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Evolutionary game theory is crucial to capturing the characteristic interaction patterns among selfish
individuals. In a population of coordination games of two strategies, one of the central problems is to determine
the fixation probability that the system reaches a state of networkwide of only one strategy, and the corresponding
expectation times. The deterministic replicator equations predict the critical value of initial density of one strategy,
which separates the two absorbing states of the system. However, numerical estimations of this separatrix show
large deviations from the theory in finite populations. Here we provide a stochastic treatment of this dynamic
process on complex networks of finite sizes as Markov processes, showing the evolutionary time explicitly. We
describe analytically the effects of network structures on the intermediate fixations as observed in numerical
simulations. Our theoretical predictions are validated by various simulations on both random and scale free
networks. Therefore, our stochastic framework can be helpful in dealing with other networked game dynamics.
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I. INTRODUCTION

Evolutionary game theory in general is an elegant way to
understand the appearance of cooperation while abandoning
the often problematic rationality assumption of the classical
game theory [1,2]. Previously, evolutionary game dynamics
has been mainly concentrated on regular structure, i.e., square
lattices or well mixed populations [3], which hinges on the
so-called “replicator equation” [2]. Deterministic replicator
equations are helpful to understand the dynamics of infinite
(N → ∞), homogeneous, and well mixed populations, de-
scribing the frequencies of the strategies in the population [2].
However, the insights provided by replicator dynamics may
easily differ from the reality due to various reasons. For
instance, the interaction patterns among human populations
are rather heterogeneous in the sense that some people
have more contacts with their friends than other people. It
becomes even more challenging when facing populations
of finite sizes so that one resorts largely to numerical
simulations. Recently, much progress has been reported in
the literature on game models on complex networks [4,5].
A large amount of effort has been devoted to uncovering
the effects of heterogeneous population structures on individ-
ual’s strategy updating behaviors and hence on the macro-
scopic system’s dynamics [6,7]. Another helpful message
provided by game models is to make fruitful suggestions
on coping with free-riding incentives in public goods games
as it is often discussed in the climate change mitigation
processes [8].

Complex networks provide a natural and convenient frame-
work to characterize the population structure, in particular with
the heterogeneous interaction patterns in human society [5].
Given an unweighted, undirected network of N nodes, the
degree k of node i is ki = ∑N

j Aij , where Aij are the elements
of the symmetric adjacency matrix A (Aij = 1 when the nodes
i and j are connected, and Aij = 0 if they are not connected).
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On top of a complex network, various network dynamics
can be implemented, ranging from synchronization [5,9] to
epidemic spreading processes, etc. [10]. In a networked game
model such as we consider, each link represents a game and
the two nodes attached to this link are two players in the
game. The number of games a player participated in varies
over the population since each node of the network has
potentially different degrees k. After one round, the payoff
of player i accumulated from all games i is involved. A
proper strategy updating rule is introduced before moving to
the next step. There are many updating rules in the literature,
most of which are based on imitation and learning [4,11,12].
One typical choice, for instance, is to compare the payoff
of i to its peers. More specifically, we randomly choose a
peer j ∈ Ni , where Ni is the neighborhood of i. Depending
on the payoff difference, player i either sticks to its own
strategy or switches to j ’s strategy in the next iteration.
There are other networked game models in the literature,
for instance, public goods games, which take place in the
neighborhood Ni [13].

In a population of two strategies, the replicator equation
successfully discloses the most striking properties, that is
fixation which refers to the probability for one strategy to take
over the entire population, causing the extinction of the other
strategy [14]. One more specific example is to assume that
cooperation and defection are two strategies; the quantity of
interest in this evolutionary process is the fixation probability
of cooperators, i.e., the probability to end up in a state with N

cooperators given that the initial number of cooperators is n.
Another important quantity is the mean fixation time that the
system needs to reach the final state. Evolutionary dynamics
in finite-sized populations are not deterministic but stochastic.
Stochastic processes represented by the Fokker-Plank equation
can be used as computational tools in different areas, being
useful descriptions of natural phenomena [15]. A stochastic
framework was proposed to investigate the dynamic process
of fixation in finite populations [14,16–18], providing more
insight on the microscopic properties [19,20]. The difference
between deterministic and stochastic modeling was further
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compared in [21–23]. The roles of noise and mutations
on fixations have been demonstrated in [24–27]. Population
structures and spatial constraints have certain influences on
the strategy spreading dynamics [28–33] as well. Here, we
show another message that the stochastic treatment yields a
better description for the dynamic process of a finite-sized
system.

In this work, we concentrate on coordination games on
finite complex structured populations. For coordination games
on well mixed populations of infinite size in particular, the
system is bistable in the sense that the two boundary fixed
points (all individuals have the same strategy, either of all type
one or of all the other type) are absorbing [19]. The critical
value of initial density of players of one strategy separating
the two absorbing states corresponds to the unstable interior
fixed point, above which the system evolves to 100% of one
absorbing state. Therefore, this unstable fixed point yields an
explosive jump of the fixation probability when passing this
separatrix. However, the numerical estimation for this value is
more challenging, which will be further explained by Fig. 1 in
Sec. II. More specifically, there is a pronounced interval of an
intermediate situation, that the system evolves to the absorbing
state only with some probabilities. In other words, the system
experiences a continuous transition from one absorbing state
to the other. This intermediate fixation has been observed in
populations of heterogeneous interaction topology, too. Here,
we will analytically delineate the fixation probabilities and
mean times given a finite population of complex structures,
especially when the initial state is close to the unstable fixed
point of discontinuity.

This paper is organized as follows. In Sec. II, we introduce
the basics for the evolutionary coordination games on complex
networks, and point out the importance of both population
sizes and network structures on the numerical estimation of
fixation probabilities. The general stochastic framework is
proposed in Sec. III showing the fixation probability explicitly.
Our results will be compared to the traditional replicator
equations in Sec. IV. The conclusions are summarized
in Sec. V.

II. GAME MODEL AND CRITICAL FIXATION
PROBABILITY

Game model. Assume that each link of the network
represents a symmetric two-player game and the payoff matrix
is expressed as

A =
⎛
⎝ s1 s2

s1 a11 a12

s2 a21 a22

⎞
⎠ . (1)

Each player has two strategies, either “s1” or “s2.” Depending
on the parameter settings in the payoff matrix A, there are
four generic cases [19] as follows. (i) Dominance. Either s1

dominates s2 (a11 > a21 and a12 > a22) or s2 dominates s1

(a11 < a21 and a12 < a22), for instance, Prisoner’s dilemma.
(ii) Bistability (a11 > a21,a22 > a12). (iii) Coexistence (a11 <

a21 and a12 > a22). (iv) Neutrality (a11 = a21 and a12 = a22).
In this work, we impose the condition (ii) such that we have
coordination games.

Strategy updating rules. We concentrate on pairwise payoff
comparison processes [19]. In particular, time is divided into
discrete periods. At the end of each period, player i decides
whether to keep its current action or to adopt the action of
one of its neighboring player j , depending on the current
payoff difference between i and j , ui − uj . The payoff ui is
accumulated in the neighborhood of i as ui = ∑N

l=1 AilsiAsl ,
where A is the payoff matrix. Note that ui does not include
i’s history into account. Then, the player i randomly selects
one neighbor j from its neighborhood Ni and switches to j ’s
action in the next round with a probability

wsi→sj
= 1

1 + exp(ui−uj )/κ , (2)

where κ denotes the noise amplitude characterizing the
level of rationality of individuals, which is often chosen as
κ = 0.1 following the previous works [34–36]. A smaller κ

corresponds to a stronger influence of j on i. The larger the
payoff difference between i and j , the higher probability i

tends to adopt j ’s action in the next round.

FIG. 1. (Color online) (a) Fixation probabilities B to pure s1 players, and (b) mean fixation times 〈t〉/N . Network size N = 100, and mean
degree 〈k〉 = 6. Payoff matrix is a11 = 1.2,a12 = 0,a21 = 0.1,a22 = 1 and κ = 0.1. The unstable fixed point ρ∗ is highlighted. Erdos-Renyi
random networks (�), scale free networks (•), and all-to-all connected (well mixed) population (�).
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Critical fixation probability. In a well mixed population
where each individual is equally likely to interact with any
other individual, the mean-field description by continuous
replicator dynamics has led to much insight [16]. In the
particular coordination game with two strategies, the quantity
of interest is to study the density of individuals adopting
the strategy of s1 which is denoted by ρs1 . There are three
equilibrium points: two absorbing boundary points ρs1 = 0
and ρs1 = 1, and one unstable interior fixed point ρ∗ which
reads

ρ∗ = a22 − a12

a11 + a22 − a12 − a21
. (3)

The resulted replicator equation of the system exhibits bistabil-
ity, which shows discontinuity at ρ∗ separating the absorbing
state ρs1 = 0 from ρs1 = 1. For a critical value of frequencies
above ρ∗, the population evolves toward 100% of pure s1

individuals [16,22]. Given an initial density ρs1 at time t , the
system eventually will be absorbed at any of the two boundary
states with probability 1.

We denote the fixation probability as B that the system
reaches the absorbing boundary at ρs1 = 1, and the corre-
sponding asymptotic expectation times as 〈t〉. Both B and
〈t〉 are important quantities to characterize the evolutionary
process. Typically, simulations on finite populations with
complex structures show large deviations from the replicator’s
prediction, namely a pronounced interval (ρc1 ,ρc2 ) around
ρ∗ has been observed as shown in Fig. 1. In other words,
the simulations of Fig. 1 show convincingly a continuous
monotonic increasing, while the replicator equation predicts
an abrupt jump at ρ∗. This interval suggests an intermediate
regime that the probability for the system to reach the state
of all s1 individuals is less than 1. There are two crucial
ingredients in this discrepancy: finite size N of the populations
and the underlying network structures.

Therefore, numerical estimation of the critical fixation
probability remains ambiguous, in particular when the initial
density ρs1 of s1 individuals is close to the unstable fixed
point ρ∗. Furthermore, we find that the variance around ρ∗
becomes larger in scale free networks. In this work, we
delineate the interval for �ρ = (ρc2 − ρc1 ) analytically by a
stochastic modeling approach, while taking into consideration
the network structures.

III. STATE TRANSITION MATRIX AND MEAN
FIXATION TIMES

We consider coordination games on top of a complex
network which is characterized by the degree distribution P (k).
In a population of N players, we first use the mean-field method
to obtain some theoretical understandings. Later we consider
the case of N → ∞, retrieving the traditional replicator
equations from the stochastic process.

Without loss of generality, we suppose that at time
t the probability to have n nodes out of N play-
ers having s1 strategy is φn = f (n,t). There are N + 1
possible states φ0,φ1, . . . ,φn, . . . ,φN . The network state
at time t is hence represented by a vector f (n,t) =
(f (0,t),f (1,t), . . . ,f (n,t), . . . ,f (N,t)), which fulfills the
normalization

∑N
n=0 f (n,t) = 1. There are two absorbing

states: (i) f (0,t) corresponds to the case of zero players having
strategy s1 (or all are s2 players), and (ii) f (N,t) means that
the whole network is full of s1 strategy. The network state at
time t + 1 is represented by

f (n,t + 1) = f (n,t)M, (4)

where M is the network state transition matrix. In the next
step, we study the dynamics based on M .

The mean-field approximation assumes that, in the neigh-
borhood of node i, there is a fraction of n/N players in state
s1, namely, at time t ,

ρs1 (j,t) = n

N
, ∀j ∈ Ni , (5)

where Ni is the neighborhood of node i. We note that there are
no differences in the results below if one replaces the subscript
s1 by s2, therefore, we omit it in the following. In the next round
t + 1, the transition probability that the number of s1 players
is increased to n + 1 can be expressed as

T+(n) =
∞∑

k=0

P (k)(1 − ρ)
∞∑

k′=0

P (k′|k)ρw(u+
k ,u+

k′ ), (6)

= (1 − ρ)ρ
∞∑

k=0

P (k)
∞∑

k′=0

P (k′|k)w(u+
k ,u+

k′ ), (7)

where k is the degree of node i; P (k) is the probability to
have a node of degree k; P (k′|k) is the conditional probability
that a link from a node of degree k points to a node of degree
k′; u+

k is the payoff of degree k when taking action of s2 and
u+

k′ is the payoff of degree k′ when having action of s1, while
w(u+

k ,u+
k′ ) is the probability to switch to s1 in the next round.

More specifically,

w(u+
k ,u+

k′ ) = 1/{1 + exp[(u+
k − u+

k′ )/κ]}, (8)

u+
k = k[ρa21 + (1 − ρ)a22], u+

k′ = k′[ρa11 + (1 − ρ)a12].

(9)

When obtaining Eqs. (6) and (7), we assume that the strategy
updating of player i is independent of its degree k. The mean-
field approximation further requires that the variance of the
degree sequence ki is small, for instance, the mean degree of a
network 〈k〉 should not be too small. However, our numerical
simulations below show that sparser networks of small values
of 〈k〉 yield good agreements to the theoretical predictions as
well.

In a full analogy, in the next iteration t + 1, the transition
probability that the number of s1 players is decreased to n − 1
reads

T−(n) = ρ(1 − ρ)
∞∑

k=0

P (k)
∞∑

k′=0

P (k′|k)w(u−
k ,u−

k′ ), (10)

where w(u−
k ,u−

k′ ) is the probability to switch to s2 in the next
round, in particular,

w(u−
k ,u−

k′ ) = 1/{1 + exp[(u−
k − u−

k′ )/κ]}, (11)

u−
k = k[ρa11 + (1 − ρ)a12], u−

k′ = k′[ρa21 + (1 − ρ)a22].

(12)
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The probability to keep n s1 players unchanged at time t + 1 is given by

T0(n) = 1 − T+(n) − T−(n). (13)

We note that T+(0) = T−(N ) = 0 since the two boundary states are absorbing. Additionally, �T (n) = T+(n) − T−(n).
Therefore, the state transition matrix of the network is obtained as

M =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
T−(1) T0(1) T+(1) 0 0

0 T−(2) T0(2) T+(2) 0
...

. . .
...

0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ =

(
I2 0
R Q

)
, (14)

where

I2 =
(

1 0
0 1

)
, R =

⎛
⎜⎜⎝

T−(1) 0
0 0
...

...
0 T+(N − 1)

⎞
⎟⎟⎠ , Q =

⎛
⎜⎜⎝

T0(1) T+(1) 0 · · ·
T−(2) T0(2) T+(2)

...
. . .

...
0 0 0 · · · T0(N − 1)

⎞
⎟⎟⎠ , (15)

and I2 represents the two absorbing states, R is for the system to reach the absorbing states in one step, and Q is the transition
probabilities for any transient states. We further denote the following two matrices:

H = (IN−1 − Q)−1 (16)

=

⎛
⎜⎜⎝

T+(1) + T−(1) −T+(1) 0 · · ·
−T−(2) T+(2) + T−(2) −T+(2)

...
. . .

...
0 0 0 · · · T+(N − 1) + T−(N − 1)

⎞
⎟⎟⎠

−1

, (17)

B = HR =

⎛
⎜⎜⎝

H11T−(1) H1(N−1)T+(N − 1)
H21T−(1) H2(N−1)T+(N − 1)

...
...

H(N−1)1T−(1) H(N−1)(N−1)T+(N − 1)

⎞
⎟⎟⎠ . (18)

Note that the matrix IN−1 − Q is tridiagonal, the inverse
of which determines the stochastic dynamics of the system,
namely, the fixation probabilities and the average times that are
necessary for the system to reach the absorbing states (note that
a brief introduction to the matrix H is provided in the Appendix
and more details can be found in [15]) . More specifically,
starting from any initial state SI (0), I ∈ [1,N − 1], we have
the probabilities BI2 and BI1 that the system is attracted to the
absorbing state of all s1 players, respectively, of all s2 players.
Furthermore, the mean fixation time that the system is attracted
to the absorbing state from any initial state I reads

〈tI 〉 =
N−1∑
m=1

HIm. (19)

For the purpose of comparison between networks of different
sizes, one normalizes it by the number of nodes in the network,
namely, 〈tI 〉/N . Some recipes for estimating the inverse of a
general tridiagonal matrix are presented in [37].

A. Numerical results

The numerical simulations are presented in this section,
which agree with the theories above. We note that we run
simulations on 100 random networks, each of which has
1000 realizations. In total, each dot in all figures through-

out the paper is an average over 105 random realizations.
More specifically, we run simulations on both Erdos-Renyi
random and scale free networks to check the two transition
probabilities T+(n) and T−(n) [Figs. 2(a) and 2(e)], �T (n)
[Figs. 2(b) and 2(f)], fixation probabilities B [Figs. 2(c)
and 2(g)], and the corresponding expectation time 〈t〉/N
[Figs. 2(d) and 2(h)]. Note that the numerical estimations
for the fixation probabilities B show monotonic increasing
trends, instead of abrupt jumps, when ρ is close to ρ∗. These
results have been validated by a different choice of the payoff
matrix as shown in Fig. 3. The increase of a21 from 0.1 to 0.8
changes the position of ρ∗, which indicates that the system
asymmetrically favors one stable equilibrium over the other.

B. Deterministic equation of the expectation density

Next, we obtain the replicator equation when N → ∞. Let
us start by considering the dynamics of the expectation value
of the density of s1 players at time t , which we denote as ρ̄.
Based on the state transition matrix M [Eq. (14)], we expand
the network state at time t + 1 [Eq. (4)] as

f (n,t + 1) = T+(n − 1)f (n − 1,t) + T0f (n,t)

+ T−(n + 1)f (n + 1,t), 1 � n � N − 1.

(20)
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FIG. 2. (Color online) Simulations on complex networks (N = 100 and mean degree 〈k〉 = 20). Payoff matrix is a11 = 1.2,a12 = 0,a21 =
0.1,a22 = 1 and κ = 0.1. Dots are numerical simulations, while solid lines are from the theory. The unstable fixed point ρ∗ is denoted by the
vertical dashed line. (a)–(d) Erdos-Renyi random networks; (e)–(h) scale free networks generated by Barabási-Albert algorithm. (a), (e) T+(n)
(�), Eq. (7) and T−(n) (•), Eq. (10); (b), (f) �T ; (c), (g) fixation probabilities B to pure s1 strategy; (d), (h) mean fixation times 〈t〉/N .

The two absorbing states corresponding to n = 0 and n = N

are respectively represented by

f (0,t + 1) = T0(0)f (0,t) + T−(1)f (1,t), (21)

f (N,t + 1) = T+(N − 1)f (N − 1,t) + T0(N )f (n,t). (22)

Since Eq. (13), the stochastic dynamics of the network is
described by the master equation as

�f (n,t)

�t
= f (n,t + 1) − f (n,t) (23)

= T+(n − 1)f (n − 1,t) − [T+(n) + T−(n)]f (n,t)

+ T−(n + 1)f (n + 1,t). (24)

Again, the two absorbing states of n = 0 and n = N are the
following:

�f (0,t)

�t
= T−(1)f (1,t), (25)

�f (N,t)

�t
= T+(N − 1)f (N − 1,t). (26)

Therefore, the expectation of the density of s1 players in
the network is

ρ = 1

N

N∑
n=0

nf (n,t), (27)

which leads to the variation of the probability density per unit
time as

�ρ

�t
= 1

N

N∑
n=0

n
�f (n,t)

�t
. (28)

Putting the conditions [Eqs. (23), (25), and (26)] into Eq. (28),
we have

�ρ

�t
= 1

N

N−1∑
n=1

n × {T+(n − 1)f (n − 1,t)

− [T+(n) + T−(n)]f (n,t) + T−(n + 1)f (n + 1,t)}
+ 0 × T−(1)f (1,t) + N × T+(N − 1)f (N − 1,t),

FIG. 3. (Color online) Caption is the same as in Fig. 2, except a21 is equal to 0.8 in the payoff matrix.

042807-5



LIYE ZHANG, YONG ZOU, SHUGUANG GUAN, AND ZONGHUA LIU PHYSICAL REVIEW E 91, 042807 (2015)

= 1

N

N−1∑
n=1

[T+(n) − T−(n)]f (n,t), (29)

where f (n,t) fulfills the normalization
∑N

n=0 f (n,t) = 1.
Equation (29) is the variation of the expectation of the density
of strategy s1 in the population given the distribution f (n,t)
at time t . Due to the diffusive property of the process, f (n,t)
is a δ-like function centered at the mean value n̄, in particular
with the following approximation:

f (n,t) =
{
f (n,t) = 1, n = n̄,

f (n,t) = 0, n 
= n̄.
(30)

Based on Eq. (29), a continuous process is obtained in the limit
(�t → 0, N → ∞), with a dimensionless time τ = t/N ,

dρ̄

dτ
= T+(ρ̄) − T−(ρ̄). (31)

Taking conditions [Eqs. (7) and (10)] into account, the right-
hand side of Eq. (31) is a nonlinear function of ρ̄ as follows:

T+(ρ̄) − T−(ρ̄) = ρ̄(1 − ρ̄)
∞∑

k=0

P (k)
∞∑

k′=0

P (k′|k)[w(u+
k ,u+

k′ )

−w(u−
k ,u−

k′ )]. (32)

The fixed points of the above deterministic equation (31) are
determined by T+(ρ̄) − T−(ρ̄) = 0, i.e., the transition proba-
bilities of both birth-death rates are balanced. Furthermore, it
is easy to show there are three fixed points: two absorbing fixed
points ρ̄ = 0 (pure s2), ρ̄ = 1 (pure s1), and one unstable fixed
point ρ̄ = ρ∗ noting ρ̄a21 + (1 − ρ̄)a22 = ρ̄a11 + (1 − ρ̄)a12,
and w(u+

k ,u+
k′ ) = w(u−

k ,u−
k′ ) at ρ̄ = ρ∗. Therefore, the results

by replicator equations are fully recovered.

C. Comparisons to well-mixed populations

Next, we show that the case of well mixing (for a finite
N ) can be regarded as a special case of the above theory.
Suppose at time t there are n players out of the population
size N taking s1 strategy. Thus the probability to choose an
s1 player is n/N and, respectively, an s2 player from the
remaining population is (N − n)/(N − 1). The payoffs us1

of the s1 player, respectively, us2 of the s2 player read

us1 = (N − 1)[ρa21 + (1 − ρ)a22], (33)

us2 = (N − 1)[ρa11 + (1 − ρ)a12]. (34)

The transition probability T+(n) is expressed as

T+(n) = n(N − n)

N (N − 1)
ws2→s1 ≈ ρ(1 − ρ)ws2→s1 , (35)

where ws2→s1 = 1/[1 + exp(us2 −us1 )/κ ] is the special case of the
strategy updating rule [Eq. (2)]. Similarly, T−(n) reads

T−(n) ≈ ρ(1 − ρ)ws1→s2 , (36)

where ws1→s2 is again the special case of Eq. (2). Therefore,
�T is simplified as

�T (n) = T+(n) − T−(n) = ρ(1 − ρ)(ws2→s1 − ws1→s2 ). (37)

It is reasonable to use the Heaviside function to replace the
strategy updating rule since a small κ is often used, namely,

(ws2→s1 − ws1→s2 ) =
{

1, ρ = n
N

� ρ∗,
−1, ρ = n

N
< ρ∗. (38)

Therefore, the system shows an explosive jump at ρ∗ when the
population evolves toward 100% of pure s1 individuals.

Equations (35) and (36) can be directly derived from
Eqs. (7) and (10) by taking into account the following
conditions:

P (k) =
{

1, k = N − 1,

0, else,
(39)

P (k′|k) =
{

1, k = k′ = N − 1,

0, else.

Figure 4 illustrates the numerical results, showing an excellent
agreement to the above theory. In contrast, when considering
network structures, the system shows a continuous transition
at ρ∗ as compared in Fig. 4.

IV. VARIANCE OF NUMERICALLY ESTIMATED ρc

The replicator dynamics is a useful framework to explore
the general dynamics of an unstructured population when
N → ∞. So far, we have shown convincingly that an explosive
jump is absent for a finite system switching from one absorbing
state to the other. Around the unstable fixed point ρ∗, we
show explicitly that there is a substantial interval (ρc1 ,ρc2 )
which explains the continuous transitions as observed in
numerical simulations. For populations of finite sizes, the
evolutionary dynamics is stochastic, which prompts one to
use a Fokker-Plank equation for the description. The crucial
step is to determine the regime where the diffusion term plays
a significant role in deciding the macroscopic behavior.

To that end, we introduce the notations ρ = n/N , τ =
t/N in the master equation [Eq. (24)]. Based on the theory
in [19,21], for N � 1 the probability densities and transition
probabilities are expanded in a Taylor series at ρ and τ , which
yield the following Fokker-Plank equation (details are in [19]):

∂

∂τ
f (ρ,τ ) = − ∂

∂ρ
[a(ρ)f (ρ,τ )]

+ 1

2

∂2

∂ρ2
[b2(ρ)f (ρ,τ )] + O(N−2), (40)

where

a(ρ) = T+(ρ) − T−(ρ), b(ρ) =
√

1

N
[T+(ρ) + T−(ρ)],

(41)

and a(ρ) is the drift and b(ρ) is the diffusion coefficient.
We consider the relative contributions between the drift and
diffusion terms by∣∣∣∣b2(ρc)

a(ρc)

∣∣∣∣ = (1/N )[T+(ρc) + T−(ρc)]

|T+(ρc) − T−(ρc)| = η, (42)
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FIG. 4. (Color online) Comparisons to the well mixed population. (a), (c) T+(n) [Eq. (35)]; (b), (d) �T (n) [Eq. (37)]. Payoff matrix is
a11 = 1.2,a12 = 0,a22 = 1 (a), (b) a21 = 0.1 (c), (d) a21 = 0.8. ER random networks (�), scale free networks (•), and well-mixed (all-to-all
connected) networks (�). Solid lines are the corresponding theoretical predictions.

where ρc is the critical density value when the diffusion reaches
a given level η relevant to the drift term.1 There is another way
to study the role of the diffusion term [38].

Equation (40) is reduced to the deterministic replicator
dynamics [Eq. (31)] when N → ∞ since the diffusion term

b(ρ) vanishes with 1/
√

N and η ≈ 0. In contrast, for a
finite value of N , the diffusion term has to be considered as
significant when the system is close to the interior fixed point
ρ∗ since T+(ρc) − T−(ρc) ≈ 0. Substituting Eqs. (6) and (10)
into Eq. (42), we have

| ∑∞
k=0 P (k)

∑∞
k′=0 P (k′|k)w(u+

k ,u+
k′ ) − ∑∞

k=0 P (k)
∑∞

k′=0 P (k′|k)w(u−
k ,u−

k′ )|∑∞
k=0 P (k)

∑∞
k′=0 P (k′|k)w(u+

k ,u+
k′ ) + ∑∞

k=0 P (k)
∑∞

k′=0 P (k′|k)w(u−
k ,u−

k′ )
= 1

Nη
. (43)

When a small value of κ is used, we use the Heaviside function
to replace the rules for strategy updating [Eqs. (8) and (11)],
namely,

w(u+
k ,u+

k′ ) ≈ H (uk′ − uk) =
{

1, u+
k′ � u+

k ,

0, u+
k′ < u+

k ,
(44)

w(u−
k ,u−

k′ ) ≈ H (u′
k′ − u′

k) =
{

1, u−
k′ � u−

k ,

0, u−
k′ < u−

k .
(45)

Given the above two conditions [Eqs. (44)
and (45)], Eq. (43) can be further simplified

1In numerical simulations, η can be adaptively chosen according
to the probability that the system deviates from full s2 or full s1

strategy by some suitable level, for instance, 1% deviation from the
two absorbing states.

as ∑∞
k=0 P (k)

∑max{γ k, 1
γ
k}

k′=min{γ k, 1
γ
k} P (k′|k)∑∞

k=0 P (k)
[ ∑∞

k′=γ k P (k′|k) + ∑∞
k′= 1

γ
k
P (k′|k)

] = 1

Nη
,

(46)

where

γ = ρca21 + (1 − ρc)a22

ρca11 + (1 − ρc)a12
, 0 � ρc � 1. (47)

Note that γ shows the relationship between the network
structure P (k) [Eq. (46)] and the payoffs [Eq. (47)]. Fur-
thermore, we show that both γ and 1

γ
are solutions to

Eq. (46). A schematic illustration to understand Eq. (46)
is shown in Fig. 5. The drift term is proportional to the
numerator and, respectively, the diffusion is proportional to
the denominator of Eq. (46). More specifically, a(ρ) ∝ S2 and
b2(ρ) ∝ (S2 + 2S1). It is easy to show that the unstable interior
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FIG. 5. Schematic illustration for Eq. (46), the numerator of
which is shown by the area S2.

fixed point ρ∗ yields γ = 1, corresponding to the case that the
drift term a(ρ) is degenerated to be zero, as shown by the area
S2 tends to zero in Fig. 5.

One can prove that the denominator of Eq. (46) becomes 1
provided P (k′|k) = P (k′) when one assumes no degree-degree
correlations are present in a network. In particular, Eq. (46) is
simplified as

∞∑
k=0

P (k)

max{γ k, 1
γ
k}∑

k′=min{γ k, 1
γ
k}

P (k′) = 1

Nη
. (48)

Given the degree distribution P (k) and conditional degree
distribution P (k′|k) of a network, one calculates γ from
Eq. (46). Then, one computes the critical density of ρc as
follows:

ρc1 = a22 − γ a12

γ a11 + a22 − γ a12 − a21
, (49)

ρc2 =
a22 − 1

γ
a12

1
γ
a11 + a22 − 1

γ
a12 − a21

. (50)

Without loss of generality, we assume that 0 < ρc1 � ρc2 < 1.
Therefore, the difference �ρ = ρc2 − ρc1 defines the deviation
of the numerical estimation of ρc from the predicted value ρ∗.

Both Eqs. (46) and (48) describe precisely the roles of
network structures on the critical values of fixation probability
when ρ is close to ρ∗. Depending on the initial density ρ of
s1, we have the following situations.

(1) The deterministic replicator equation successfully cap-
tures the dynamics when ρ ∈ (0,ρc1) ∪ (ρc2 ,1). In contrast,
when ρ ∈ (ρc1 ,ρc2 ), the diffusion term becomes essential such
that b2(ρ) > η|a(ρ)| and, therefore, the approximation by
replicator equation becomes imprecise.

(2) The unstable interior fixed point ρ∗ is in the interval
of ρ∗ ∈ (ρc1 ,ρc2 ), which corresponds to the case that the drift
term a(ρ) is degenerated to be zero. Therefore, when ρ ≈ ρ∗,
we have b2(ρ) � |a(ρ)|, namely, replicator dynamics shows
large fluctuations around ρ∗.

(3) For networks of high link densities, one has rather large
mean degree 〈k〉. In this case, we have ρc1 ≈ ρc2 provided
there is no pronounced difference between min{γ k, 1

γ
k} and

max{γ k, 1
γ
k} [Eq. (46)]. This often appears in all-to-all con-

nected or well-mixed networks, where the interval �ρ around
ρ∗ is neglectable, which agrees with our approximations
discussed in Sec. III C.

(4) For sparser networks like scale free or ER random
networks of low mean degrees 〈k〉, the interval of �ρ

becomes substantive and one observes the large deviation
of the numerical estimation of ρc from the prediction ρ∗.
Furthermore, it is expected that �ρ is larger for scale free
networks than that for ER random networks. In conclusion, it
is the heterogeneous property in the degree distribution that
leads to the significant difference between ρc1 and ρc2 .

The above statements have been consistently validated by
the numerical estimation of fixation probability B and the cor-
responding expectation times, as shown in Fig. 1. Furthermore,
as the mean degree 〈k〉 of a network is increased, one moves
from a situation of heterogeneous interaction topology to the
situation as fulfilled by well mixing populations. Therefore,
the interval of �ρ decreases when one increases 〈k〉 (shown
in Fig. 6), converging to the results as predicted by replicator
equations for all-to-all connection. Note that �ρ is larger in
scale free networks than that of ER random networks when
〈k〉 is systematically increased.

Effects of selection strength. Concerning the noise level of
irrationality κ , we followed the traditional way to choose κ =
0.1 in the stochastic strategy updating rule [Eq. (2)] [34,35,39–
41]. Our results do not change qualitatively if κ is varied in
a suitable interval, for instance, κ ∈ (0.0001,1.0), as shown
in Fig. 7. The nonvanishing interval �ρ has been obtained
for rather small values of κ (order of 10−4). In contrast, for
well-mixed populations (e.g., all-to-all connected), we find that
�ρ ≈ 0. Therefore, we conclude that the gradual monotonic
increasing trends of the fixation probabilities at ρ∗ are genuine
properties of the processes.

A smaller κ corresponds to a relative strong selection for
strategy spreading. An interesting limiting case is to consider
κ → 0 [42], which yields a fully deterministic process for
arbitrary population size. The strategy updating rule [Eq. (2)]
is reduced to unconditional imitations depending only on the
sign of the payoff difference. In contrast, a large value of
κ suggests that the approximation by Eqs. (44) and (45)
becomes imprecise, since this indicates a weak selection
strength in the strategy updating. It is expected that the interval
(ρc1 ,ρc2 ) becomes wider for much larger κ . The limit of
κ → ∞ is reduced to the case of neutral selection; the fixation
probabilities are a linear function of ρ [19]. In consequence,
�ρ → 1 when κ is larger than 100 as shown in Fig. 7.

V. CONCLUSIONS

The numerical estimation for the intermediate fixation
probabilities for populations of finite sizes shows large
deviations from the unstable interior fixed point ρ∗ which was
predicted by the replicator equations. We propose a stochastic
framework to study the evolutionary process of the networked
coordination games, which explains clearly the numerical
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FIG. 6. (Color online) ρc1 and ρc2 vs 〈k〉, while insets are �ρ for the corresponding networks. Open squares � and open triangles � are
from the predictions [Eqs. (49), (50)], while � and • are from numerical simulations. Network size is N = 100. (a) ER random networks, and
(b) scale free networks.

estimation of ρ ∈ (ρc1 ,ρc2 ). The roles of the drift term in
the Fokker-Plank equation have been disclosed explicitly.
The variance of ρc is also obtained analytically provided the
network structures P (k) and P (k′|k) are given. Therefore, the
dynamic process on finite structured populations shows more
complex regimes when the initial density of one strategy passes
the unstable fixed point ρ∗.

Our results have been verified by various numerical simu-
lations on random and scale free networks. Here we focused
on the coordination games. The stochastic modeling of the
dynamic process can be generalized to other classes of network
games, for instance, snowdrift games, where metastability of
fixation probability may appear on scale free networks [43].
Another interesting problem is to study the change from finite
to infinite population structures, for instance, when N → ∞
as has been done in [21].

FIG. 7. (Color online) Effects of κ on �ρ (network size N =
100; mean degree 〈k〉 = 10). κ is varied in κ ∈ (2.7 × 10−4,3.3 ×
102), while κ = 0.1 is highlighted. ER random networks (�), scale
free networks (•), and well-mixed (all-to-all connected) networks
(�).

In the present work, we concentrated on networked games
with two strategies. The situation becomes more challenging
when more competitive strategies are coexistent, which yields
more complicated dynamic scenarios [44,45]. Furthermore,
community structures are often one important characteristic of
a complex network. Recently, this idea has been experiencing
a fast development, including a proper extension to multiplex
or multilayer complex networks [46], with growing structured
populations [47,48], or adaptive networks [49]. Evolutionary
games on such networks of more complex structures will be
a subject for future work. The generalization of our proposed
stochastic modeling will be a helpful tool in this line of
research.

ACKNOWLEDGMENTS

This work is in part financially supported by the Na-
tional Natural Science of China (Grants No. 11305062, No.
11135001, and No. 81471651), the Specialized Research Fund
(SRF) for the Doctoral Program (No. 20130076120003), the
SRF for ROCS, SEM, the Innovation Program of Shanghai
Municipal Education Commission Grant No. 12ZZ043, and
the Open Project Program of State Key Laboratory of Theoreti-
cal Physics, Institute of Theoretical Physics, Chinese Academy
of Sciences, China (No.Y4KF151CJ1).

APPENDIX: TRANSITION MATRIX M

As we have discussed in Sec. III [Eq. (4)], the crucial
step is to obtain the state transition matrix M . The fixation
probabilities and the averaged fixation times are calculated
by Eqs. (16) and (18). In this section, we provide a general
framework in obtaining the fundamental matrix H of the
stochastic process [15].

Let us assume v(j ) to be the number of necessary steps to
reach one transient state φj (neither the final absorbing state
φ0 nor φN is arrived). We denote μm(j ) = 1 when the system
reaches the state φj after m steps, and μm(j ) = 0 if otherwise.
With this notation, we have v(j ) = ∑∞

m=0 μm(j ).
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Starting from any transient state φi , the mean time that the system needs to reach the other transient state φj is expressed as

Ei(v(j )) = Ei

( ∞∑
m=0

μm(j )

)
=

∞∑
m=0

Ei(μm(j )) =
∞∑

m=0

[(
1 − M

(m)
ij

) × 0 + M
(m)
ij × 1

] =
∞∑

m=0

M
(m)
ij . (A1)

For any two transient states i,j ∈ Q, we have

(Ei(v(j )))i,j∈Q = I + Q + Q2 + · · · = (IN−1 − Q)−1 = H. (A2)

With the fundamental matrix H , one derives the fixation probabilities and expectation times as Eqs. (18) and (19).
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[34] G. Szabó and C. Tőke, Phys. Rev. E 58, 69 (1998).
[35] Z. Rong, H.-X. Yang, and W.-X. Wang, Phys. Rev. E 82, 047101

(2010).
[36] Z. Wang and M. Perc, Phys. Rev. E 82, 021115 (2010).
[37] M. El-Mikkawy and A. Karawia, Appl. Math. Lett. 19, 712

(2006).
[38] A. Traulsen, J. M. Pacheco, and L. A. Imhof, Phys. Rev. E 74,

021905 (2006).
[39] P. M. Altrock and A. Traulsen, New J. Phys. 11, 013012 (2009).
[40] B. Wu, P. M. Altrock, L. Wang, and A. Traulsen, Phys. Rev. E

82, 046106 (2010).
[41] F. Fu, L. Wang, M. A. Nowak, and C. Hauert, Phys. Rev. E 79,

046707 (2009).
[42] P. M. Altrock and A. Traulsen, Phys. Rev. E 80, 011909 (2009).
[43] M. Assaf and M. Mobilia, Phys. Rev. Lett. 109, 188701 (2012).
[44] J. C. Claussen and A. Traulsen, Phys. Rev. Lett. 100, 058104

(2008).
[45] A. Szolnoki, M. Mobilia, L.-L. Jiang, B. Szczesny, A. M.

Rucklidge, and M. Perc, J. R. Soc. Interface 11, 20140735
(2014).
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