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Global synchronization and partial synchronization are the two distinctive forms of synchronization in coupled
oscillators and have been well studied in recent decades. Recent attention on synchronization is focused on the
chimera state (CS) and explosive synchronization (ES), but little attention has been paid to their relationship.
Here we study this topic by presenting a model to bridge these two phenomena, which consists of two groups
of coupled oscillators, and its coupling strength is adaptively controlled by a local order parameter. We find that
this model displays either CS or ES in two limits. In between the two limits, this model exhibits both CS and
ES, where CS can be observed for a fixed coupling strength and ES appears when the coupling is increased
adiabatically. Moreover, we show both theoretically and numerically that there are a variety of CS basin patterns
for the case of identical oscillators, depending on the distributions of both the initial order parameters and the
initial average phases. This model suggests a way to easily observe CS, in contrast to other models having some
(weak or strong) dependence on initial conditions.
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I. INTRODUCTION

Synchronization in coupled oscillators has been well
studied in recent decades and is now focused on the influence
of network structures [1–3]. In this field, two hot topics are the
chimera state (CS) and explosive synchronization (ES). CS
was first found by Kuramoto and Battogtokh [4]. Following its
discovery, CS has attracted a lot of attention in the past decade
[5–17]. Generally speaking, CS is the coexistence of coherent
and incoherent behaviors in coupled identical oscillators.
Because of different initial conditions, the nonlocally
coupled oscillators naturally evolve into distinct coherent
and incoherent groups. This counterintuitive coexistence of
coherent and incoherent oscillations in populations of identical
oscillators, each with an equivalent coupling structure, can be
considered a symmetry break on the collective behavior by
nonsymmetric initial conditions. This phenomenon reminded
people of the two-headed monster in Greek mythology and
thus was named the chimera state by Abrams and Strogatz
[18]. The study of CS was originally motivated by the
phenomenon of unihemispheric sleep of many creatures in the
real world [19–23], which was first found in dolphins and was
then revealed in birds, some aquatic mammals, and reptiles.
So far, CS has been confirmed in many experiments [24–30].
For example, Tinsley et al. reported on experimental studies
of CS in populations of coupled chemical oscillators [24].
Hagerstrom et al. showed experimental observation of CS in
coupled-map lattices [25]. Viktorov et al. demonstrated the
coexistence of coherent and incoherent modes in the optical
comb generated by a passively mode-locked quantum dot
laser [26]. Wickramasinghe and Kiss presented an experiment
of CS in a network of electrochemical reactions [27]. Martens
et al. devised a simple experiment with mechanical oscillators
to show CS [28]. And Schoenleber et al. reported the CS in the
oxide layer during the oscillatory photoelectrodissolution of
n-type doped silicon electrodes under limited illumination
[30].
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ES represents the first-order synchronization transition in
networked oscillators. When we increase the coupling strength
adiabatically, the system stays unsynchronized until a critical
forward coupling strength λcF where the system suddenly
becomes synchronized. That is, its order parameter R has
a jump at λcF . However, when we decrease the coupling
strength adiabatically from a synchronized state, the system
does not go back by the same route as the forward process but
jumps at a different critical backward coupling strength λcB .
As λcF > λcB , the forward and backward routes of R form a
hysteresis loop. This first-order transition was, in fact, found
before the concept of complex networks [31–33] and became
a hot topic only when it was rediscovered from the positive
correlation between the natural frequency of a networked
oscillator and its degree by Gómez-Gardeñes et al. and named
explosive synchronization [34]. Before the work in [34],
synchronization on complex networks was generally analyzed
using the approach of the master stability function [35], which
always predicts a second-order phase transition. However, [34]
showed that it is also possible for the synchronization on
complex networks to be the first order, thus focusing great
attention on ES [36–48]. It was revealed that in addition to
the way in [34], ES can also be observed in many other ways,
provided that the growth of synchronized clusters is suppressed
[43].

Currently, CS and ES are separately studied as two
distinctive topics. In general, we do not have CS in the systems
of ES and vice versa. Thus, it is interesting to ask whether it
is possible to observe both of them in a single system. To
figure out the answer, here we study this topic by presenting a
model to bridge these two phenomena. The model consists of
two groups of coupled nonidentical oscillators with a natural
frequency distribution. Specifically, its coupling strength is
adaptively controlled by a parameter β. This model goes back
to the standard CS model [21] when all the natural frequencies
are the same and β = 0 and returns to the adaptive model of
ES [48] when there is only one group of oscillators and β = 1.
Very interesting, we find that this model displays both CS and
ES, where CS can be observed for a fixed coupling strength and
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ES appears when the coupling is increased adiabatically. Thus,
this model sets up a bridge between CS and ES. Moreover,
we focus on the case of identical oscillators and show both
theoretically and numerically that there are a variety of CS
basin patterns, depending on the distributions of both the initial
order parameters and the initial average phases. That is, this
model shows a way to easily observe CS, in contrast to the
sensitive dependence on initial conditions in many previous
models [49,50].

This paper is organized as follows. In Sec. II, we introduce
the model and study its collective behaviors. In Sec. III,
we pay attention to the case of identical oscillators and
study it using the dimensional reduction analysis. In Sec. IV,
we show the corresponding numerical simulations and their
stability analysis. Finally, in Sec. V, we give conclusions and
a discussion.

II. MODEL DESCRIPTION

We consider a model of two groups of coupled oscillators,
defined as

θ̇i,j = ωi,j + R
β

j λ

N

N∑
k=1

sin(θk,j − θi,j + α)

+R
β

j λ′

N

N∑
k=1

sin(θk,j ′ − θi,j + α), (1)

where the index j = 1,2 represents the two groups and i =
1, . . . ,N represents the N oscillators in each group. ωi,j is the
natural frequency satisfying a uniform distribution in (−δ,δ).
The oscillators are globally coupled with coupling strength λ

inside each group and coupling strength λ′ between the two
groups. j ′ represents the other group, defined as j ′ = 2 when
j = 1 and j ′ = 1 when j = 2. α is a phase lag parameter
and is set as α = π

2 − 0.1, which was chosen by many CS
papers [21–23]. The coupling is attractive when α < π/2 and
repulsive when α > π/2. β is a parameter located in [0,1].

R1 and R2 in Eq. (1) are the order parameters of groups 1
and 2, respectively, which are defined as

R1e
i	1 = 1

N

N∑
k=1

eiθk,1 , R2e
i	2 = 1

N

N∑
k=1

eiθk,2 . (2)

In the framework of Eq. (1), the population is put into
two groups, and the coupling strengths R

β

j λ and R
β

j λ′ are
closely correlated to the local coherence when β is not zero.
The model (1) will return to the case of one population in
Ref. [48] when λ′ = 0 and β = 1. To show the influence of
β, Fig. 1 shows the synchronization transition of model (1)
for different β, with λ′ = 0. It is easy to see that R has a
continuous transition for β = 0, a discontinuous transition for
β = 1, and a transition gradually changing from continuous
to discontinuous when β increases, indicating a transition
from traditional synchronization to explosive synchronization.
When β is in the range of the hysteresis loop, there is bistability
where the final state of system depends sensitively on the initial
conditions.

The model (1) is more sensitive to the local coherence if
there are two or more groups in the system. Once the initial

FIG. 1. Synchronization transition of model (1) with only one
population, i.e., λ′ = 0. The parameters are δ = 1.0 and α = π

2 − 0.1

conditions are asymmetric, the two groups may easily go to
different final states, i.e., one group with high coherence and
another group with low coherence.

Equation (1) has two limiting behaviors. The first one is
the limiting behavior of λ′ = 0 and β = 1, which goes back
to the adaptive model of ES in Ref. [48]. In this situation,
ES can be observed if we increase (decrease) the coupling
adiabatically in the forward (backward) continuation diagram.
Figure 2(a) shows the dependence of R1 on λ for δ = 1.0. It
is easy to see that there is a hysteresis loop, indicating the
existence of ES. The inset of Fig. 2(a) shows the evolution of
two different initial conditions for λ = 8.5. We see that one
gradually approaches a higher value (R1 ≈ 0.58) and the other

FIG. 2. (a) Case of λ′ = 0 with δ = 1.0, α = π

2 − 0.1, and β = 1.
The squares and circles represent R1 for the forward and backward
continuation diagrams, respectively. The inset shows the evolution of
two different initial conditions for λ = 8.5. (b) Case of λ′ = 2 with
δ = 1.0, α = π

2 − 0.1, and β = 1. The squares and circles represent
R1 for the forward and backward continuation diagrams (R2 has the
same loop but is not shown here), respectively. The two curves in
the inset show the evolution of typical R1 and R2 in the two groups,
respectively, with λ = 8.5.
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FIG. 3. The chimera-like behaviors in Eq. (1) for β = 0,λ = 8.0,
and λ′ = 3.0, where the black and red lines represent R1 and R2,
respectively, and (a)–(d) represent the cases of δ = 1.0,0.5,0.2, and
0.15, respectively.

goes to zero, confirming the sensitivity to initial conditions in
the bistable region. We have the same results for R2 of another
group (it is not shown in Fig. 2), as the system exhibits the
symmetry 1 ↔ 2.

The second one is the limiting behavior of identical ωi,j

(δ = 0) in Eq. (1) for all the oscillators and β = 0, which
returns to the typical model of CS in Ref. [21]. In this case, our
numerical simulations confirm that one group is synchronized
with R1 = 1, while the other is unsynchronized with R2 < 1.
Furthermore, we were surprised to find that there is still a
chimera-like behavior when we keep β = 0 but let ωi,j satisfy
the uniform distribution in (−δ,δ). Figures 3(a)–3(d) show the
results for δ = 1.0,0.5,0.2, and 0.15, respectively. We see that
the oscillation periods of R1 and R2 increase with the decrease
of δ until δ = 0.15. After that, the oscillation behaviors of R1

and R2 will disappear and are replaced by one group being
synchronized and the other being unsynchronized, i.e., the
chimera state.

We now go back to the current model of Eq. (1) with β = 1.
We find that it can also show the hysteresis loop. Figure 2(b)
shows the results of R1 for λ′ = 2. Comparing Fig. 2(b) with
Fig. 2(a), we see that their forward jumping positions are
slightly different, i.e., λcF < 9.0 in Fig. 2(a), while λcF > 9.0
in Fig. 2(b). We have observed the same results for R2 (not
shown here), as the symmetry 1 ↔ 2 in the two groups of
the system. The inset of Fig. 2(b) shows the evolution of two
typical initial conditions from the two groups for λ = 8.5. We
see that one (R1) goes to a higher value (R1 ≈ 0.58) and the
other (R2) goes to zero, indicating a chimera-like behavior.
Therefore, we have observed both ES and CS in the model
of Eq. (1) when the parameters are taken in the range of the
hysteresis loop.

Then, we change the range of frequency distribution δ.
We find that the hysteresis loop depends on the parameter δ

and can be observed only when δ > 0.31. With the decrease
of δ, the size of the loop decreases until zero at about
δ = 0.31, and the transition points of R1 or R2 also approach
zero. Figure 4(a) shows the results for λ′ = 2, where the

FIG. 4. Coexistence of ES and CS in the model of Eq. (1) for
α = π

2 − 0.1,β = 1, and λ′ = 2. (a) R1 versus λ, where the black
and red lines represent R1 of the forward and backward continuation
diagrams for δ = 1, respectively; the blue and pink lines represent
the case of δ = 0.7, and the dark green and dark blue lines represent
the case of δ = 0.4. (b)–(d) Evolutions of R1 and R2 on time t for
λ = 8.0 and δ = 1,0.7, and 0.4, respectively.

squares and circles represent R1 of the forward and backward
continuation diagrams for δ = 1, respectively; the upward
triangles and downward triangles represent the case of δ = 0.7,
and the diamonds and leftward triangles represent the case
of δ = 0.4. To check the coexistence of CS, we study the
evolution of R1 and R2 for two different initial conditions.
Figures 4(b)–4(d) show the results for λ = 8.0 and δ = 1,0.7,
and 0.4, respectively. We see that Fig. 4(b) is a chimera-like
state, while Figs. 4(c) and 4(d) are breather-like states. In sum,
the range of frequency distribution δ takes a key role for the
coexistence of ES and CS.

III. DIMENSIONAL REDUCTION ANALYSIS

In the following, we study CS in model (1) with β = 1. In
order to satisfy the definition of CS, we change to identical
oscillators (δ = 0). To make a theoretical analysis of Eq. (1),
it is better to reduce its dimension. Fortunately, such an
approach of dimensional reduction was proposed by Watanabe
and Strogatz [51] and then generalized by Pikovsky and
Rosenblum [22]. Here we adopted it to analyze the model (1).
In a mean-field framework, the coupling terms in Eq. (1) can be
rewritten as R2

aλ sin(	a − θa
j + α) + RaRa′λ′ sin(	a′ − θa

j +
α). Thus, Eq. (1) can be rewritten as

θ̇ a
j = Im(Zae

−iθa
j ),

Za = R2
aλe−i(	a+α) + RaRa′λ′e−i(	a′ +α), (3)

where Z is the mean field coupling for oscillator j and a

and a′ are the indices of the two populations, respectively.
The average frequency 〈ω〉 has been ignored as it is zero for
a symmetric distribution. By introducing the variables ρa(t),
�a(t), and �a(t) and constants ψa

j via the transformation

tan

[
θa
j − �a

2

]
= 1 − ρa

1 + ρa

tan

[
ψa

j − �a

2

]
, (4)
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we get the Watanabe-Strogatz equations of the Eq. (1) [22,51],

ρ̇a = 1 − ρ2
a

2
Re(Zae

−i�a ),

�̇a = 1 − ρ2
a

2ρa

Im(Zae
−i�a ),

�̇a = 1 + ρ2
a

2ρa

Im(Zae
−i�a ). (5)

Generally, the parameter ρ characterizes the degree of syn-
chronization: ρ = 0 if the oscillators are incoherent, and
ρ = 1 if the oscillators are completely synchronized. ρa is
roughly proportional to the order parameter Ra . The phase
variable � describes the shift of individual oscillators with
the mean phase, and � describes the average of the phases.
It is convenient to introduce new variables ξa = �a − �a and
za = ρae

i�a ; then Eq. (5) can be rewritten as

ża = 1

2
Za − z2

a

2
Z∗

a , (6)

ξ̇a = Im(z∗
aZa). (7)

If the constants ψa
j are uniformly distributed, Eqs. (6) and

(7) will decouple. Equation (6) describes the low-dimensional
behavior of Eq. (1). In the thermodynamic limit, we have
ρa = Ra , and thus, from Eq. (6) we obtain

Ṙa = 1
2Ra

(
1 − R2

a

)
[λRa cos α + λ′Ra′ cos (�a′ − �a + α)],

�̇a = 1
2

(
1 + R2

a

)
[λRa sin α + λ′Ra′ sin (�a′ − �a + α)]. (8)

Equation (8) describes the theoretical prediction of the col-
lective behaviors of Eq. (1). However, it is not easy to get
the precise solution of Eq. (8). Hence, we calculate Eq. (1)
numerically. In this way, the initial order parameters R1(0)
and R2(0) and the initial phases �1(0) and �2(0) will be the
key factors influencing the final states R1 and R2.

IV. RESULTS AND ANALYSIS

In numerical simulations, we take the system size as
2N = 100, i.e., N = 50 for each group. For the convenience
of making a comparison with the above theoretical predictions,
we let all the natural frequencies ωi,j in Eq. (1) be zero. The
initial phases are drawn from the circular Cauchy distribution
[52]

g(θ (0)) = 1 − |γ |2
2π |eiθ − γ |2 , (9)

which can be easily generated from a Lorentzian distribution
g(x) = 1

π
[ η

(x−x0)2+η2 ], with η being the half width at half
maximum and x0 being the center frequency. Making a
transformation X = x+i

x−i
, we can get a new complex variable

X, which is distributed on a unit circular in the complex
plane. The phases of X are distributed as the circular Cauchy
distribution. By changing x0 and η, we can easily change the
average and deviation of the circular Cauchy distribution and
thus change the initial order parameter of the oscillators. In
this way, we have observed a variety of CS patterns in the two
groups. Figures 5(a) and 5(b) show two typical CS patterns
after the transient process, where Fig. 5(a) denotes the case of

FIG. 5. Comparison between numerical simulations and theoret-
ical results, where (a) and (b) represent the numerical simulations
from Eq. (1) with ωi,j = 0 and (c) and (d) represent the corresponding
theoretical results from Eq. (8). (a) and (c) The coupling strength is
λ = λ′ = 1, and the initial order parameters are taken as R1(0) =
0.275 and R2(0) = 0.569. The difference between the initial average
phase is �� = �2(0) − �1(0) = 2π/3. (b) and (d) The coupling
strengths are λ = 1.5 and λ′ = 1, and the initial order parameters are
taken as R1(0) = 0.1 and R2(0) = 0.569. The difference between the
initial average phases is also taken as �� = �2(0) − �1(0) = 2π/3.

coupling strength λ = λ′ = 1 and the initial order parameter
R1(0) = 0.275 and R2(0) = 0.569 and Fig. 5(b) denotes the
case of coupling strength λ = 1.5 and λ′ = 1 and the initial
order parameters R1(0) = 0.1 and R2(0) = 0.569. We see that
in each case, one group is synchronized with R2 = 1, and
the other has a different R1 < 1, implying a breathing CS.
In contrast, we numerically calculate the theoretical equation
(8) and show the results in Figs. 5(c) and 5(d), where the
difference between the initial phases of the two groups is
taken as �� = �2(0) − �1(0) = 2π/3. In fact, Figs. 5(c) and
5(d) can be considered the corresponding theoretical results
of Figs. 5(a) and 5(b). Comparing Fig. 5(a) with Fig. 5(c) and
Fig. 5(b) with Fig. 5(d), we see that the theoretical results are
qualitatively consistent with the numerical simulations.

To show the dependence of CS on the initial conditions in
detail, we first fix the initial average phases as �� = �2(0) −
�1(0) = 2π/3 and let the initial order parameters R1(0) and
R2(0) gradually increase from 0 to 1 by changing x0 and η.
Figures 6(a) and 6(b) show how the stabilized R1 and R2

depend on the initial R1(0) and R2(0). Comparing Fig. 6(a)
with Fig. 6(b), we see that R1 is low when R2 is high and
vice versa; that is, they are complementary, indicating that the
whole system is always in CS. This is an interesting finding
which tells us that no matter what the initial conditions are,
we can always find one group that has high coherence while
the other has low coherence, indicating that the basin of CS
in the model of Eq. (1) is the whole initial condition space or
CS is robust to initial conditions. This feature is very different
from some of the previous models of CS, where CS is typically
observed for carefully chosen initial conditions. We also show
the corresponding theoretical results from Eq. (8) in Figs. 6(c)
and 6(d). Comparing Fig. 6(a) with Fig. 6(c) and Fig. 6(b) with
Fig. 6(d), we see that they are almost the same, indicating the
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FIG. 6. Influence of the initial order parameters R1(0) and R2(0)
on the stabilized R1 and R2 in the two groups. (a) and (b) show
the results of numerical simulations for R1 and R2 from Eq. (1),
respectively. (c) and (d) show the theoretical results from Eq. (8),
corresponding to (a) and (b), respectively. The differences between the
initial average phases are all �� = 2π/3, and the coupling strength
is λ = λ′ = 1.

consistence between the numerical simulations and theoretical
results.

Then, we study the influence of the initial average phases.
For this purpose, we consider a variety of differences �� =
�2(0) − �1(0). As �� is not neglected in Eq. (8) of the
dimensional reduction, the low-dimensional analysis shows
the same effect as the numerical simulations by the circular
Cauchy distributed initial conditions. For this reason, here
we only calculate the theoretical solution of Eq. (8). We find
that the stabilized CS does depend on the specific values of
the initial average phases. As R1 and R2 are complementary,
we only calculate the stabilized R1. Figure 7 shows four
typical cases, where Figs. 7(a)–7(d) represent the cases with
�� = π/3,π,π/2 and 0, respectively. It is easy to see that the
four patterns in Fig. 7 are different, indicating the diversity of
the CS basin patterns for different initial conditions.

FIG. 7. Influence of different initial average phases �� =
�2(0) − �1(0) on the patterns of CS, where the parameters are the
same as in Fig. 6. The results are obtained for the stationary R1 by the
theoretical analysis (8). (a) Case of �� = π/3. (b) Case of �� = π .
(c) Case of �� = π/2. (d) Case of �� = 0.

The robustness of CS to initial conditions is very interesting.
To understand it better, we follow Ref. [21] to make a further
analysis of Eq. (8). First, we introduce a new parameter A =
λ − λ′. As all the frequencies of oscillators are zero, we rescale
the coupling as 1 = λ + λ′ and thus obtain λ = (1 + A)/2 and
λ′ = (1 − A)/2. Therefore, A = 0 represents the case of λ =
λ′, while A = 1 represents the case of λ′ = 0, i.e., only one
group of the population. Then, we introduce �� = �2 − �1.
For a typical CS, one population is synchronized with R = 1;
thus, we can set its order parameter as unity, i.e., R1 = 1 and
Ṙ1 = 0. In this way, Eq. (8) becomes

Ṙ2 = 1

2
R2

(
1 − R2

2

)[1 + A

2
R2 cos α

+ 1 − A

2
cos (−�� + α)

]
,

��̇ = 1

2

(
1 + R2

2

)[1 + A

2
R2 sin α + 1 − A

2
sin (−�� + α)

]

−
[

1 + A

2
sin α + 1 − A

2
R2 sin (�� + α)

]
. (10)

By letting Ṙ2 = 0, we can get three solutions: R2 = 1,
R2 = 0, and R2 = − (1−A) cos (α−��)

(1+A) cos α
. The first solution means

a complete synchronized state, and the other two mean CS. By
checking the values of R1 and R2 in both Figs. 6 and 7, we find
that all the blue areas are in between 0.1 and 0.2, indicating
that they are the third solution. Therefore, we focus only on
the first two solutions, i.e., R2 = 1 and R2 = 0. The Jacobian
matrix of Eq. (10) is

M =
[
a b

c d

]
, (11)

with

a = 1 + A

2
R2 cos α + 1 − A

4
cos (α − ��)

−(1 + A)R3
2 cos α − 3(1 − A)

4
R2

2 cos (α − ��),

b = 1

2
R2

(
1 − R2

2

)
sin (α − ��),

c = 1 + A

4
sin α + 3(1 + A)

4
R2

2 sin α

+1 − A

2
R2 sin (α − ��) − 1 − A

2
sin (�� + α),

d = −1 − A

4

(
1 + R2

2

)
cos (α − ��)

−1 − A

2
R2 cos (�� + α). (12)

By using the linear stability analysis we find that the solution
of R2 = 0 is unstable, while R2 = 1 is stable with the same
parameters as in Figs. 6 and 7. This means that there is a
probability to observe the complete synchronization in the
initial condition space. With further linear stability analysis,
we find that the invariant manifold with R1 = R2 found in
[49] still exists. In order to check this point, we fix the average
of initial order 〈R(0)〉 = [R1(0) + R2(0)]/2 and look for the
basin of the states in the plane of �R(0) = R1(0) − R2(0)
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FIG. 8. Influence of the initial order parameters, �R(0) and
��(0), on the stabilized R1 and R2 in the two groups with the
same parameters as in Figs. 6 and 7, i.e., A = 0. The average of
the initial order parameter is 〈R(0)〉 = [R1(0) + R2(0)]/2 = 0.75.
Results are obtained by solving Eq. (10). (a) shows the distribution of
the stabilized state, where DS means the first group is synchronized
while the second group is desynchronized, SD means the second
group is synchronized while the first group is desynchronized, and
SS means both groups are synchronized. (b) shows only the basin of
the completely synchronized state, while the basin of CS is hidden.

and ��(0), i.e., following the same steps as Ref. [49].
Figure 8(a) shows the distribution of the stabilized state for
the case of 〈R(0)〉 = 0.75, where DS means the first group
is synchronized while the second one is desynchronized, SD
means the second group is synchronized while the first one is
desynchronized, and SS means both groups are synchronized.
Thus, DS and SD are CS, while SS is a completely synchro-
nized state. From this figure, we see the basin of the completely
synchronized state (SS) is very narrow, and it occurs only when
the system changes from the DC state to the SD state or vice
versa, which is the same as in Ref. [49]. To illustrate this more
clearly, Fig. 8(b) shows only the basin of the synchronized
state, where the basin of CS is hidden. These basins of the
completely synchronized state are too narrow and thus make
the SS state hare to observe, which is the reason why we miss
the completely synchronized state in Figs. 6 and 7. On the other
hand, we notice that in Fig. 8, the basins of the states are spiral
shaped around the point �R(0) = 0, ��(0) = π , indicating
the influence of the initial phases. This is very similar to the
result of Ref. [49].

In order to show how the basins of CS change with the
parameters, we calculate the probability of the chimera state
with different initial conditions in the parameter plane of A

versus π/2 − α. Figure 9 shows the results. It is easy to see
that the probability of CS decreases as α decreases. When A

is large, the probability of CS becomes zero.

V. DISCUSSION

To connect CS and ES, Eq. (1) has three key aspects. The
first one is the asymmetric couplings λ and λ′. When λ > λ′,
the coupling in each group is greater than that between the two
groups. Thus, the oscillators may be synchronized in their own

FIG. 9. Probability of CS when using different initial conditions
in the case of different A and α, where the results are obtained by
solving the Eq. (10).

groups but remain unsynchronized to those in another group.
The second one is the control parameter β. It guarantees the
appearance of ES. The third one is the range parameter of
the natural frequencies δ. When δ is relatively large, we have
both ES and CS-like behaviors. When δ is relatively small, we
only have CS. In this sense, we may also consider δ to be the
parameter connecting CS and ES.

One advantage of Eq. (1) is that its CS can be easily
observed. The underlying mechanism may be the bistability. It
is known that CS is a kind of symmetry breaking of coherence
due to the symmetry breaking in the initial conditions. If a
system shows CS, its oscillators should have multistability
or bistability so that the sensitivity to the initial conditions
can evolve into the final coexisting behaviors of coherence
and incoherence in different population groups. Thus, the
multistability or bistability is the necessary condition for CS.
On the other hand, a characteristic feature of ES is the existence
of a hysteresis loop in the order parameter. When the coupling
strength is located in this hysteresis region, the system has
two stable states, one with high coherence and the other
with low coherence, separated by an unstable state. When
the coupling is increased adiabatically in the bistable region,
the feature of low (high) coherence remains and thus results
in the hysteresis loop, indicating that the bistability is also the
necessary condition for ES. Therefore, the bistability is the
common basis of CS and ES.

Because of the correlation between the local order param-
eter and the coupling strength, our model is more sensitive to
symmetry breaking of the initial conditions, which makes CS
easier to observe. On the other hand, we find that in our model,
the basin of CS can be very large, which is similar to the large
basin of CS in Refs. [49,50]. The spiral-shaped basin of states
is also similar to the basin structure in [49] and reminds us
of the spiral wave chimeras in [9], although they are different
phenomena.

In conclusion, we have presented a model to describe both
CS and ES. We reveal that in two limits, the system goes to
CS or ES. In between the two limits, the model can show
both CS and ES at the same coupling strength. The frequency
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distribution parameter δ may seriously influence the final state.
When all the natural frequencies are zero, CS is robust to
the initial conditions, and thus, a diversity of the CS basin
patterns can be observed. These findings have been confirmed
by both numerical simulations and theoretical analysis, which
improves our understanding of both CS and ES, especially
their connection.
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