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Abstract
The responses of complex dynamical systems to external perturbations are of both theoretical
importance and practical significance. Different from the conventional studies inwhich perturbations
are added on to the system variables, herewe consider the scenario of perturbed couplings.
Specifically, by the scheme of periodic coupling inwhich the coupling strength varies periodically with
time, we investigate how the synchronization behaviors of an ensemble of phase oscillators are affected
by the properties of periodic coupling, including the coupling frequency and amplitude. It is found
that, by comparisonwith the constant coupling scenario, the presence of period couplingwill suppress
synchronization in general and, with a decrease in the frequency (or the increase of the amplitude) of
the periodic coupling, the synchronization performance gradually deteriorates. The influences of
periodic coupling on synchronization are demonstrated by numerical simulations in different
networkmodels, and the underlyingmechanism is analyzed by themethod of dimension reduction.

1. Introduction

The fact that realistic systems are inevitably influenced by their surrounding environments and thefinding that
the dynamics of nonlinear systems is sensitive to small perturbationsmake the dynamical responses of complex
nonlinear systems to external perturbations an outstanding problem in science and engineering. In biological
and neural systems, a question of particular interest is how the system collective behaviors are influenced by
externally added periodic signals, e.g. the effects of seasonal variations on ecological processes [1], the influences
of circadian rhythmonneural activities [2], the impacts of diurnal cycles on gene expressions [3], and the
influences of electrical andmagnetic stimulations on brain functions [4]. In particular, with the development of
modern techniques inmedicine and neuroscience (e.g. the transcranial electrical/magnetic stimulations), in
recent years tremendous efforts have been paid to the treatment of neurological disorders, or the improvement
of brain functions, by noninvasive electrical andmagnetic simulations [5, 6]. Despite the significant progresses
achieved in experiment, themechanisms behind the interaction between external simulations and neural
activities remainsmysterious [4–6].

A typical collective behavior observed in complex systems is synchronization, in which an ensemble of
oscillators are observed to bemoving in a coherent fashionwhen the coupling between them exceeds certain
critical strength [7, 8]. As the dynamical basis for the function and operation ofmany realistic systems,
synchronization behaviors have been extensively studied by researchers fromdifferentfields over the past
decades [9–11]. In exploring oscillator synchronization, one of the focusing issues is about the robustness of
synchronization to external perturbations, including environmental noises and periodic drivings [12–21]. Due
to the nonlinear feature of the systemdynamics, intriguing phenomena could be generated in the presence of
external perturbations, e.g. the enhancement of synchronization by randomnoise [19, 20], the control of
synchronization by periodic signals [14, 15], themanipulation of synchronization by periodic drivings [16], and
the inducing of synchronization by configuring initial conditions [21]. It is noted that in these studies, the
perturbation signals are normally added on the system variables.While this setting is appropriate formany
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realistic situations, there do exist situations where external perturbations are acting on the couplings. For
instance, in brain stimulations, the electromagnetic signals affect also the conductance of the synapses, leading to
the plasticity of neural connections [5, 6]. Similar concerns exist also in ecosystems (where the interactions
between species are varyingwith seasons) andmetabolic systems (where gene expressions aremodulated by
diurnal cycles) [1, 3].With these concerns, a question raises naturally is: how the synchronization behaviors of
coupled oscillators are affected by periodic couplings?

Inspired by the above question, we investigate in the present work the impacts of periodic coupling on the
synchronization of coupled phase oscillators.More specifically, by adopting periodic coupling in the classical
Kuramotomodel [22], we investigate how the degree of synchronization is affected by the frequency and
amplitude of the periodic coupling.We are able to demonstrate numerically and argue theoretically that the
adoption of periodic couplingwill suppress synchronization in general, with the suppression degree dependent
of the coupling frequency and amplitude. Specifically, the smaller (larger) the coupling frequency (amplitude) is,
the stronger the synchronization suppressionwill be. In addition, it is found that the central frequency of the
oscillators, which characterizes the time scale of the synchronousmotion, has no influence on synchronization.
Thesefindings shed lights on the responses of complex dynamical systems to external drivings, and provides a
timely contribution to the study of stimulation-related system functions, e.g. brain stimulations [4–6].

In section 2, wewill present themodel of coupled phase oscillators and investigate numerically the
influences of periodic coupling on synchronization. By themethod of dimension reduction, in section 3wewill
conduct a theoretical analysis on the impacts of periodic coupling on synchronization, and explore the
underlyingmechanismby the scheme of on–off coupling. Generalizations to other networkmodels, including
the random complex network and the neural network of nematodeC. elegans, will be presented in section 4.
Discussions and conclusionwill be given in section 5.

2.Model andnumerical results

Ourmodel of coupled phase oscillators reads

åq w q q= + -
=

˙ ( ) ( ) ( )K t
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Here, i,j=1,K,N are the oscillator (node) indices, θi(t) is the instant phase of the ith oscillator at time t, andωi

is the natural frequency of the ith oscillator. The natural frequency follows the distribution g(ω). The coupling
relationship of the oscillators is captured by the adjacencymatrix = { }aA ij , with = =a a 1ij ji if oscillators i
and j are directly connected by a link, otherwise aij=0. The quantity = åd ai j ij denotes the number of
connections associated to oscillator i, i.e. its degree. Different from existingmodels, wemake the coupling
strength vary periodically with time, as described by equation (2). The frequency and amplitude of the periodic
coupling are represented by f andK0, respectively. If f=0, we haveK=K0 and themodel is identical to the
generalizedKuramotomodel with constant coupling [9, 11]. Furthermore, if the oscillators are globally
connected (i.e. aij=1 for all the non-diagonal elements inmatrixA), equation (1) describes the classical
Kuramotomodel. Themain task of our present work is to investigate how the variations of f andK0 will affect the
synchronization degree of the oscillators.

We start by demonstrating the impacts of periodic coupling on synchronization based on numerical
simulations. Tomake themodel theoretical tractable, we employ the structure of global coupling (the results for
complex network structures will be discussed later). Following [23, 24], we choose the natural frequencyωi of the
oscillators randomly from the Lorentzian distribution
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withω0 the central frequency andΔ the scale parameter of the distribution. (Wenote that themain phenomena
to be reported are independent of the specific formof the frequency distribution, which has been checked
numerically for theGaussian, uniform and triangle frequency distributions.)Without loss of generality, we set
ω0=0 andΔ=1. The initial phases of the oscillators are randomly chosenwithin the range (0, 2π). The degree
of synchronization is evaluated by the order parameter
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where ∣·∣and á ñ· denote, respectively, themodule and time averaged functions, andR(t) is the instant order
parameter.We have Î [ ]R 0, 1 , withR=0 and 1 corresponding to the completely incoherent and global
synchronization states, respectively. In numerical simulations, wefix the system size asN=1×103, and
update equations (1) and (2) by the fourth-order Runge–Kutta algorithm,with the time step being chosen as
δt=5×10−2. In obtaining the order parameter,R, we first evolve the system for a transient period of
Ttr=6×103, and then average the instant order parameter,R(t), over a period ofT=200.

By numerical simulations, we plot infigure 1(a) the variation ofRwith respect toK0 for the special case of
constant coupling ( f= 0) and for two typical cases of periodic coupling ( f=0.2 and 2.0).We see that whenK0 is
small ( < »K K 2.0c0 ), the values ofR are almost identical for all the cases. However, asK0 increases fromKc,
the value ofR for the case of low-frequency periodic coupling ( f=0.2) is clearly smaller to that of constant
coupling, signifying that synchronization is suppressed by low-frequency couplings. Furthermore, asK0

increases fromKc, the gap between the two curves is gradually enlarged. For instance, we have
D º = - = »( ) ( )R R f R f0 0.2 0.1atK0=3, which is increased toΔR≈0.2 atK0=4.However, for the
case of high-frequency periodic coupling ( f=2.0), we see that the value ofR is almost identical to that of
constant coupling for thewhole region, indicating that synchronization is less affected by high-frequency
couplings.

To investigate systematically the influence of coupling frequency on synchronization, we plot infigure 1(b)
the variation ofRwith respect to f for differentK0.We see that for small coupling amplitude (K0=1), despite
the variation of f, the value ofR is staying always around 0. This observation is consistent with the finding in

Figure 1.The impacts of periodic coupling on the synchronization ofN=1×103 globally coupled phase oscillators. (a)The
variation of the synchronization order parameter,R, with respect to the coupling amplitude,K0, for different cases. Black squares:
constant couplingwith f=0. Blue circles: low-frequency couplingwith f=0.2. Pink up-triangles: low-frequency couplingwith
f=0.2 andω0=1.0. Blue diamonds: low-frequency couplingwith f=0.2 andω0=2πf=0.4π. Red down-triangles: high-
frequency couplingwith f=2.0. Solid lines are the analytic results plotted according to equation (10). (b)The variation ofRwith
respect to the coupling frequency f for different values ofK0 andω0. Black squares:K0=1. Red circles:K0=3. Blue up-triangles:
K0=5. Pink down-triangles:K0=5 andω0=1.0. Colored symbols and lines stand for the numerical and theoretical results,
respectively. Each result is averaged over 100 frequency realizations.
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figure 1(a) thatR is independent of f in the region ofK0<Kc. For larger coupling amplitudes (K0=3 and 5), we
see that as f increases from0, the value ofR is suddenly decreased first, then increases gradually and approaches
finally the value generated by constant coupling =[ ( )R f 0 ]. This observation is also consistent with the finding
infigure 1(a) that synchronization ismore suppressed by low-frequency than high-frequency couplings.

In previous studies on the synchronization of periodically coupled chaotic oscillators, an interesting finding
is that when the time scale of the nodal dynamics is comparable to that of periodic coupling, the
synchronizability of the system could be significantly affected [25, 26]. In particular, it is shown that at some
characteristic frequencies of the periodic coupling, the upper boundary of the synchronization region in the
parameter space of the coupling strength can be significantly extended. For ourmodel of periodically coupled
phase oscillators, the averaged time scale of the nodal dynamics is characterized by the central frequency,ω0, in
the Lorentzian distribution. This arouses our interest of the influence ofω0 on the synchronization of
periodically coupled phase oscillators. Changingω0 to 1.0 (ω0≈2πf ) and 0.4π (ω0=2πf ), we plot in
figure 1(a) again the variation ofRwith respect toK0 for the case of low-frequency coupling ( f=0.2).We see
that the results ofω0=1.0 and 0.4π are identical to that forω0=0.Numerical results thus suggest that, unlike
periodically coupled chaotic oscillators, the synchronization performance of periodically coupled phase
oscillators is independent of the time scale of the nodal dynamics (the central frequency of the Lorentzian
distribution). The independence ofR onω0 is also observed in the variation ofRwith respect to f, as depicted in
figure 1(b) (the case ofK= 5 andω0=1.0). (As predicted in [26], the characteristic frequencies observed in
periodically coupled chaotic oscillators lies in the nonlinear response of the temporal stability of the local
dynamics, which are absent in coupled one-dimensional oscillators. Our present study confirms this
prediction.)

In numerical studies of Kuramoto-typemodels, an important concern is whether the observed phenomena
is dependent of the system size, namely thefinite-size effect [27, 28]. To check the size-effect, we plot infigure 2
the variation ofRwith respect toN for different values ofK0 and f.We see that for small coupling amplitudes
( K Kc0 ), asN increases, the value ofR is decreased to 0 by roughly the power-law scalings (figures 2(a)–(d));
while for large coupling amplitude (K0>Kc), the value ofR is size-independent (figures 2(e) and (f)). In
particular, comparingwith the results of f=0 (figure 2(e)) and f=0.2 (figure 2(f)), we see that the value ofR is
decreased by nearly the same amount (ΔR≈0.1) for different values ofN. Numerical simulations thus suggest
that the phenomenonwe have observed, i.e. synchronization is suppressed by periodic coupling, is independent
of the system size.

To gain insights on the influence of periodic coupling on synchronization, we continue to study the
temporal behavior of the order parameter. By the parameterK0=1, we plot infigure 3(a) the time evolution of
R(t) for the cases of constant, low-frequency ( f=0.2) and high-frequency ( f= 2) couplings.We see that as time
increases, the value ofR(t) is quickly decreased and is staying around 0with smallfluctuations for all three cases.
IncreasingK0 to 5, we plot infigure 3(b) the time evolution ofR(t) again.We see that, different from the cases of
small coupling amplitude (figure 3(a)), the time evolution ofR(t) is clearly affected by the coupling frequency.
Specifically, for the case of constant coupling, the value ofR(t) is increasedwith time gradually and saturated at
about 0.75with almost nofluctuation; for the case of low-frequency coupling ( f=0.2),R(t) is oscillating
periodically with a large amplitude, with the oscillating frequency identical to that of periodic coupling; for the
case of high-frequency coupling ( f=2.0),R(t) is also varying periodically, but with a smaller amplitude.We
thus infer from figure 3 that under large-amplitudes periodic coupling (K>Kc) the instant order parameter,R
(t), becomes oscillatory, with the oscillating frequency identical to that of periodic coupling and the oscillating
amplitude dependent of the coupling frequency.

3. Theoretical analysis

Wemove on to explore the dynamicalmechanismunderlying the observed phenomena, based on themethod of
dimension reduction proposed byOtt andAntonsen [23, 24]. In the case of thermodynamic limit, i.e.  ¥N
in equation (1), the state of the system at time t can be described by a continuous probability density function ρ
(θ,ω, t), with r q w q w( )t, , d d the fraction of oscillators with phases between θ and θ+dθ and natural
frequencies betweenω andω+dω. The evolution of ρ(θ,ω, t) is governed by the continuity equation
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Here, = -i 1 and *( )Z t stands for the complex conjugate ofZ(t). Expanding r q w( )t, , as a Fourier series in
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Utilizing theOtt–Antonsen ansatz [23, 24]:

r w w w=( ) ( ) ∣ ( )∣t a t a t, , , , 1,n
n

and substituting equation (7) into equations (5) and (6), we obtain
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Figure 2.The effect of system size on synchronization performance. (a)K0=1 and f=0, µ -R N 1 2. (b)K0=1 and f=0.2,
µ -R N 1 2. (c)K0=Kc≈2.0 and f = 0, µ -R N 1 4. (d)K0 = 2.0 and f=0.2, µ -R N 0.17. (e)K0=3 and f = 0,R≈0.58. (f)

K0=3 and f = 0.2,R≈0.46. The results are averaged over 50 frequency realizations.
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and

* ò w w w=
-¥
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To evaluate the integral that gives *( )Z t , we analytically continueω to the complexω-plane and carry out
contour integration [23, 24], where the analyticity of aholds in the lower half plane of the complex variableω.
For large negative values of ( )aIm , equation (8) can be approximated as w¶ ¶ = ( )a t aIm , sowe have a 0
for w  -¥( )Im . Following the setting of numerical simulations, we have
w p w w d w w d= - - - - +- -( ) ( )[( ) ( ) ]g 1 i2 i i0

1
0

1 for the Lorentzian frequency distribution. The pole of
the lower half plane is w w= - Di0 .We thus obtain * w= - D( ) ( )Z t a ti ,0 . Substituting this expression into
equation (8), we get the following nonlinear equation for the order parameter
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For the case of constant coupling, =( )K t K0, equation (10) is the Bernoulli equationwhose solution is [23, 24]
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with = -R K1 20 0 andR(0) the initial order parameter. Equation (11) predicts that under constant
coupling the value ofR approaches 0 for < =K K 2.0c0 , and approachesR0 forK0>Kc. These predictions of
constant coupling are in good agreement with the numerical results, as shown infigures 1(a) and 2(a), (c), (e).

We continue to analyze the case of periodic coupling.When periodic coupling is adopted, equation (10) can
not be solved analytically.We thus turn to numerical simulations. By solving equation (10)numerically, we plot
infigure 1 the variation ofRwith respect toK0 for different values of f.We see that the theoretical results given by
equation (10) are in good agreement with the results of direct simulations. Furthermore, equation (10) indicates

Figure 3.The temporal behavior of the synchronization order parameter,R(t), under (a) theweak coupling amplitudeK0=1.0 and
(b) the large coupling amplitudeK0=5.0 for different coupling frequencies. Black squares: constant coupling. Red circles: low-
frequency couplingwith f=0.2. Blue up-triangles: high-frequency couplingwith f=2.0.
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that the evolution ofR(t) is independent of the central frequency,ω0, which is also in consistent with the
numerical observation infigure 1 (i.e. the changes ofω0 from0 to 1 and 0.4π do not affect the values ofR).
Equation (10) can be also used to trace the time evolution ofR(t), as depicted infigure 3.We see that the
theoretical results calculated from equation (10)fit the numerical results verywell for both the cases of low-
frequency and high-frequency couplings.

Having justified the efficiency of themethod of dimension reduction in characterizing the dynamics of the
synchronization order parameter, we next exploit thismethod to investigate themechanism behind the
observed phenomenon, i.e. synchronization is suppressed by periodic coupling. To facilitate the analysis, here
we consider the simple case of square wave coupling, p=( ) [ ( )]K t K ft2 sgn sin 20 , with ¼[ ]sgn the sign
function. That is, the coupling strength is alternating between 0 and 2K0 periodically with the same duration.
Squarewave coupling is also known as on–off coupling [25], which has beenwidely used in literature as
approximations of pulsed couplings (in neural systems) and diurnal-cycle-based interactions (in ecosystems).
To be consistent with numerical studies, we setΔ=1 in the following analysis.

Wefirst analyze the situation of weak coupling amplitude,K0=1. In this situation, the coupling strength,K
(t), is alternating between 2 (the ‘on’ state) and 0 (the ‘off’ state), and equation (10) is simplified to dR/dt=−R
and dR/dt=−R3 forK(t)=0 and 2, respectively. Figure 4(a1) shows the phase portraits of the two states. As
dR/dt<0 for both states, we see thatR(t) approaches the stable pointRs=0monotonically with time for both
the cases of low-frequency and high-frequency couplings (figure 4(a2)).We next analyze the situation of critical
coupling amplitude,K0=2. In this situation, the ‘on’ state is governed by the equation = -R t R Rd d 2 3

which has the stable point =R 1 2s (figure 4(b1)). As time increases, the value ofR(t) is approaching 1 2
and 0 during the episodes of ‘on’ and ‘off’ states, respectively. This leads to the oscillation ofR(t), as depicted in
figure 4(b2). Since dR/dt<R during thewhole process (i.e. the origin is alwaysmore stable thanRs), we see that
R(t) isfinally attracted to 0. Like the situation of weak coupling (figure 4(a2)), here the role of f is also reflected in

Figure 4.Mechanism analysis on the suppression of synchronization by the scheme of on–off periodic coupling. (a1)K0=1. The
phase portraits of the ‘on’ (dR/dt=−R3) and ‘off’ (dR/dt=−R) states. (a2)K0=1. The time evolution of the synchronization
order parameter,R(t), for the cases of low-frequency ( f=0.2) and high-frequency ( f=2) couplings. (b1)K0=Kc=2. The phase
portraits of the ‘on’ ( = -R t R Rd d 2 3) and ‘off’ states. =R 1 2s denotes the stable point of the ‘on’ state. (b2)The time evolution
ofR(t) for different coupling frequencies. (c1)K0=5. The phase portraits of the ‘on’ ( = -R t R Rd d 4 5 3) and ‘off’ states.

=R 0.8s is the stable point of the ‘on’ state. =R 0.6e is the order parameter generated by the constant coupling strengthK0. (c2)
K0=5. The time evolution ofR(t) for different coupling frequencies. For illustration purpose, the initial synchronization order
parameter,R(0), is chosen as 0.8 in (a2), (b2), and (c2).
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affecting the oscillating amplitude ofR(t): the smaller the coupling frequency is, the larger the oscillating
amplitudewill be.

We go on to analyze the situation of strong coupling amplitude,K0=5, withwhich the coupling is
switching between 0 (the ‘off’ state) and 10 (the ‘on’ state). The dynamics ofR(t) in the ‘on’ state is governed by
the equation = -R t R Rd d 4 5 3, which has the stable point =R 0.8s (figure 4(c1)). Setting dR/dt=R, we
have the equilibriumpoint =R 0.6e where the attracting of the origin andRs is balancedwith each other. Due
to the equilibriumpointRe, the value ofR(t) is no longer attracted to the origin like the case of weak coupling
(figures 4(a1) and (a2)), but will be oscillating aroundRe (figure 4(c2)). Please note thatRe is also the stable point
associatedwith the constant couplingK0=5. (As amatter of fact, the relation = ( )R R Ke s 0 holds for any
coupling strength larger than 2Kc.) So, under the periodic coupling, the value ofR(t) is oscillating around
Rs(K0)—the order parameter generated by the constant coupling of strengthK0. If the coupling frequency is high
enough, e.g. f=2, the value ofR(t)will be trapped in the vicinity ofRe. As a result of this,R(t) is oscillating
aroundRe roughly in a symmetric fashion, resulting inR( f=2)≈R( f=0). This explains why
synchronization is less affected by high-frequency couplings. The symmetric oscillation, however, is broken
when the coupling frequency is low, e.g. f=0.2. As depicted infigure 4(c2), in this case the oscillation ofR(t) is
truncated atRs during the ‘on’ episode, but is approaching 0 continuously during the ‘off’ episode. It is just the
asymmetric oscillation ofR(t) that results in the suppressed synchronization under low-frequency couplings.
With the decrease of f (or the increase ofK0), the asymmetric feature of the oscillation becomesmore prominent,
making the synchronization order parameter gradually decreased. This understanding explains the numerical
results shown infigure 1.

4.Generalizations

Wefinally check the generality of the observed phenomena in systems of complex network structures. Thefirst
systemwe investigate is the Erdös–Renyi (ER) randomnetwork [29]. The ERnetwork is generated by connecting
nodes in the system randomlywith the probability p=0.6. Besides the structure, the other settings of the ER
network are the same to that of the globally connected network studied infigures 1 and 3, including the network
size, the frequency distribution, and the coupling forms figure 5(a) shows the variation ofRwith respect toK0 for
the cases of constant coupling ( f=0) and low-frequency coupling ( f=0.2)with on–off and sinusoidal
coupling functions.We see that before the onset of synchronization (which occurs at aboutKc=3), the values
ofR for all three cases are very close; after the onset point, the value ofR for the case of f=0.2 is clearly below to
that of constant coupling and, with the increase ofK0, the difference between the two cases is gradually enlarged.
These results are consistent with the results obtained in globally connected network (figures 1 and 3). It should
be note that due to the sparse connectivity of the ERnetwork, the dynamics of the synchronization order
parameter is not precisely described by equation (10) [23, 24]. However, the dynamicalmechanismwe have
revealed (figure 4) is general, which is independent of the network structure. Figure 5(a) shows also the variation
ofRwith respect toK0 for the case of on–off periodic coupling ( f=0.2).We see that comparing to the case of
sinusoidal coupling, network synchronization ismore suppressed by on–off coupling.

The second systemwe investigate is the neural network of the nematodeC. elegans, which consists of 297
nodes and totally 2148 links [30]. The natural frequencies of the oscillators are still chosen randomly from the
Lorentzian distribution, with the parameters identical to those used in themodel of globally connected network
(figures 1 and 2). Figure 5(b) shows the variation ofRwith respect toK0 for the cases of constant, sinusoidal, and
on–off couplings.We see that, similar to the results of ERnetwork (figure 5(a)), the values ofR are diverged from
each other after the onset of synchronization (which occurs at aboutKc=30); and, comparing to the case of
constant coupling, synchronization is suppressed by periodic couplings.

5.Discussions and conclusion

As the dynamical basis for the normal functioning of brain, the synchronization activities of distributed neurons
has long interested neuroscientists [31]. In particular, aiming to improve the brain functions or recover brain
fromdisorders, various stimulating techniques have been proposed in the past decades [4, 5], saying, for
instance, transcranial direct-current stimulations, transcranialmagnetic stimulations, and deep-brain
stimulations.Whereas the efficacy of these techniques has been testified by neurological experiments and in
clinical treatments, the underlyingmechanism remains not clear. In recent years, stimulated by the rapid
progress in complex dynamical systems, there have been theoretical efforts to investigate the responses of neural
system to stimulations, inwhich differentmodels consisting of coupled phase oscillators have been proposed
and studied [31]. In conventional studies, the external stimulation is normally introduced to the system
variables, with the concern that the activities of ion channels are directly affected by electrical/magnetic signals.
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Recent evidences frompharmacological and neurological studies, however, show that low-frequency stimuli
could also increase the expression of certain proteins (e.g. NMDA receptors) at the synapses [5], which in turn
could change themolecular and cellular pathology associatedwith some neurological disorders (e.g. Alzheimer
diseases) [6]. Inspired by these experimental findings, we have proposed in the present work the scheme of time-
dependent coupling and investigated, numerically and theoretically, the influences of periodic coupling on
synchronization performance. Thefinding that synchronization is suppressed by periodic coupling sheds new
lights on the dynamical responses of neural systems to external stimuli, andmight have implications to the
therapeutic interventions of neurological disorders such as epileptic seizures, Alzheimer, and Parkinson
diseases.

Summarizing up,motivated by the fact that the interaction strength between elements in some realistic
systems are subjected to periodic perturbations, we have studied the synchronization behavior of coupled phase
oscillators under periodic couplings. It is found that comparing to the situation of constant coupling, the
synchronization propensity of the system is deteriorated under periodic coupling and, with the decrease of the
frequency of the coupling, the synchronization degree is gradually decreased. By numerical simulations, we have
demonstrated this phenomenon in different networkmodels, and justified its independence to the system size.
Furthermore, by themethod of dimension reduction, we have conducted a detailed analysis on the influence of
periodic coupling on synchronization order parameter, with the theoretical predictions in good agreementwith
the numerical results. In particular, by the scheme of on–off periodic coupling, we have analyzed themechanism
underlying the observed phenomenon, and found that the suppressed synchronization by periodic coupling is
attributed to the asymmetric oscillation of the temporal synchronization order parameter. Thefinding extends
our knowledge on the dynamical responses of complex nonlinear systems to external perturbations, and

Figure 5. (a) For ER randomnetwork of sizeN=1×103 and connecting probability p=0.6, the variation of the synchronization
order parameter,R, with respect to the coupling amplitude,K0, for the cases of constant coupling ( f = 0, black squares), and
sinusoidal ( f=0.2, red circles) and on–off ( f=0.2, blue up-triangles) periodic couplings. (b) For the neural network of the
nematodeC. elegans, the variation ofRwith respect toK0 for the cases of constant coupling (black squares), and sinusoidal ( f=0.2,
red circles) and on–off ( f=0.2, blue up-triangles) periodic couplings. The results are averaged over 20 frequency realizations.
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provides insights on the functioning and operation of some realistic systems, e.g. the stimuli-based treatment of
neurodegenerative diseases.
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