

5. Discussions and conclusion

As the dynamical basis for the normal functioning of brain, the synchronization activities of distributed neurons
has long interested neuroscientists [31]. In particular, aiming to improve the brain functions or recover brain
from disorders, various stimulating techniques have been proposed in the past decades [4, 5], saying, for
instance, transcranial direct-current stimulations, transcranial magnetic stimulations, and deep-brain
stimulations. Whereas the efficacy of these techniques has been testified by neurological experiments and in
clinical treatments, the underlying mechanism remains not clear. In recent years, stimulated by the rapid
progress in complex dynamical systems, there have been theoretical efforts to investigate the responses of neural
system to stimulations, in which different models consisting of coupled phase oscillators have been proposed
and studied [31]. In conventional studies, the external stimulation is normally introduced to the system
variables, with the concern that the activities of ion channels are directly affected by electrical /magnetic signals.
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Figure 5. (a) For ER random network of size N = 1 x 107 and connecting probability p = 0.6, the variation of the synchronization
order parameter, R, with respect to the coupling amplitude, K, for the cases of constant coupling ( f = 0, black squares), and
sinusoidal (f = 0.2, red circles) and on—off (f = 0.2, blue up-triangles) periodic couplings. (b) For the neural network of the
nematode C. elegans, the variation of R with respect to K, for the cases of constant coupling (black squares), and sinusoidal ( f = 0.2,
red circles) and on—off (f = 0.2, blue up-triangles) periodic couplings. The results are averaged over 20 frequency realizations.

Recent evidences from pharmacological and neurological studies, however, show that low-frequency stimuli
could also increase the expression of certain proteins (e.g. NMDA receptors) at the synapses [5], which in turn
could change the molecular and cellular pathology associated with some neurological disorders (e.g. Alzheimer
diseases) [6]. Inspired by these experimental findings, we have proposed in the present work the scheme of time-
dependent coupling and investigated, numerically and theoretically, the influences of periodic coupling on
synchronization performance. The finding that synchronization is suppressed by periodic coupling sheds new
lights on the dynamical responses of neural systems to external stimuli, and might have implications to the
therapeutic interventions of neurological disorders such as epileptic seizures, Alzheimer, and Parkinson
diseases.

Summarizing up, motivated by the fact that the interaction strength between elements in some realistic
systems are subjected to periodic perturbations, we have studied the synchronization behavior of coupled phase
oscillators under periodic couplings. It is found that comparing to the situation of constant coupling, the
synchronization propensity of the system is deteriorated under periodic coupling and, with the decrease of the
frequency of the coupling, the synchronization degree is gradually decreased. By numerical simulations, we have
demonstrated this phenomenon in different network models, and justified its independence to the system size.
Furthermore, by the method of dimension reduction, we have conducted a detailed analysis on the influence of
periodic coupling on synchronization order parameter, with the theoretical predictions in good agreement with
the numerical results. In particular, by the scheme of on—off periodic coupling, we have analyzed the mechanism
underlying the observed phenomenon, and found that the suppressed synchronization by periodic coupling is
attributed to the asymmetric oscillation of the temporal synchronization order parameter. The finding extends
our knowledge on the dynamical responses of complex nonlinear systems to external perturbations, and
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provides insights on the functioning and operation of some realistic systems, e.g. the stimuli-based treatment of
neurodegenerative diseases.
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